17.05.2010
Kunst des Weglassens
Pflanzenprotein kann Ribozym ersetzen
Vereinfachte Ausführung, volle Leistung: Ein einzelnes Pflanzen-Protein kann wichtige molekularbiologische Funktionen übernehmen, für die bei anderen Organismen mehrere Komponenten erforderlich sind, zu denen in der Regel auch eine Nukleinsäure gehört. Das haben Wissenschaftler aus Marburg, Straßburg und Wien jetzt herausgefunden, die ihre Ergebnisse in der aktuellen Online-Ausgabe der Fachzeitschrift "Nature Structural & Molecular Biology" veröffentlichen.
Das Enzym RNase P trägt bei Bakterien, Pflanzen und Tieren dazu bei, einen Bestandteil für jene zelluläre Maschinerie bereit zu stellen, die für die Synthese von Eiweißverbindungen erforderlich ist. Das Enzym besteht aus einem Proteinanteil sowie einem Nukleinsäureanteil, der dafür verantwortlich ist, die eigentliche Reaktion an den Zielmolekülen anzustoßen. Solche katalytisch aktiven Nukleinsäuren werden als Ribozyme bezeichnet.
Da Nukleinsäuren in chemischer Hinsicht wesentlich einfacher gebaut sind als Proteine, galt RNase P lange Zeit als ein übrig gebliebener Zeuge der Entstehung des Lebens aus primitiven Vorformen. Seit einer bahnbrechenden Veröffentlichung der Wiener Arbeitsgruppe um Professor Dr. Walter Rossmanith kennt man ein RNase P-Enzym, das keinen Nukleinsäureanteil enthält; um die gleiche Funktion zu übernehmen, benötigt dieses Enzym aus menschlichen Mitochondrien drei Proteine.
Die Molekülstruktur pflanzlicher RNase P war hingegen bislang unbekannt. Um diese Lücke zu schließen, nahmen sich der Marburger Pharmazeut Professor Dr. Roland Hartmann und Kollegen aus Wien und Straßburg den Modellorganismus Arabidopsis vor. Wie sie zeigen, kommt das Kraut in seinen Mitochondrien und Chloroplasten sogar mit einem einzigen Protein aus, um die Enzymaktivität zu gewährleisten.
Was noch erstaunlicher ist: Wenn man das Molekül in Bakterien einschleust, so kann es deren RNase P-Enzym ersetzen, das zu 90 Prozent aus Nukleinsäure besteht und somit ganz anders aufgebaut ist. „Die funktionelle Ersetzbarkeit ist erstaunlich, wenn man bedenkt, dass Bakterien und die Vorläufer der Landpflanzen seit ihrer Trennung vor etwa 3 Milliarden Jahren in der Evolution ihre eigenen Wege gegangen sind“, gibt Koautor Hartmann von der Philipps-Universität zu bedenken.
Originalveröffentlichung: Anthony Gobert & al.: A single Arabidopsis organellar protein has RNase P activity, Nature structral & molecular biology, 17. Mai 2010, doi: 10.1038/nsmb.1812
Weitere Informationen:
Ansprechpartner: Professor Dr. Roland K. Hartmann,
Institut für Pharmazeutische Chemie
Tel.: 06421 28-25827 oder -25553
E-Mail:
roland.hartmann@staff.uni-marburg.de
Internet: www.uni-marburg.de/fb16/ipc/ag_hartmann/