27.03.2019 Giftig, aggressiv und dennoch viel genutzt
Untersuchungen mit Neutronen beenden Wissenschaftsstreit über Struktur des Fluors
In Zahnpasta, Leuchtdioden und Medikamenten zeigt es seine positiven Seiten – doch elementares Fluor ist extrem aggressiv und hochgiftig. Versuche, die Kristallstruktur von festem Fluor mit Röntgenstrahlen zu bestimmen, endeten vor 50 Jahren mit Explosionen. Mit Neutronen der Forschungs-Neutronenquelle Heinz Maier Leibnitz (FRM II) ist es einem Forschungsteam der Philipps-Universität Marburg nun gelungen, die tatsächliche Struktur des Fluors aufzuklären.
Fluor ist das reaktivste chemische Element und zudem sehr giftig. Gleichzeitig wird es aber in vielen Bereichen verwendet. Beim ersten Versuch, die Atomabstände von festem Fluor zu bestimmen, verwendete ein Forschungsteam in den USA im Jahr 1968 Röntgenstrahlen. Eine schwierige Aufgabe, denn Fluor wird erst bei etwa minus 220 °C fest. Und schon beim Abkühlen des aggressiven Elements kam es zu Explosionen.
Chemie-Nobelpreisträger Linus Pauling zweifelte die Ergebnisse des Teams 1970 an und schlug ein alternatives Strukturmodell vor – den experimentellen Nachweis aber blieb er schuldig. Auch kein anderer Chemiker wagte sich 50 Jahre lang an die heikle Aufgabe.
Mithilfe von Neutronen aus der Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Garching gelang es nun Wissenschaftlern der Philipps-Universität Marburg, der Technischen Universität München (TUM) und der Aalto Universität Finnland, die Struktur aufzuklären.
Neutronen sind besonders gut geeignet, Fluoratome präzise zu lokalisieren. Weil Neutronen außerdem auch dickwandige Probenbehälter durchdringen können, waren sie für Professor Dr. Florian Kraus und sein Team aus Marburg die Methode der Wahl. Unterstützt wurden sie bei ihren Untersuchungen am Pulverdiffraktometer SPODI im FRM II von TUM-Wissenschaftler Dr. Markus Hölzel und seinen Kollegen.
Für die Untersuchungen realisierten die Forscher einen speziellen Messaufbau, um das Fluor bei sehr tiefen Temperaturen untersuchen zu können. Dazu verwendeten sie Materialien, die besonders widerstandsfähig gegenüber Fluor sind und eine sichere Handhabung gewährleisten.
„Die extrem präzisen Messungen mit Neutronen sind wichtig, um Berechnungen für verschiedenste Anwendungen machen zu können“, sagt Florian Kraus. „Bei anderen Elementen gibt es Kristallstrukturen in hoher Präzision bereits seit Jahren. So wurde die Kristallstruktur von Sauerstoff bereits 35 Mal untersucht und Kohlenstoff gar 108 Mal.“
Doch auch Fluor ist aus dem Alltag nicht mehr wegzudenken. Fluoride werden unter anderem als Zusatz in Zahnpasta verwendet, es ist in Leuchtmitteln enthalten, die das kalte LED-Licht in ein warmes Weiß verwandeln. Auch in vielen Arzneimitteln setzt man Fluorverbindungen ein, um die Wirksamkeit zu erhöhen.
Auch wenn die Messungen aus den 1960er Jahren keine präzisen Werte hervorgebracht hatten, war Florian Kraus dennoch sehr überrascht über den großen Unterschied: „Mit den Neutronenmessungen konnten wir den Atomabstand um 70 Prozent genauer auflösen“, sagt der Chemiker. „Und die Kristallstruktur zeigt, dass Nobelpreisträger Linus Pauling mit seinen Zweifeln recht hatte.“
Die aktuelle Veröffentlichung führte nebenbei auch zu bemerkenswerten wissenschaftshistorischen Einsichten: Die US-amerikanische Chemikerin Sandra C. Greer, die Ende der 1960er Jahre als Doktorandin die ersten Röntgenmessungen an Fluor durchführte, hatte ihrer eigenen Aussage zufolge keine Kenntnis davon, dass Linus Pauling ein paar Jahre später ihre experimentellen Daten verwendete; da der Nobelpreisträger sie nicht kontaktiert hatte, fand sie das erst nach 50 Jahren heraus, als die aktuellen Daten veröffentlicht wurden. Offenbar fand vor einem halben Jahrhundert kein Austausch zwischen den Arbeitsgruppen statt.
Gefördert wurde die aktuelle Studie aus Mitteln der Deutschen Forschungsgemeinschaft und des Deutschen Akademischen Austauschdienstes. Die neutronendiffraktometrischen Messungen wurden am Pulverdiffraktometer SPODI der Forschungs‐Neutronenquelle Heinz Maier‐Leibnitz durchgeführt. Theoretische Berechnungen wurden am Finnish IT Center for Science (CSC) durchgeführt.
Professor Dr. Florian Kraus lehrt Anorganische Chemie an der Philipps-Universität und leitet die Arbeitsgruppe Fluorchemie. Seit Anfang des Jahres 2018 fördert die Deutsche Forschungsgemeinschaft sein Projekt „Fluorchemie unter Hochdruck“ durch ihr „Reinhart Koselleck-Programm“.
(Pressetext: Dr. Andreas Battenberg & Andrea Voit, TUM)
Originalpublikation: Sergei I. Ivlev & al.: The Crystal Structures of alpha- and beta-F2 revisited, Chemistry - A European Journal, DOI: http://dx.doi.org/10.1002/chem.201805298