07.12.2007
Halbleiter in Wechselwirkung mit intensiver Terahertzstrahlung
Stephan Koch zeigt Manipilation von Exzitionen durch Terahertz-Strahlung
Terahertz-Strahlung liegt im elektromagnetischen Spektrum zwischen der Infrarot- und Mikrowellen-Strahlung, sie ist also mit bloßem Auge nicht wahrnehmbar. Lange Zeit standen keine leistungsfähigen Sender und Empfänger im Wellenlängenbereich von Terahertz-Strahlung zur Verfügung. Erst in den letzten Jahren gab es eine rasante Entwicklung der Terahertz-Technologie, die schon jetzt vielfältige Anwendungen hervorbringt. Besondere Erwähnung verdient die so genannte Terahertz-Spektroskopie: Dies ist eine Analysemethode, bei der man ausnutzt, dass viele Materialien mit elektromagnetischer Strahlung besonders effektiv im Terahertz-Bereich wechselwirken. Mit Hilfe dieser Methode kann z.B. die Zusammensetzung organischer Stoffe und biologischer Systeme effizienter als bisher analysiert werden oder in der Medizin die Schwere von Verbrennungen diagnostiziert werden. Da Terahertz-Strahlung Plastik und Textil problemlos durchdringt, sind auch Anwendungen im Bereich der Sicherheitstechnik möglich, bei denen z.B. Menschen in Flughäfen - ohne Risiko - nach verborgenen Sprengsätzen oder Waffen durchsucht werden.
„Vor einigen Jahren haben wir vorgeschlagen, die Terahertz-Spektroskopie zur Untersuchung so genannter Exzitonen in Halbleitern einzusetzen, um z.B. zu untersuchen, wie Lichterzeugung in Halbleiterdioden genau funktioniert“, erklärt Prof. Dr. Stephan W. Koch. Zusammen mit seinem Team an der Philipps-Universität Marburg hatte er in theoretischen Untersuchungen zeigenkönnen, was inzwischen von Experimenten bestätigt wurde: Die Terahertz-Strahlung erlaubt, diese Exzitonen gewissermaßen „direkt“ zu beobachten, was mit herkömmlichen Methoden nicht möglich war.
In einem Artikel, der in der renommierten Fachzeitschrift Physical Review Letters veröffentlicht wurde, gehen die Marburger Physiker jetzt einen Schritt weiter. Dort zeigen sie, dass sich Terahertz-Strahlung nicht nur zur Beobachtung von Exzitonen, sondern auch zu deren Manipulation einsetzen lässt. Zu dieser Erkenntnis kommen sie durch den Vergleich theoretischer Ergebnisse mit einem Experiment, das von Prof. Dr. Yun-Shik Lee von der amerikanischen University of Oregon in Corvallis durchgeführt wurde. Zurzeit verbringt Professor Lee im Rahmen eines Stipendiums der Humboldt-Stiftung einen einjährigen Forschungsaufenthalt in Marburg und arbeitet intensiv mit der experimentellen und theoretischen Halbleiterphysik an gemeinsamen Projekten.
Mit Exzitonen in Halbleitern (von engl. „excitation“ – „Anregung“, da sie erst nach Anregung durch bestimmtes Laserlicht entstehen) bezeichnet man die Kombination von einem negativ geladenen Elektron und einem positiv geladenen „Loch“, die aufgrund der anziehenden Wechselwirkung zwischen unterschiedlichen Ladungen ein gebundenes Paar bilden. Ein solches Exziton verhält sich im Prinzip wie ein Wasserstoffatom, bei dem ein negativ geladenes Elektron von einem positiv geladenen Kern angezogen wird. Wie beim Wasserstoffatom – man denke an das Schalenmodell aus dem Chemie-Unterricht – darf die Energie des Exzitons unterschiedliche, aber nur ganz bestimmte Werte annehmen. Befindet sich das Elektron sozusagen auf der ersten Schale (also nahe am Loch), so hat es eine niedrige Energie; auf der zweiten entsprechend eine höhere usw. Die Energie, die nötig ist, um einen Elektron in eine höhere Schale anzuheben (man spricht von einem „Übergang“), liegt gerade im Terahertz-Bereich.
Die Tatsache, dass Terahertz-Strahlung auf diese Exzitonen-Übergänge „abgestimmt“ ist, lässt sich ausnutzen, um Exzitonen mit schwachen Terahertz Lichtpulsen nachzuweisen und deren Verhalten zu beobachten. In dem untersuchten Experiment wurden nun aber starke, extrem kurze Terahertz Lichtpulse eingesetzt, deren hohe Intensität ausreicht, solche Übergänge zwischen verschiedenen Energieniveaus gezielt zu verursachen, d.h. die Schalenkonfiguration zu verändern. Diese Vorgänge äußern sich im Experiment indirekt in einer messbaren Veränderung der optischen Eigenschaften des Halbleitermaterials. Durch die theoretische Modellierung des Experimentes ist es den Marburger Physikern gelungen, die Ergebnisse der Messung genau zu reproduzieren und unter anderem solchen Exzitonen-Übergängen zuzuordnen. Besonders am Experiment ist auch, dass die Messungen „zeitaufgelöst“ erfolgen, d.h. die Prozesse können auf extrem kurzer Zeitskala und daher sehr detailliert verfolgt werden.
Weitere Informationen:
Prof. Dr. Stephan W. Koch
Fachbereich Physik
E-Mail:
stephan.w.koch@physik.uni-marburg.de
Tel: (06421) 28-21336