
Learning Bayesian Networks Under Sparsity Constraints: A Parameterized
Complexity Analysis

Niels Grüttemeier∗ and Christian Komusiewicz
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, Marburg, Germany

{niegru, komusiewicz}@informatik.uni-marburg.de

Abstract
We study the problem of learning the structure of an
optimal Bayesian network when additional struc-
tural constraints are posed on the network or on its
moralized graph. More precisely, we consider the
constraint that the moralized graph can be trans-
formed to a graph from a sparse graph class Π by at
most k vertex deletions. We show that for Π being
the graphs with maximum degree 1, an optimal net-
work can be computed in polynomial time when k
is constant, extending previous work that gave an
algorithm with such a running time for Π being the
class of edgeless graphs [Korhonen & Parviainen,
NIPS 2015]. We then show that further extensions
or improvements are presumably impossible. For
example, we show that when Π is the set of graphs
in which each component has size at most three,
then learning an optimal network is NP-hard even
if k = 0. Finally, we show that learning an opti-
mal network with at most k edges in the moralized
graph presumably is not fixed-parameter tractable
with respect to k and that, in contrast, computing
an optimal network with at most k arcs can be com-
puted is fixed-parameter tractable in k.

1 Introduction
Bayesian networks are graphical models for probability dis-
tributions in which the presence of conditional dependen-
cies between a set of random variables are represented via
a directed acyclic graph (DAG) D = (N,A) over a set N
of n random variables [Darwiche, 2009]. An arc (u, v) in a
Bayesian network means that the distribution of v depends on
the value of u. Once we have obtained a Bayesian network,
one may infer the distribution of some random variables given
the values of other random variables.

First, however, one needs to learn the network from ob-
served data. An important step herein is to learn the struc-
ture of the network, that is, the arc set of the network. In
this step, one is given for each network vertex v and each
set of possible parents of v a parent score and the goal is
to learn an acyclic network with a maximal sum of parent

∗Contact Author

scores. To represent the observed data as closely as possible
it may seem appropriate to learn a tournament, that is, a DAG
in which every pair of vertices u and v is connected either
by the arc (u, v) or by the arc (v, u). There are, however,
several reasons why learning a tournament-like DAG should
be avoided (see [Darwiche, 2009] for a detailed discussion):
First, such a network gives no information about which vari-
ables are conditionally independent. Second, including too
many dependencies in the model makes the model vulnerable
to overfitting. Finally, the problem of inferring distributions
on a given Bayesian network is intractable when the DAG
is tournament-like. More precisely, the inference problem on
Bayesian networks is NP-hard [Cooper, 1990]. The key to ob-
taining efficient inference algorithms is to exploit that the net-
work is tree-like: If the moralized graph has small treewidth,
the inference task can be solved more efficiently [Darwiche,
2009]; the moralized graph of a network D is the undirected
graph on the same vertex set that is obtained by adding an
edge between each pair of vertices that is adjacent or has a
common child in D.

Motivated by these reasons for avoiding tournament-like
networks and instead aiming for tree-like networks, it has
been proposed to learn optimal networks under structural
constraints that guarantee that the network or its moralized
graph is tree-like [Elidan and Gould, 2008; Korhonen and
Parviainen, 2013; 2015; Chow and Liu, 1968; Gaspers et al.,
2015]. We continue this line of research, focusing on exact
algorithms with worst-case running time guarantees. In other
words, we want to find out for which structural constraints
there are fast algorithms for learning optimal Bayesian net-
works under these constraints and for which constraints this
is presumably impossible.

1.1 Known Results
The problem of learning a Bayesian network without struc-
tural constraints, which we call VANILLA-BNSL, is NP-
hard [Chickering, 1995] and can be solved in 2nnO(1) time
by dynamic programming over all subsets of N [Ott and
Miyano, 2003; Silander and Myllymäki, 2006].

When the network is restricted to be a branching, that is,
a directed tree in which every vertex has indegree at most
one, then an optimal network can be computed in polynomial
time [Chow and Liu, 1968; Gaspers et al., 2015]. Note that
learning a more restricted Bayesian network is not necessarily

easier: While learning a branching is solvable in polynomial
time, the problem becomes NP-hard if we aim to learn a di-
rected path [Meek, 2001].

On the negative side, the BOUNDED-TW-BNSL problem,
where the moralized graph of the network is restricted to have
treewidth at most ω is NP-hard for every fixed ω ≥ 2 and
can be solved in 3nnω+O(1) time [Korhonen and Parviainen,
2013]. Finally, BOUNDED-VC-BNSL where the moralized
graph is restricted to have a vertex cover of size at most k can
be solved in 4k · n2k+O(1) time [Korhonen and Parviainen,
2015]; a vertex cover in a graph G is a vertex set S such that
every edge of G has at least one endpoint in S. Since having
a bounded vertex cover implies that the graph has bounded
treewidth, the networks that are learned by BOUNDED-VC-
BNSL allow for fast inference algorithms. An algorithm
with running time f(k) · |I|O(1) is unlikely for BOUNDED-
VC-BNSL, since BOUNDED-VC-BNSL is W[1]-hard with
respect to the parameter k [Korhonen and Parviainen, 2015].
Here, |I| denotes the total input size. In other words, it seems
necessary that the degree of the running time polynomial de-
pends on k.

1.2 Our Results
The results for BOUNDED-VC-BNSL [Korhonen and Parvi-
ainen, 2015] form the starting point for our work. An alterna-
tive view of vertex covers is as follows: A graph has a vertex
cover of size k if and only if it can be transformed into an
edgeless graph by k vertex deletions. Thus, in BOUNDED-
VC-BNSL we learn a network whose moralized graph is
close, in terms of the number of vertex deletions, to a sparse
graph class. We investigate whether there are further positive
examples for such constrained network learning problems.

First, we consider the constraint that the moralized graph
can be transformed into a graph with maximum degree 1 by at
most k vertex deletions. We show that under this constraint,
one can learn an optimal network in nO(k2) · |I|O(1) time and
thus in polynomial time for every constant value of k. This
extends the result for BOUNDED-VC-BNSL in the following
sense: the value of k can be arbitrarily smaller than the ver-
tex cover number and thus for fixed k our algorithm can learn
an optimal network for a larger class of graphs than the algo-
rithm for BOUNDED-VC-BNSL. Observe that the moralized
graphs still have bounded treewidth and thus inference on the
learned networks will still be solvable efficiently.

We then show that it is unlikely that this positive result can
be improved much further. First, we show that an algorithm
with running time f(k) · |I|O(1) is unlikely. Moreover, we
show that learning an optimal network that has maximum de-
gree 2 is NP-hard and that learning an optimal network in
which every component has at most three vertices is NP-hard
(in a graph with maximum degree one every connected com-
ponent has at most two vertices).

We further extend these negative results by showing that
even in the very restricted scenario where we aim to compute
an optimal network whose moralized graph has at most k
edges, an f(k) · |I|O(1)-time algorithm is unlikely. In con-
trast, if we restrict instead the number of arcs in the network,
we obtain an algorithm with a running time of 2O(k) · |I|O(1).

Thus, putting structural constraints on the moralized graph
may make the problem much harder than putting similar
structural constraints on the network itself. We obtain a fur-
ther hardness result for VANILLA-BNSL: Under standard as-
sumptions in complexity theory, it is impossible that we can
transform a given instance of VANILLA-BNSL in polynomial
time to an equivalent one of size nO(1). Thus, it is sometimes
necessary to keep an exponential number of parent scores to
compute an optimal network.

2 Preliminaries
2.1 Notation
We consider directed and undirected graphs that do not con-
tain multiple edges.

A directed graph D = (N,A) consists of a vertex set N
and an arc set A ⊆ N × N . Let D = (N,A) be a directed
graph. If D does not contain directed cycles, then D is called
directed acyclic graph (DAG). An arc (u, v) ∈ A is called
incoming arc into v and an arc (v, u) ∈ A is called outgoing
arc from v. A vertex without incoming arcs is a source. A
vertex without outgoing arcs is a sink. The set PAv := {u ∈
N | (u, v) ∈ A} is called parent set of v. The vertices in PAv
are called parents of v and for every u ∈ PAv , the vertex v
is called child of u. We call v1 an ancestor of v` and v` a
descendant of v1 if there is a path (v1, v2, . . . , v`) in D.

An undirected graph G = (V,E) consists of a vertex set V
and an edge set E ⊆ {{u, v} | u, v ∈ V }. For a ver-
tex v ∈ V , we write NG(v) := {u | {u, v} ∈ E} to denote
the neighborhood of v in G. The degree of a vertex v is de-
fined as degG(v) := |NG(v)|. Given an edge-setE′ ⊆ E, we
let G \E′ denote the graph we obtain after deleting the edges
in E′ from G. Given a vertex-set V ′ ⊆ V , we let G− V ′ de-
note the graph we obtain after deleting the vertices in V ′ and
their incident edges from G. A set S ⊆ V is called dissocia-
tion set, if G − S has maximum degree one. The size of the
smallest possible dissociation set for G is called dissociation
number of G.

A graph class Π is a set of undirected graphs. For a graph
class Π and k ∈ N, let Π + kv denote the class of graphs
that can be transformed into a graph in Π by performing at
most k vertex deletions. Analogously, we define Π + ke as
the class of graphs that can be transformed into a graph in Π
by performing at most k edge deletions. We call Π monotone
if Π is closed under edge- and vertex deletions. Note that Π
being monotone implies that for every k ∈ N0, the graph
classes Π + kv and Π + ke are monotone.

2.2 Bayesian Network Structure Learning
Given a vertex set N , we call a family F = {fv : 2N\{v} →
N0 | v ∈ N} a family of local scores for N . Intu-
itively, for a vertex v ∈ N and some P ∈ 2N\{v}, the
value fv(P) ∈ N0 represents the score we obtain if we
choose exactly the vertices of P as parents for v. Given a
vertex set N , local scores F , and some integer t ∈ N0, an arc
set A ⊆ N ×N is called (N,F , t)-valid if (N,A) is a DAG
and

∑
v∈N fv(P

A
v) ≥ t.

Given a directed graph D = (N,A), we call the
undirected graph M(D) := (V,E1 ∪ E2) with V :=

N , E1 = {{u, v} | (u, v) ∈ A}, and E2 =
{{u, v} | u and v have a common child in D} the moralized
graph ofD. The edges inE2 are called moral edges. We may
now define the problem.

(Π + v)-BAYESIAN NETWORK STRUCTURE LEARN-
ING ((Π + v)-BNSL)
Input: A set of vertices N , local scores F = {fv | v ∈
N}, and two integers t, k ∈ N0.
Question: Is there an (N,F , t)-valid arc set A ⊆
N ×N such thatM((N,A)) ∈ Π + kv?

Intuitively, (Π + v)-BNSL can be seen as a version of
VANILLA-BNSL where we add an additional constraint to
the moralized graph of the resulting network. The prob-
lem (Π + e)-BNSL is defined on the same input and we ask
if there exists an (N,F , t)-valid arc set A such that (N,A) ∈
Π + ke. For both problems we call the requested arc set A a
solution of the instance (N,F , t, k). Note that, if Π is mono-
tone, contains infinitely many graphs, and k = n2, the prop-
ertyM((N,A)) ∈ Π + kv orM((N,A)) ∈ Π + ke always
hold, since every edgeless graph and an empty graph belong
to Π. Hence, (Π + v)-BNSL and (Π + e)-BNSL are gen-
eralizations of VANILLA-BNSL and thus NP-hard for every
monotone and infinite Π. For formal reasons, the problems
are stated as decision problems. However, the algorithms
presented in this work solve the corresponding optimization
problem within the same running time.

Throughout this work, we let n := |N | denote the number
of vertices given in an instance I = (N,F , t, k) of (Π + v)-
BNSL or (Π + e)-BNSL. Furthermore, we assume that the
local scores F are given in non-zero representation [Ordy-
niak and Szeider, 2013], that is, for every fv ∈ F , each
value fv(P) is only given if it is different from zero. We as-
sume that for N = {v1, . . . , vn}, the local scores F are given
as a two-dimensional array F := [Q1, Q2, . . . , Qn], where
each Qi is an array containing all triples (fvi(P), |P |, P)
where fvi(P) > 0. The size |F| is then defined as the num-
ber of bits we need to store this two-dimensional array. As
the size of I we define |I| := n+ |F|+ log(t) + log(k).

In this work, we consider (Π + v)-BNSL and (Π + e)-
BNSL for some monotone graph classes Π. Observe that in
these cases the following holds.

Proposition 1 Let Π be a monotone graph property, and
let (N,F , t, k) be a yes-instance of (Π +v)-BNSL (or (Π +
e)-BNSL). Then, there exists a solution A for (N,F , t, k)
such that for every v ∈ N it holds that fv(PAv) = 0 im-
plies PAv = ∅.

Given an instance I := (N,F , t, k) and some v ∈ N , we
define the set of potential parents of v by PF (v) := {P ⊆
N \{v} : fv(P) > 0}∪{∅}, which are exactly the parent sets
stored in F together with the empty set. If Π is monotone, we
can assume by Proposition 1 that in a solutionA for I , every v
has a parent set PAv ∈ PF (v). An important measurement for
the running times of our algorithms is the maximum number
of potential parent sets δF := maxv∈N |PF (v)| [Ordyniak
and Szeider, 2013]. Given a vertex v ∈ N , we can iterate
over all vertices in potential parent sets of v in O(δF · n)
time.

Another tool for designing algorithms for BNSL problems
is the superstructure [Ordyniak and Szeider, 2013]. The su-
perstructure ofN andF is the directed graph S ~F = (N,AF)
with AF = {(u, v) | ∃P ∈ PF (v) : u ∈ P}.

2.3 Parameterized Complexity
A problem is called slicewise polynomial (XP) for a param-
eter k if it can be solved in time O(|I|f(k)) for a com-
putable function f . That is, the problem is solvable in poly-
nomial time when k is constant. A problem is called fixed-
parameter tractable (FPT) for a parameter k if it can be
solved in time f(k) · |I|O(1) for a computable function f . If a
problem is W[1]-hard then it is assumed to be fixed-parameter
intractable. A problem has a polynomial kernel for a parame-
ter k if there is a polynomial-time algorithm that, given an in-
stance I with parameter k, computes an equivalent instance I ′
with parameter k′ ≤ k of size g(k) where g is a polynomial.
For a detailed introduction into parameterized complexity we
refer to [Cygan et al., 2015].

3 Vertex Deletion Distances
Let Π1 := {G | G has maximum degree 1}, that is, ev-
ery G ∈ Π1 consists only of isolated edges and isolated
vertices. Observe that Π1 is monotone. In this section we
consider (Π1 + v)-BNSL. Note that, given some k ∈ N, a
DAG D = (N,A) withM(D) ∈ Π1 + kv is a DAG whose
moralized graph has a dissociation set of size at most k. Since
the treewidth of a graph is never bigger than the dissocia-
tion number plus one, the moralized graph of the resulting
Bayesian network has treewidth at most k + 1. Before we
describe the main idea of the algorithm we provide the fol-
lowing simple observation .
Proposition 2 Let D = (N,A) be a DAG and S ⊆ N be a
dissociation set ofM(D). Then, at most 2|S| vertices in N \
S have descendants in S.

The idea is the following: If we know the dissociation
set S, all their ancestors Q under A, and the arcs between
them, the remaining arcs of A can be found in polynomial
time. We start with the following .
Definition 3 let N be a vertex set and let S ⊆ N . A set Q ⊆
N \ S together with an arc-set AQ ⊆ (S ∪Q)× (S ∪Q) is
called ancestor tuple for S, if

a) DQ := (S ∪Q,AQ) is a DAG, and
b) for every v ∈ Q exists some w ∈ S such that w is a

descendant of v in DQ, and
c) in the moralized graph M(DQ), every v ∈ Q has at

most one neighbor outside S.

Intuitively, the ancestor tuple 〈Q,AQ〉 is the part of the solu-
tion that our algorithm finds via bruteforce. We next formally
define an arc set containing the remaining arcs of a solution.
To this end, we introduce some notation. Given an ancestor
tuple 〈Q,AQ〉 of some S ⊆ N , we let R := N \ (S ∪Q) de-
note the remaining vertices ofN . Moreover, we defineQ0 :=
{v ∈ Q | degM(DQ)−S(v) = 0} andQ1 := Q\Q0. By Defi-
nition 3 c), the vertices ofQ1 are the vertices that have degree
one inM(DQ)− S.

Q
Q0 Q1

S

R

Figure 1: A DAG D whose moralized graph has a dissociation set S.
The arc set of D is decomposed into the arc set of an ancestor tu-
ple 〈Q,AQ〉 and a suitable arc set AR. The thin arrows correspond
to the arcs of AQ and the thick arrows correspond to the arcs of AR.
The dotted edges are the moral edges.

Definition 4 Let N be a vertex set, let S ⊆ N , and
let 〈Q,AQ〉 be an ancestor tuple of S. An arc-set AR ⊆
(S ∪Q0 ∪ R)× R is called suitable for 〈Q,AQ〉 if AR con-
tains no self-loops, and every w ∈ Q0 ∪ R has at most one
incident arc in AR ∩ ((R ∪Q0)×R).

Next, we state the connection between Definitions 3, 4, and
DAGs whose moralized graph has dissociation set S. First, an
ancestor tuple for some S and a suitable arc set can be com-
bined to a DAG where S is a dissociation set of the moralized
graph.
Proposition 5 Let N be a vertex set, let S ⊆ N , let 〈Q,AQ〉
be an ancestor tuple of S, and letAR ⊆ (S∪Q0∪R)×R be
a suitable arc set for 〈Q,AQ〉. Then, 1) D := (N,AQ ∪AR)
is a DAG, and 2) S is a dissociation set ofM(D).

Conversely, the arc set of every DAG whose moralized
graph has a dissociation set S can be partitioned into the arc
set of an ancestor tuple for S and a suitable arc set; Figure 1
shows an example.
Proposition 6 Let D = (N,A) be a DAG, let S ⊆ N be a
dissociation set ofM(D). Then, 〈Q,AQ〉 defined by

Q := {v ∈ N \ S | v has descendants in S},
AQ := (S ∪Q)× (S ∪Q) ∩A,

is an ancestor tuple of S with |Q| ≤ 2|S| and A \ AQ is
suitable for 〈Q,AQ〉.

Next, we use ancestor tuples and suitable arc sets to decom-
pose the local scores in (Π1 + v)-BNSL. Let (N,F , t, k) be
an instance of (Π1 + v)-BNSL and let S ⊆ N . Furthermore,
let 〈Q,AQ〉 be an ancestor tuple for S and let AR be suitable
for 〈Q,AQ〉. Then, we set A := AQ ∪ AR and by Propo-
sition 5, D := (N,A) is a DAG and S is a dissociation set
ofM(D). Observe that all arcs in AR have endpoints in R
and all arcs in AQ have endpoints in Q ∪ S. Hence, for ev-
ery v ∈ N it holds that either all incoming arcs are in AQ or
in AR. Hence, the score of A under F is∑

v∈N
fv(P

A
v) =

∑
v∈S∪Q

fv(P
AQ
v) +

∑
v∈R

fv(P
AR
v).

We next show that, if S and 〈Q,AQ〉 are given, we can
find AR in polynomial time. More precisely, we solve the
following problem.

(Π1 + v)-BNSL-COMPLETION
Input: A set of vertices N , a subset S ⊆ N , an ances-
tor tuple 〈Q,AQ〉 for S, local scores F = {fv | v ∈
N}, and an integer t.
Question: Is there an arc-set AR that is suitable
for 〈Q,AQ〉 such that

∑
v∈R fv(P

AR
v) ≥ t?

Proposition 7 (Π1+v)-BNSL-COMPLETION can be solved
in O(n2 · (nδF +

√
n)) time.

PROOF We give a polynomial-time reduction to MAXIMUM
WEIGHT MATCHING, where one is given a graph G =
(V,E), edge-weights ω : E → N, and ` ∈ N and the ques-
tion is if there exists a set M ⊆ E of pairwise non-incident
edges such that

∑
e∈M ω(e) ≥ `.

Construction: Let I := (N,S, 〈Q,AQ〉,F , t) be an in-
stance of (Π1 + v)-BNSL-COMPLETION. We construct
an equivalent instance (G,ω, `) of MAXIMUM WEIGHT
MATCHING. We first define G := (V,E) with V := Q0 ∪
R ∪ R′, where R′ := {v′ | v ∈ R}, and E := X ∪ Y ∪ Z,
where

X := {{v, w} | v, w ∈ R, v 6= w},
Y := {{v, w} | v ∈ R,w ∈ Q0}, and

Z := {{v, v′} | v ∈ R}.

Next, we define edge-weights ω : E → N: For e =
{v, v′} ∈ Z, we set ω(e) := maxS′⊆S fv(S

′). Furthermore,
for e = {v, w} ∈ Y with v ∈ R and w ∈ Q0, we set ω(e) :=
maxS′⊆S fv(S

′ ∪ {w}). Finally, for e = {v, w} ∈ X , we
set ω(e) := max(ϕ(v, w), ϕ(w, v)), where

ϕ(u1, u2) := max
S′⊆S

fu1
(S′ ∪ {u2})

+ max
S′⊆S

fu2(S′).

To complete the construction , we set ` := t.
Due to lack of space, the correctness proof is deferred.

We provide some intuition: A maximum weight matching M
in G corresponds to the parent sets of vertices in R and there-
fore to arcs in AR. An edge {v, v′} ∈ Z with v ∈ R corre-
sponds to a parent set of v that contains only vertices from S.
Moreover, an edge {v, w} ∈ Y with v ∈ R corresponds to
a parent set of v that contains w ∈ Q0 and vertices from S.
Finally, an edge {v, w} ∈ X means that either v ∈ PAR

w
or w ∈ PAR

v . Since M is a matching, the corresponding arc
set is suitable for 〈Q,AQ〉. 2

Theorem 8 (Π1 + v)-BNSL can be solved in O((nδF)3k ·
poly(|I|)) time.

PROOF (SKETCH) Iterate over all possible choices for S
and 〈Q,AQ〉 where |S| ≤ k and |Q| ≤ 2k in O((nδF)3k)
time and find the remaining arcs in polynomial time using
Proposition 7. 2

Note that in a Bayesian network whose moralized graph
has a dissociation set of size k the maximum parent set size
is k+1. Otherwise, the moralized graph has a clique of size at
least k+ 3, contradicting the fact that it has a dissociation set
of size k. Hence, we can delete every triple (fv(P), |P |, P)
with |P | > k + 1 from F . Afterwards, δF ≤

(
n
k+1

)
.

Corollary 9 (Π1 + v)-BNSL can be solved in nO(k2) +
poly(|I|) time.

We complement the algorithm for (Π1 + v)-BNSL by
several hardness results. First, there is little hope to ob-
tain an FPT algorithm for (Π1 + v)-BNSL parameterized
by k + t since the problem is W[1]-hard. Observe that this is
not implied by the W[1]-hardness of BOUNDED-VC-BNSL
since (Π1 + v)-BNSL is a different problem where we aim
to find a Bayesian network with different restrictions. How-
ever, the proof is closely related to the W[1]-hardness-proof
for BOUNDED-VC-BNSL [Korhonen and Parviainen, 2015].
Proposition 10 (Π1+v)-BNSL is W[1]-hard for k+t, even
when the superstructure S ~F is a DAG and the maximum par-
ent set size is three.

We next consider monotone graph classes that are related
to the class Π1 . Let Π2 be the class of graphs that have
maximum degree two, and let ΠCOC

3 be the class of graphs
where each connected component has size at most three.
These graph classes are superclasses of Π1, that is Π1 ⊆ Π2

and Π1 ⊆ ΠCOC
3 . Consequently, if a graph G belongs to the

graph class Π1 +kv for some k ∈ N0, then there exist k′ ≤ k
and k′′ ≤ k such that G ∈ Π2 + k′v and G ∈ ΠCOC

3 + k′′v.
Moreover, observe that the treewidth of G is not bigger
than min(k′, k′′) +O(1).

With the next proposition we show that there is little hope
that we can solve (Π2 + v)-BNSL or (ΠCOC

3 + v)-BNSL in
XP time when parameterized by k. The hardness of (Π2+v)-
BNSL relies on the fact that learning paths is NP-hard [Meek,
2001].
Proposition 11 (Π2 +v)-BNSL and (ΠCOC

3 +v)-BNSL are
NP-hard even if k = 0.

4 Edge Deletion Distances
4.1 Bounded-Edges-BNSL
We now consider a version of BNSL, where we aim to learn
a network whose moralized graph has a bounded number
of edges. More precisely, we consider (Π0 + e)-BNSL
where Π0 is the class of edgeless graphs. Clearly, Π0 is
monotone and (Π0 + e)-BNSL can be solved in O(n2k ·
poly(|I|)) time by a brute-force algorithm. To put this into
context, we show that there is little hope to solve (Π0 + e)-
BNSL in FPT time for t+ k.
Theorem 12 (Π0 + e)-BNSL is W[1]-hard when parame-
terized by t + k, even when S ~F is a DAG and the maximum
parent set size is three.

Learning a Bayesian network whose moralized graph has a
bounded feedback edge set is also W[1]-hard when parame-
terized by the size of the feedback edge set. More formally,
let ΠF be the class of forests, which are undirected acyclic
graphs.
Theorem 13 (ΠF + e)-BNSL is W[1]-hard when param-
eterized by k, even when S ~F is a DAG and the maximum
parent set size is four.

For efficient inference it is desirable to have a small
treewidth in the moralized graph. The size of a feedback edge

set is a large upper bound for the treewidth. Since even learn-
ing Bayesian networks under this constraint is W[1]-hard, it
appears to be unlikely to obtain fixed-parameter tractability
for natural parameters that bound the treewidth of the moral-
ized graph.

4.2 Bounded-Arcs-BNSL
Next, we consider a version of BAYESIAN NETWORK
STRUCTURE LEARNING where we want to learn a Bayesian
network with a bounded number of arcs. In contrast to (Π0 +
e)-BNSL, the additional sparsity constraint does not affect
the moralized graph but only the arcs of the DAG itself. The
problem is formally defined as follows.

BA-BNSL
Input: A set of vertices N , local scores F = {fv | v ∈
N}, and two integers t, k ∈ N.
Question: Is there an (N,F , t)-valid arc set A ⊆ N ×
N such that |A| ≤ k?
BA-BNSL is a generalization of VANILLA-BNSL and

therefore NP-hard. We prove that BA-BNSL becomes
polynomial-time solvable if the superstructure is a DAG. The
algorithm uses dynamic programming over a topological or-
dering of S ~F .

Proposition 14 BA-BNSL can be solved in O(δF · k · n)
time if the superstructure S ~F is a DAG.

PROOF We give a simple dynamic programming algorithm.
Let N := {1, . . . , n}, and let (N,F , t, k) be an instance
of BA-BNSL such that S ~F is a DAG. Then, there exists
such a topological ordering of S ~F . Without loss of generality,
let (n, n − 1, . . . , 2, 1) be such topological ordering. Hence,
for every arc (a, b) of S ~F it holds that a > b.

The dynamic programming table T has entries of the
type T [i, j] for all i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , k}.
Each entry stores the maximum sum of local scores of the
vertices (i, . . . , 1) of the topological ordering that can be ob-
tained by an arc set A of size at most j. For i = 0, we
set T [0, j] = 0 for all j ∈ {0, . . . , k}. The recurrence to
compute an entry for i > 0 is

T [i, j] = maxP∈PF (i),|P |≤j(fi(P) + T [i− 1, j − |P |]),

and the result can then be computed by checking if T [n, k] ≥
t. The corresponding network can be found by traceback.
The correctness proof is straightforward and thus omitted.
The size of T is O(n · k) and each entry T [i, j] can be
computed in O(δF) time by iterating over the at most δF
triples (fi(P), |P |, P) in F for the vertex i. Therefore, BA-
BNSL can be solved in O(δF · k · n) time if S ~F is a DAG.
2

4.3 A Randomized Algorithm for BA-BNSL
The dynamic programming algorithm behind Proposition 14
can be adapted to obtain an FPT algorithm for BA-BNSL
when parameterized by the number of arcs k. The algorithm
is based on color coding [Alon et al., 1995]: In a Bayesian
network with at most k arcs, there are at most 2k vertices
which are endpoints of such arcs. The idea of color coding
is to randomly color the vertices of N with 2k colors and

find a solution A where all vertices that are incident with arcs
ofA are colored with pairwise distinct colors. To describe the
color coding algorithm, we introduce some notation. Let N
be a set of vertices. A function χ : N → {1, . . . , 2k} is
called a coloring (of N with 2k colors). Given a color c ∈
{1, . . . , 2k}, we call χ−1(c) := {v ∈ N | χ(v) = c}
the color class of c. For a subset N ′ ⊆ N , we let χ(N ′) :=
{χ(v) | v ∈ N ′}, and for a subset C ⊆ {1, . . . , 2k} we
let χ−1(C) :=

⋃
c∈C χ

−1(c). The following definition is im-
portant for our algorithm.
Definition 15 Let N be a set of vertices and let χ : N →
{1, . . . , 2k} be a coloring of N . An arc set A ⊆ N × N
is called color-loyal for χ if for every color class χ−1(c) it
holds that

a) there is no (v, w) ∈ A with v, w ∈ χ−1(c), and
b) there is at most one vertex v ∈ χ−1(c) such that PAv 6=
∅.

Consider the following auxiliary problem.
COLORED BA-BNSL
Input: A set of vertices N , local scores F = {fv | v ∈
N}, two integers t, k ∈ N, and a coloring χ : N →
{1, . . . , 2k}.
Question: Is there an (N,F , t)-valid arc set A ⊆ N ×
N that is color-loyal for χ and |A| ≤ k?
Intuitively, COLORED BA-BNSL is the problem that we

solve after we randomly choose a coloring of N . The corre-
spondence between BA-BNSL and COLORED BA-BNSL is
as follows.
Proposition 16 Let I = (N,F , t, k) be an instance of BA-
BNSL. If I is a yes-instance of BA-BNSL, then there exist
at least (2k)!(2k)(n−2k) colorings χ : N → {1, 2, . . . , 2k}
such that (N,F , t, k, χ) is a yes-instance of COLORED BA-
BNSL.

Proposition 17 COLORED BA-BNSL can be solved
in O(4kk2n2δF) time.

PROOF We fill a dynamic programming table T with entries
of type T [C ′, k′] where C ′ ⊆ C and k′ ∈ {0, 1, . . . , k}. Ev-
ery entry stores the maximum value of

∑
v∈χ−1(C′) fv(P

A
v)

over all possible DAGs D = (N,A), where A ⊆ χ−1(C ′)×
χ−1(C ′) is color-loyal for χ and contains at most k′ arcs.
We set T [{c}, k′] :=

∑
w∈χ−1(c) fw(∅) for every c ∈ C

and k′ ∈ {0, 1, . . . , 2k}. The recurrence to compute the entry
for C ′ ⊆ C with |C ′| > 1 is

T [C ′, k′] = max
c∈C′

max
v∈χ−1(c)

max
P∈PF (v)
|P |≤k′

χ(P)⊆C′\{c}

Hk′

C′(c, v, P),

where

Hk′

C′(c, v, P) =T [C ′ \ {c}, k′ − |P |]

+ fv(P) +
∑

w∈χ−1(c)\{v}

fw(∅).

The result can be computed by checking if T [C, k] ≥ t. Note
that the corresponding network can be found via traceback.

The correctness proof is straightforward and thus omitted.
The size of T isO(22k · k). We omit the proof of the polyno-
mial running time part. 2

Propositions 16 and 17 give the following.

Theorem 18 There exists a randomized algorithm for BA-
BNSL that, in time O((2e)2k · k2n2δF) returns no, if given
a no-instance and returns yes with a constant probability of
at least 1− 1

e , if given a yes-instance.

The algorithm can be derandomized with standard tech-
niques [Naor et al., 1995; Cygan et al., 2015].

Corollary 19 BA-BNSL can be solved in (2e)2k·kO(log(k))·
poly(|I|) time.

Bounding the number of arcs appears to be not so relevant
for practical use. However, the algorithm might be useful as
a heuristic upper-bound: If we want to add a restricted num-
ber of dependencies to a given Bayesian network, the result
of BA-BNSL gives an upper bound for the profit we can ex-
pect from that modification. The above algorithm is comple-
mented by the following negative result.

Theorem 20 BA-BNSL parameterized by t + k does not
admit a polynomial kernel unless NP ⊆ coNP/poly even
when k = n2.

Observe that for instances of BA-BNSL with k = n2, the
budget of arcs can never be exceeded since a DAG has at
most

(
n
2

)
< n2 arcs. Hence, on instances with k = n2 we

ask for an (N,F , t)-valid arc set without additional sparsity
constraints. Thus, BA-BNSL and VANILLA-BNSL are the
same when k = n2. Then, Theorem 20 implies the following.

Corollary 21 VANILLA-BNSL parameterized by n does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

5 Conclusion
We have outlined the tractability borderline of BAYESIAN
NETWORK STRUCTURE LEARNING with respect to several
structural constraints on the learned network or on its moral-
ized graph. In particular, we have shown that putting struc-
tural sparsity constraints on the moralized graph may make
the problem harder than putting similar constraints on the net-
work. This is somewhat counterintuitive since the moralized
graph is a supergraph of the underlying undirected graph of
the network. It seems interesting to investigate this issue fur-
ther, that is, to find structural constraints such that putting
these constraints on the network leads to an easier problem
than putting them on the moralized graph.

While none of our algorithms have direct practical ap-
plications, they may be useful as bounds on the score that
can be achieved for example by adding k arcs to a network
that is currently considered in the search. Thus, it would
be interesting to explore variants of BAYESIAN NETWORK
STRUCTURE LEARNING where the input contains a partial
network and the aim is to extend it. Do the positive results for
BAYESIAN NETWORK STRUCTURE LEARNING also hold
for this more general problem?

References
[Alon et al., 1995] Noga Alon, Raphael Yuster, and Uri

Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

[Chickering, 1995] David Maxwell Chickering. Learning
Bayesian networks is NP-complete. In Proceedings of the
Fifth International Conference on Artificial Intelligence
and Statistics, (AISTATS’95), pages 121–130. Springer,
1995.

[Chow and Liu, 1968] C. K. Chow and C. N. Liu. Approxi-
mating discrete probability distributions with dependence
trees. IEEE Trans. Information Theory, 14(3):462–467,
1968.

[Cooper, 1990] Gregory F. Cooper. The computational com-
plexity of probabilistic inference using Bayesian belief
networks. Artif. Intell., 42(2-3):393–405, 1990.

[Cygan et al., 2015] Marek Cygan, Fedor V. Fomin, Lukasz
Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parame-
terized Algorithms. Springer, 2015.

[Darwiche, 2009] Adnan Darwiche. Modeling and Reason-
ing with Bayesian Networks. Cambridge University Press,
2009.

[Elidan and Gould, 2008] Gal Elidan and Stephen Gould.
Learning bounded treewidth Bayesian networks. In Pro-
ceedings of the Twenty-Second Annual Conference on
Neural Information Processing Systems, (NIPS’08), pages
417–424. Curran Associates, Inc., 2008.

[Gaspers et al., 2015] Serge Gaspers, Mikko Koivisto, Math-
ieu Liedloff, Sebastian Ordyniak, and Stefan Szeider. On
finding optimal polytrees. Theor. Comput. Sci., 592:49–58,
2015.

[Korhonen and Parviainen, 2013] Janne H. Korhonen and
Pekka Parviainen. Exact learning of bounded tree-width
Bayesian networks. In Proceedings of the Sixteenth Inter-
national Conference on Artificial Intelligence and Statis-
tics, (AISTATS’13), pages 370–378. JMLR.org, 2013.

[Korhonen and Parviainen, 2015] Janne H. Korhonen and
Pekka Parviainen. Tractable Bayesian network structure
learning with bounded vertex cover number. In Proceed-
ings of the Twenty-Eighth Annual Conference on Neural
Information Processing Systems, (NIPS’15), pages 622–
630. MIT Press, 2015.

[Meek, 2001] Christopher Meek. Finding a path is harder
than finding a tree. J. Artif. Intell. Res., 15:383–389, 2001.

[Naor et al., 1995] Moni Naor, Leonard J. Schulman, and
Aravind Srinivasan. Splitters and near-optimal derandom-
ization. In Proceedings of the Thirty-Sixth Annual Sym-
posium on Foundations of Computer Science, (FOCS’95),
pages 182–191. IEEE Computer Society, 1995.

[Ordyniak and Szeider, 2013] Sebastian Ordyniak and Ste-
fan Szeider. Parameterized complexity results for exact
Bayesian network structure learning. J. Artif. Intell. Res.,
46:263–302, 2013.

[Ott and Miyano, 2003] Sascha Ott and Satoru Miyano.
Finding optimal gene networks using biological con-
straints. Genome Informatics, 14:124–133, 2003.

[Silander and Myllymäki, 2006] Tomi Silander and Petri
Myllymäki. A simple approach for finding the globally
optimal Bayesian network structure. In Proceedings of the
Twenty-Second Conference in Uncertainty in Artificial In-
telligence (UAI’06). AUAI Press, 2006.

