Zurück zur Übersicht

28.02.2012

Chemie, radikal anders

Marburger Wissenschaftler postulieren neuen Mechanismus für Antibiotika-Biosynthese

Erst die Form fixieren, dann das überschüssige Material entfernen: Marburger Biochemiker haben einen neuartigen Mechanismus beschrieben, mit dem Bakterien eine ringähnliche Verbindung herstellen, die als Antibiotikum Verwendung findet. Wie die Wissenschaftler herausfanden, entstehen zunächst Querverbindungen zwischen den gegenüber liegenden Seiten des kettenförmigen Moleküls. Erst danach werden die überstehenden Kettenglieder abgeschnitten, so dass sich auch die beiden Enden verbinden können. Die Ergebnisse können dazu beitragen, dass sich das fragliche Molekül künftig durch chemische Synthese produzieren lässt; bislang ist man hierbei auf den Einsatz von Enzymen angewiesen.
Von der Kette zum versteiften Ring: Biochemiker von der Philipps-Universität fanden ein Modell, mit dem sich die Erzeugung ungewöhnlicher Antibiotika erklären lässt (Erläuterungen im Text). (Abbildung: AG Marahiel)

Das Ringmolekül ist aus einer Kette von Aminosäuren zusammengesetzt und wird als Peptid bezeichnet. „Sactibiotics sind eine neuartige Klasse von ungewöhnlichen Peptid-Antibiotika“, erklärt Professor Dr. Mohamed A. Marahiel von der Philipps-Universität, der die aktuelle Veröffentlichung in der Online-Ausgabe des Wissenschaftsmagazins „Nature Chemical Biology“ als Seniorautor verantwortet. Diese Peptide enthalten eine besonders stabile Brücke zwischen zwei gegenüber liegenden Aminosäuren, die nicht durch die chemische Reaktion von Säuren gespalten werden kann.

„Dieses außergewöhnliche Strukturmotiv ist nicht mit den heutigen Methoden der organischen Chemie zu synthetisieren“, führt der Marburger Hochschullehrer aus. „Um neuartige Peptidantibiotika künstlich zu erzeugen, ist es daher besonders wichtig, zu verstehen, wie die Natur diese molekularen Vorgänge ermöglicht.“

Die Wissenschaftler fanden heraus, dass die stabilen Verknüpfungen im ersten Schritt der Biosynthese eingeführt werden. Des Weiteren zeigt die aktuelle Studie, dass ein neu entdecktes Enzym für die Bildung der Brücken verantwortlich ist, genannt „AlbA“. Es gehört der Klasse der „Radical SAM Enzymen“ an, die Eisen-Schwefel-Kerne enthalten und dadurch in der Lage sind, ihre Zielverbindung „SAM“ (S-Adenosylmethionin) zu spalten; dabei entsteht ein so genanntes Radikal (5’-Deoxyadenosylradikal), das für die eigentliche Reaktion verantwortlich ist.

Indem die Marburger Forscher eine Wechselwirkung zwischen einem der enthaltenen Eisen-Schwefel-Kerne und dem Vorläufer des Ringmoleküls nachweisen konnten, ist es erstmals möglich geworden, einen Mechanismus vorzuschlagen, der die Bildung der genannten Verknüpfungen erklärt. „Dieser Mechanismus ist einzigartig für die Entstehung solcher Brücken, da er auf der katalytischen Wirkung eines Radikals beruht, das am Ort der Reaktion entsteht“, fasst Marahiel die Bedeutung der Ergebnisse zusammen.

Originalveröffentlichung: Leif Flühe & al.: The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nature Chemical Biology 2012, doi:10.1038/nchembio.798

Weitere Informationen:

Professor Dr. Mohamed A. Marahiel,
Fachgebiet Biochemie
Tel.: 06422 28-25722, Sekretariat: -25715
E-Mail: marahiel@staff.uni-marburg.de
Internet: http://www.uni-marburg.de/fb15/ag-marahiel?language_sync=1