QUALITY ASSURANCE OF SOFTWARE MODELS

A STRUCTURED QUALITY ASSURANCE PROCESS SUPPORTED BY A FLEXIBLE
TOOL ENVIRONMENT IN THE ECLIPSE MODELING PROJECT

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DR. RER. NAT.

PHILIPPS-UNIVERSITY MARBURG, GERMANY
FB 12 — MATHEMATICS AND COMPUTER SCIENCE

AUTHOR:
DIPL.-INF. THORSTEN ARENDT
BORN OCTOBER 13, 1973 IN ZIEGENHAIN, GERMANY

MARBURG AN DER LAHN, 2014

Angefertigt mit Genehmigung des Fachbereichs Mathematik und
Informatik der Philipps-Universitdit Marburg (Hochschulkennziffer
1180).

Gutachter:

Prof. Dr. Gabriele Taentzer, Philipps-Universitit Marburg
Prof. Dr. Harald Storrle, Technical University of Denmark

Priifungskommission:
Prof. Dr. Manfred Sommer, Philipps-Universitit Marburg
Prof. Dr. Gabriele Taentzer, Philipps-Universitit Marburg

Prof. Dr. Harald Storrle, Technical University of Denmark
Prof. Dr. Bernhard Seeger, Philipps-Universitdt Marburg

Einreichungstermin: 11. April 2014.

Priifungstermin: 12. Juni 2014.

iii

Originaldokument gespeichert auf dem Publikationsserver der
Philipps-Universitit Marburg
http://archiv.ub.uni-marburg.de

©0Ee

Dieses Werk bzw. Inhalt steht unter einer
Creative Commons
Namensnennung
Keine kommerzielle Nutzung
Weitergabe unter gleichen Bedingungen
3.0 Deutschland Lizenz.

Die vollstindige Lizenz finden Sie unter:
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

There are two ways of constructing a

software design: One way is to make it so

simple that there are obviously no

deficiencies and the other way is to make it

so complicated that there are no obvious deficiencies.
The first method is far more difficult.

— C.A.R. Hoare
The 1980 ACM Turing Award Lecture

vil

Fiir Nele und Swenja
in Liebe

ACKNOWLEDGEMENTS

I thank all who in one way or another contributed in the completion
of this thesis.

First and foremost I offer my sincerest gratitude to my supervisor,
Prof. Dr. Gabriele Taentzer, who has supported me throughout my
thesis with her patience and knowledge whilst allowing me the room
to work in my own way. Furthermore, I thank Prof. Dr. Harald Storrle
who immediately agreed to co-supervise this thesis and who gave me
a lot of valuable and encouraging comments.

Sincere thanks are given to the following friends and colleagues for
proofreading and their valuable comments: Kristopher Born, Mischa
Dieterle, Stefan Jurack, Timo Kehrer, Florian Mantz, Kyriakos Poyias,
Daniel Striiber, and Steffen Vaupel. Furthermore, I thank Jan Baart,
Matthias Burhenne, Gerrit H. Freise, Florian Mantz, Pawel Stepien,
and Alexander Weber for their fantastic work on the tooling.

Most importantly, none of this would have been possible without
the love and patience of my family. The endless love given by Swenja
and Nele provided my inspiration and was my driving force. Also
thanks to Elke and Horst for their love and never ending support.

Last but not least, I would like to thank Siemens Corporate Tech-
nology for partially funding the research in this thesis.

xi

ABSTRACT

The paradigm of model-based software development (MBSD) has be-
come more and more popular since it promises an increase in the
efficiency and quality of software development. In this paradigm, soft-
ware models play an increasingly important role and software qual-
ity and quality assurance consequently leads back to the quality and
quality assurance of the involved models.

The fundamental aim of this thesis is the definition of a structured
syntax-oriented process for quality assurance of software models that
can be adapted to project-specific and domain-specific needs. It is
structured into two sub-processes: a process for the specification of
project-specific model quality assurance techniques, and a process for
applying them on concrete software models within a MBSD project.
The approach concentrates on quality aspects to be checked on the
abstract model syntax and is based on quality assurance techniques
model metrics, smells, and refactorings well-known from literature.
So far, these techniques are mostly considered in isolation only and
therefore the proposed process integrates them in order to perform
model quality assurance more systematically. Three example cases
performing the process serve as proof-of-concept implementations
and show its applicability, its flexibility, and hence its usefulness.

Related to several issues concerning model quality assurance minor
contributions of this thesis are (1) the definition of a quality model
for model quality that consists of high-level quality attributes and
low-level characteristics, (2) overviews on metrics, smells, and refac-
torings for UML class models including structured descriptions of
each technique, and (3) an approach for composite model refactoring
that concentrates on the specification of refactoring composition.

Since manually reviewing models is time consuming and error
prone, several tasks of the proposed process should consequently be
automated. As a further main contribution, this thesis presents a flex-
ible tool environment for model quality assurance which is based on
the Eclipse Modeling Framework (EMF), a common open source tech-
nology in model-based software development. The tool set is part of
the Eclipse Modeling Project (EMP) and belongs to the Eclipse incuba-
tion project EMF Refactor which is available under the Eclipse public
license (EPL). The EMF Refactor framework supports both the model
designer and the model reviewer by obtaining metrics reports, by
checking for potential model deficiencies (called model smells) and
by systematically restructuring models using refactorings. The func-
tionality of EMF Refactor is integrated into standard tree-based EMF
instance editors, graphical GMF-based editors as used by Papyrus

xiii

UML, and textual editors provided by Xtext. Several experiments and
studies show the suitability of the tools for supporting the techniques
of the structured syntax-oriented model quality assurance process.

xiv

ZUSAMMENFASSUNG

Das Paradigma der modellbasierten Softwareentwicklung (MBSD) er-
freut sich immer zunehmender Beliebtheit, da es eine Steigerung von
Effizienz und Qualitdt in der Softwareentwicklung verspricht. Folge-
dessen spielen Softwaremodelle eine immer wichtigere Rolle und die
Themen Qualitdt und Qualitdtssicherung von Software werden somit
zurtickgefiihrt auf die Themen Qualitdt und Qualitatssicherung der
beteiligten Modelle.

Der grundlegende Inhalt dieser Arbeit ist die Definition eines struk-
turierten, syntaxorientierten und an projektspezifische bzw. doma-
nenspezifische Bediirfnisse anpassbaren Prozesses fiir die Qualitats-
sicherung von Softwaremodellen. Dieser Prozess besteht aus zwei
Teilprozessen. Im ersten Prozess werden projektspezifische Techniken
fir die Qualitatssicherung spezifiziert, die anschliefend mit Hilfe
des zweiten Prozesses an konkreten Softwaremodellen wéahrend eines
MBSD Projektes angewendet werden konnen. Der Ansatz konzen-
triert sich dabei auf diejenigen Qualitdtsaspekte, die auf der abstrak-
ten Syntax des Modells iiberpriift werden kénnen und benutzt die
aus der Forschungsliteratur bekannten Qualitdtssicherungstechniken
Modellmetriken, Smells und Refactorings, die bis dato jedoch nur se-
parat betrachtet wurden. Der vorgeschlagene Prozess integriert jetzt
diese Techniken auf strukturierte Weise und ermoglicht so eine sys-
tematische Qualitdtssicherung von Softwaremodellen. Drei ausgesuch-
te Beispiele mit unterschiedlichen Modellierungssprachen dienen als
Proof-of-Concept Implementierungen des Prozesses und zeigen die
Eignung, die Flexibilitit und somit die Zweckmafligkeit des Ansatzes.

Im Zusammenhang mit der Thematik Qualitdtssicherung von Soft-
waremodellen beinhaltet die Arbeit zudem die folgenden zusétzlichen
Beitrédge: (1) die Definition eines Qualitdtsmodells fiir Modellqualitét,
(2) Ubersichten iiber Metriken, Smells und Refactorings fiir UML-
Klassenmodelle inklusive strukturierter Beschreibungen dieser Tech-
niken sowie (3) einen konzeptionellen Ansatz fiir die Spezifikation
von komponierten Modell-Refactorings.

Der hohe Zeitaufwand und die potentielle Fehleranfalligkeit von
manuell durchgefiihrten Modellanalysen erfordern eine weitgehende
Automatisierung verschiedener Aktivititen des vorgeschlagenen Qua-
litatssicherungsprozesses. Ein weiterer Hauptbeitrag dieser Arbeit ist
die Entwicklung einer flexiblen Werkzeugumgebung fiir die Qualitéts-
sicherung von Modellen, die auf dem Eclipse Modeling Framework
(EMF), einer weit verbreiteten open-source Technologie im Bereich
der modellbasierten Softwareentwicklung, basieren. Die Werkzeuge
sind Teil des Eclipse Modeling Project (EMP) und gehoren zum of-

XV

tiziellen Inkubations-Projekt EMF Refactor, das unter der Eclipse Pub-
lic License (EPL) zur Verfiigung gestellt wird. Das Framework unter-
stiitzt Modellierer und Analysten bei der Erstellung von Metriken-
berichten, dem Auffinden sogenannter Model Smells sowie der sys-
tematischen Restrukturierung der Modelle durch Refactorings. Die
Funktionalitdt von EMF Refactor ist dabei in die baumbasierten EMF
Instanzeditoren, in die auf GMF basierenden grafischen Editoren und
in die von Xtext bereitgestellten textuellen Modelleditoren integriert.
Verschiedene Experimente und Studien zeigen die Zweckmafiigkeit
und die Eignung der Werkzeuge fiir die Unterstiitzung der Techniken
in dem zuvor beschriebenen syntaxorientierten Qualitdtssicherungs-
prozess fiir Softwaremodelle.

XVi

CONTENTS

1 INTRODUCTION 1
1.1 Motivationand goals 1
1.2 Contributions 3
1.2.1 Conceptualresults 3
1.2.2 Implementation and tooling 5
1.3 Relevant publications by the author 6
1.4 How toread thisthesis 8
I ASTRUCTURED QUALITY ASSURANCE PROCESS FOR SOFT-
WARE MODELS 9
INTRODUCTION TO PART I 11
A STRUCTURED MODEL QUALITY ASSURANCE PROCESS 13
3.1 Model quality assurance 13
3.2 Process definitions 16
4 MODEL QUALITY AND MODEL QUALITY ASPECTS 21
4.1 From software quality to model quality 21
4.2 Model quality aspects 28
4.3 A quality model for model quality 31
5 SELECTED MODEL QUALITY ASSURANCE TECHNIQUES 35
5.1 Metrics for UML classmodels 36
5.2 Smells for UML class models 41
5.3 Refactorings for UML class models 48
6 EXAMPLE APPLICATION CASES 55
6.1 Quality assurance of UML class models 55
6.2 Quality assurance of textual models for the develop-
ment of simple web applications 67
6.3 Quality assurance of rule-based in-place model
transformation systems L. 74
7 COMPOSITE MODEL REFACTORING 85
7.1 Motivation and examples 85
7.2 Requirements and design decisions 88
7.3 Concepts, example specification, and evaluation . .. 89
7.4 Towards automatic deduction of preconditions 93
75 RelatedWork 94
8 CONCLUSION AND FUTURE WORK 97

XVil

I A FLEXIBLE TOOL ENVIRONMENT FOR QUALITY ASSUR-

10

11

12

13

14

15

16

ANCE IN THE ECLIPSE MODELING PROJECT

INTRODUCTION TO PART II
BASIC TECHNOLOGIES AND STATE-OF-THE-ART

10.1 The Eclipse Modeling Framework (EMF).
10.2 Tool support for model quality assurance
10.3 An exploration study on EMF refactoring tools
REQUIREMENTS, DESIGN AND ARCHITECTURE

11.1 Requirements.
11.2 Design and architecture.
11.3 SUMMATY oot
EXAMPLE APPLICATIONS

12.1 Example UML classmodel
12.2 Metrics calculation. oo oL
12.3 Model smell detection.
12.4 Refactoring application
EXAMPLE SPECIFICATIONS

13.1 Example DSL Simple Web Model (SWM)
13.2 Specification of new model metrics
13.3 Specification of new model smells.
13.4 Specification of new model refactorings
13.5 Specification of smell-refactoring relations
TOOL EVALUATION

14.1 Goals and hypotheses
14.2 Evaluationtasks
14.3 Evaluationresults
14.4 Threatstovalidity
CONCLUSION AND FUTURE WORK

THESIS CONCLUSION
16.1 SUMMAryo
16.2 Outlook e

Appendices

T O " mH 9 0 % »

A CATALOG ON UML CLASS MODEL METRICS

A CATALOG ON UML CLASS MODEL SMELLS

A CATALOG ON UML CLASS MODEL REFACTORINGS
SPECIFICATIONS OF UML CLASS MODEL SMELLS
SPECIFICATIONS OF UML CLASS MODEL REFACTORINGS
IMPLEMENTATIONS OF UML MODEL REFACTORINGS
STUDY MATERIAL EXPERIMENT EX_APP

STUDY MATERIAL EXPERIMENT EX_SPEC

Xviii

99

101
103
103
105
107
117
117
119
123
125
125
127
129
131
137
137
138
142
145
151
155
155
156
162
173
177

179
179
180

183
185
201
205
209
229
253
341
363

LIST OF FIGURES

Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9

Figure 6.1

Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6

Figure 6.7

Process for the application of project-specific

model quality assurance techniques 17
Process for the specification of project-specific
model quality assurance techniques 18
The ISO/IEC 9126-1 quality model 24
A quality model for model quality 33
Abstract illustration of mutual dependencies
between6Cgoals 34
Extracted UML class metrics with respect to
the contextual type 36
Extracted basic and complex UML class model
metrics Lo 37

Summary of affected quality attributes when
interpreting complex UML class model metrics 42
Example UML class model smell Long Parame-

ter List 44
Example UML model smell Specialization Ag-
gregation 46
Pattern specification of model smell Specializa-
tion Aggregation 46
Example UML model refactoring Rename Op-
eration 49
Example UML model refactoring Extract Su-
perlass 50
Example UML model refactoring Introduce Pa-
rameter Object 51

Example UML class model showing the first
version of domain model Vehicle Rental Com-

pany (before model review) 56
Improved sample UML class model after model
TEeVIeWo 57
Example UML class model after several model
changes during a first model review 66
Domain model, rule, and a transformation step
inHenshin 75
Before refactoring Merge Rules Differing in Types
Only 8o
After refactoring Merge Rules Differing in Types
Only 8o

Before and after refactoring Extract Precondition 81

Xix

Figure 6.8
Figure 6.9
Figure 7.1
Figure 7.2

Figure 7.3
Figure 7.4

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 11.1
Figure 11.2
Figure 12.1
Figure 12.2

Figure 12.3
Figure 12.4

Figure 12.5
Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Figure 13.1

XX

Refactoring of deletion and creation of a fixed

phone Lo 82
Before refactoring Unify Rules with Same Ac-
tions (top) and afterwards (bottom) 84
Example UML statechart (a) before and (b) af-
ter refactoring Merge States 87
Example UML class model (a) before and (b)
after refactoring Extract Composite 88
Meta model of the CoMReL language 90
Unit specification of composite model refactor-
ing Merge States 93
Subset of the Ecore meta model 104
The Ecore metamodel 104
Example class diagram before refactoring (ex-
cerpt) 108

UML specification for attributes and associa-

tion ends (excerpt) 108
Left-hand-side (LHS) of the ProRef / EMF Tiger
solution Lo L 113
Right-hand-side (RHS) of the ProRef / EMF
Tiger solution 113

Composite structure of a specification module 120
Composite structure of an application module 123

Example UML classmodel 126
Configuration dialog for model metrics 127
Results view displaying calculated metrics . . 128

Excerpt of a generated PDF report concerning
calculated metrics results using a pie diagram

(left) and a tube diagram (right) 129
Configuration dialog for model smells 130
Results view displaying detected model smells

(left) and highlighting of involved elements in
smell Speculative Generality within the graphi-

cal Papyrus editor (right) 131
Quick fix mechanism: manually defined refac-
torings (top), actually applicable refactorings
(middle), and manually defined applicable refac-
torings (bottom) Lo L. 132
Parameter input dialog of UML refactoring Pull

Up Attribute 133
Smell analysis during the application of UML
refactoring Pull Up Attribute on attribute Mo-
torbike::power oL 134
Example UML class model after several model
changes as result of a first model review 135
SWM meta model defined in Ecore 138

Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5

Figure 13.6

Figure 13.7
Figure 13.8

Figure 13.9

Figure 13.10

Figure 13.11
Figure 13.12
Figure 13.13
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5

Figure 14.6

Wizard dialog for the specification of new model

metrics 139
Compositional specification for SWM model met-

ric DPpE (Dynamic Pages per Entity) 141
Henshin pattern rule specifying SWM model
metric NDPE 142
Henshin pattern rule specification for SWM model
smell Equally Named Pages 144

Specification of SWM model smell Insufficient
Number of Dynamic Pages using metric DPpE

(Dynamic Pages per Entity) 145
Wizard dialog for the specification of new model
refactorings L L. 146

Parameter input specification of SWM model
refactoring Rename Page
Henshin rule specification for the initial pre-
condition check of SWM model refactoring In-

sert Dynamic Pages 148
Henshin rule specification for the model change

part of SWM model refactoring Insert Dynamic
Pages 0. 149
Unit specification of composite SWM model
refactoring Create Dynamic Pages for Orphants . 150
Manual configuration of refactorings being suit-

able to erase a given model smell 151
Manual configuration of potentially inserted
smells after applying a given refactoring 152
Personal skills of the participants in experiment
EXCAPP 164
Percentages of correct results concerning ex-
periment Ex_App oL 165
Percentages of performed tasks during experi-
ment EX_ App oo 165
Difficulty scores for the tasks in experiment
EXCAPP . . . o e e e 167
Personal skills of the participants in experiment
Ex_Spec 168
Evaluation of the helpfulness of the specifica-
tion components of EMF Refactor 170

XX1

LIST OF TABLES

Table 4.1

Table 4.2

Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 6.1
Table 6.2
Table 6.3

Table 10.1
Table 11.1

Table 11.2

Table 14.1

Table 14.2
Table 14.3
Table 14.4

Table 14.5

Xxii

High-level quality characteristics of the ISO/IEC
9126-1 quality model (taken from [101]) 23
Relationships of quality characteristics presented

by Fieber et al. [38] to 6C quality goals defined

by Mohagheghi et al. [116] 32
6C quality aspects affected by UML metrics
(context: Model) 39
6C quality aspects affected by UML metrics
(context: Package) 40
6C quality aspects affected by UML metrics
(context: Class) 41
Possible impacts of class model smells on 6C
quality attributes0 L. 47
Positive impacts of UML refactorings on UML
modelsmells 53
Potential negative impacts of UML refactorings
onUMLsmells 54
Possible impacts of UML model smells on 6C
quality attributes 0L 61
Suitable refactorings to erase specific UML model
smells oo 62
Possible impacts of UML refactorings on UML
modelsmells 63
Results of the comparison 115
Extension point descriptions for metrics, smells,

and refactorings 121
Requirements and corresponding implementa-

tion o ool 124

Proof-of-concept implementations of metrics,
smells, and refactorings for Ecore, UML2, and

SWMmodels. 156
Used specification approaches for UML2 met-
rics, smells, and refactorings 157
UML2 metrics used for performance and scal-
ability testing 161
UML2 refactorings used for performance and
scalability testing 163
Results of the performance tests for metrics
calculation and smell detection 171

Table 14.6 Results of the performance tests for refactoring
application 0. 172

xxiii

INTRODUCTION

Achieving high quality is one of today’s challenges in product devel-
opment processes. This is especially true for processes that are con-
cerned with the development of software being intended to make peo-
ple’s lives easier. In modern software development processes, models
become primary artifacts. Consequently, model quality assurance is
of increasing importance for the development of high quality soft-
ware. This leads to a number of general research questions respec-
tively problem statements that should be addressed in this thesis:

e What is model quality? So far, there is no clear notion of model
quality. Existing software quality standards are only partly ap-
plicable.

e How can model quality be assured in a given project? An adaptable
process for performing quality assurance in a structured way is
needed. This also includes the use of adequate tools in a flexible
and integrated manner.

o Which model quality assurance techniques exist and how do they cor-
relate? Correlation means both, relations within the same tech-
nique (such as combinations) and relations between different
techniques (like implications).

In this first chapter, we motivate and discuss the goals of the work.
Then, we summarize the main results as well as the author’s publica-
tions being relevant to this thesis. Finally, we give an overview of the
structure of the thesis and provide recommendations on how to read
its constituent parts.

1.1 MOTIVATION AND GOALS

In the paradigm of model-based software development (MBSD), mod-
els play an increasingly important role and become primary artifacts
in the software development process. In particular, this is true for
model-driven software development (MDD) where high code quality
can be reached only if the quality of input models is already high.
As a consequence, software quality and quality assurance frequently

leads back to the quality and quality assurance of the involved soft-
ware models.

Models are used for different purposes, e.g., specifying the soft-
ware architecture and design, as input for code implementation or
test case generation, or simply for communication purposes between
several stakeholders within the project. Furthermore, model-based
software projects are often part of the development of safety-critical
embedded systems such as medical systems. In these cases, also safety
aspects have to be addressed. The variety of scenarios demonstrates
that the modeling purpose must be considered when selecting the
corresponding model quality aspects of interest.

In the literature, well-known quality assurance techniques for mod-
els are model metrics and refactorings. They originate from corre-
sponding techniques for software code by lifting them to models. Fur-
thermore, the concept of code smells can be lifted to models, leading
to model smells. However, these techniques are considered in isola-
tion only, i.e., they address specific scenarios only without taking fur-
ther techniques into account in order to provide a more global view
on the quality of the model. Therefore, an integrated approach is
needed in order to perform model quality assurance systematically.

To evaluate the quality of a software product, the use of a well-
defined quality model representing the characteristics of the product
that describe the quality has been established for more than three
decades. However, there is no clear notion of model quality in the lit-
erature and software quality standards like ISO/IEC 9126 and 25010
are only partly applicable. They are intended for complete software
products and systems and not for development artifacts like software
models. Several quality characteristics (e.g., reliability, efficiency, and
security) that have a significant relevance on the quality of software
products can not be considered when reasoning about model quality.
As a consequence, there is still a lack of understanding in terms of
what model quality exactly means.

A widely accepted standard in software modeling is the Unified
Modeling Language (UML). It provides 14 types of diagrams for both,
structural and behavioral models. Here, class diagrams are the mostly
used UML diagram type. Since its adoption in 1997, metrics, smells,
and refactorings for UML models are in the scope of a variety of
researchers. However, except for UML metrics, there are no structured
surveys on these model quality assurance techniques available.

Existing approaches for specifying model refactorings differ heav-
ily in the way refactorings are specified. They mainly focus on smaller
model changes, i.e., larger model refactorings are rarely considered.
However, atomic refactorings are not always performed in isolation.
Often, they are part of a group of refactorings that are all needed to
perform a larger change. Drawing from the experience of code refac-
toring, it was soon clear that refactorings should be distinguished

into atomic ones performing primitive changes and composite refac-
torings that are built up from existing ones. Despite the multitude of
model refactoring approaches, the specification of composite model
refactorings is not yet sufficiently supported by existing approaches
in the sense that composite refactorings are consequently built up
from existing ones being developed independently.

Software modeling is mainly performed using CASE tools such as
MagicDraw or IBM Rational Software architect. Moreover, manually
performing quality assurance tasks would be time-consuming and
error-prone. Therefore, it is natural to support model quality assur-
ance as effectively as possible by an appropriate tooling. The tooling
should be integrated into the used CASE tool in a way that all model
quality assurance tasks can be performed directly within this IDE.
This means, that (1) several kinds of editors such as graphical and
textual editors are supported and (2) the user does not have to export
the model and use third-party tools, for example for analyzing it. Fi-
nally, the tooling should be independent from both, the considered
modeling language and the language used for specifying new quality
assurance techniques.

The following section summarizes the main contributions of this
thesis according to the goals and challenges discussed above.

1.2 CONTRIBUTIONS

The contributions of this thesis can be subdivided into two categories.
On the one hand, the thesis provides several conceptual respectively
theoretical results related to the integration of model metrics, smells,
and refactoring into a well-defined model quality assurance process.
On the other hand, the second category contains results concerning
implementation and tooling issues. The following sections summa-
rize these contributions.

1.2.1 Conceptual results

A major contribution of this thesis is the

definition of an approach for the integration of model
metrics, model smells, and model refactoring into

a structured quality assurance process for software
models that considers project-specific needs.

This syntax-oriented process consists of two sub-processes: First,
dependent on the modeling language and the modeling purpose,
specific quality goals, and hence project- and domain-specific quality
checks and refactorings have to be defined. Quality checks are formu-
lated using model smells which can be specified in terms of model

metrics and anti-patterns. Afterwards, the specified quality assurance
process is applied to concrete software models. Based on the outcome
of a static model analysis using the pre-defined model metrics and
smells, appropriate model refactoring steps can be performed. The
techniques should be applied as long as needed in order to obtain a
reasonable model quality. Three scenarios for performing this model
quality assurance process serve as proof-of-concept implementations
and show its applicability, its flexibility, and hence its usefulness.

In our approach, we concentrate on quality aspects to be checked
on the model syntax. These include not only the consistency with the
language syntax definition, but also the conformity with modeling
conventions often defined and adapted to specific software projects.
As a conceptual basis for a Goal-Question-Metrics approach to our
quality assurance process, we refer to six classes of quality goals for
software models identified in a systematic literature review. Based on
these so-called 6C goals we present the

definition of a quality model for model quality

consisting of high-level quality attributes and low-level characteris-
tics. This model represents a further contribution of this thesis.

Since the UML is a widely accepted standard in software model-
ing and subject of a number of research activities, this thesis further
provides an

overview on metrics, smells, and refactorings for UML
class models discussed in the literature, including
structured descriptions of each technique.

Besides the discussion on the various relations to the defined qual-
ity model, we also discuss relationships between selected UML refac-
torings and UML smells. Due to a pragmatic search strategy, we do
not claim the surveys to be complete. However, they are quite com-
prehensive and represent another contribution of this thesis.

As a further contribution of this thesis, we present an

approach for composite model refactoring addressing
the specification of refactoring composition.

The main idea of the approach is to specify composite model refac-
torings by a hierarchy of so-called refactoring units defining some
kind of control structure of a composite and with parameter passing
between different units.

1.2.2 Implementation and tooling

A common and widely-used open source technology in model-based
software development is the Eclipse Modeling Framework (EMF). It
extends Eclipse by modeling facilities and allows for defining (meta)
models and modeling languages by means of structured data models.
Furthermore, EMF comes with a very active community providing a
variety of helpful tools. Also due to the comprehensive knowledge in
this domain, another major contribution of this thesis is the

development of a flexible framework for model
quality assurance based on the Eclipse Modeling
Framework (EMF).

The framework has been designed to support a syntax-oriented
model quality assurance process that can be easily adapted to specific
needs in model-based projects (see major conceptual result above).
The entire tool set presented belongs to the Eclipse incubation project
EMF Refactor [47] and is available under the Eclipse public license. We
evaluated the suitability of the tools for supporting the techniques of
the model quality assurance process by performing and analyzing
several experiments and studies.

EMF Refactor supports both the modeler and the reviewer by gen-
erating metrics reports, checking for potential model deficiencies re-
spectively smells, and systematically restructuring models using refac-
torings. Quick fixes such as automatic proposition of refactoring for
occurring smells and information on implications of a selected refac-
toring concerning new model smells widen the provided functional-
ity and support an integrated use of the quality assurance tools.

The main functionality of EMF Refactor is integrated into several
editors. Here, not only standard tree-based EMF instance editors are
supported, but also graphical GMF-based editors as used by Papyrus
UML and textual editors provided by Xtext. Among other function-
alities, each version provides a highlighting of model elements for
smells in the corresponding model view and a preview of upcoming
model changes when performing a refactoring.

Model checks and refactorings can be specified by several speci-
fication mechanisms. The current version of EMF Refactor supports
Java, OCL, and the model transformation language Henshin as pos-
sible specification approaches. Further specification languages can be
inserted using suitable adapters. Finally, metrics can be composed to
more complex metrics and refactorings can be composed by using a
dedicated language named CoMReL (Composite Model Refactoring
Language) based on the fourth conceptual contribution (see above).

1.3 RELEVANT PUBLICATIONS BY THE AUTHOR

The following papers and articles related to this thesis were published
during the doctoral project of the author (in chronological order).

1.

Thorsten Arendt, Florian Mantz, Lars Schneider, and Gabriele
Taentzer: Model Refactoring in Eclipse by LTK, EWL, and EMF
Refactor: A Case Study. Proceedings of Model-Driven Software
Evolution, Workshop Models and Evolution (MoDSE-MCCM
2009), co-located with MoDELS 2009, October 4 2009 in Den-
ver, CO, USA.

= Section 10.3 is an adapted version of this paper.

Thorsten Arendt, Pawel Stepien, and Gabriele Taentzer: EMF
Metrics: Specification and Calculation of Model Metrics within the
Eclipse Modeling Framework. Proceedings of gth BElgian- NEther-
lands software eVOLution seminar (BENEVOL 2010), December
17 2010 in Lille, France.

— Sections 12.2 and 13.2 are based on this paper.

. Thorsten Arendt, Matthias Burhenne, and Gabriele Taentzer:

Defining and Checking Model Smells: A Quality Assurance Task for
Models based on the Eclipse Modeling Framework. Proceedings of
oth BElgian-NEtherlands software eVOLution seminar (BENE-
VOL 2010), December 17 2010 in Lille, France.

— Sections 12.3 and 13.3 are based on this paper.

Thorsten Arendt, Florian Mantz, and Gabriele Taentzer: EMF
Refactor: Specification and Application of Model Refactorings within
the Eclipse Modeling Framework. Proceedings of gth BElgian-NEth-
erlands software eVOLution seminar (BENEVOL 2010), Decem-
ber 17 2010 in Lille, France.

— Sections 12.4 and 13.4 are based on this paper.

. Thorsten Arendt, Sieglinde Kranz, Florian Mantz, Nikolaus Reg-

nat, and Gabriele Taentzer: Towards Syntactical Model Quality As-
surance in Industrial Software Development: Process Definition and
Tool Support. Proceedings of Software Engineering 2011, Febru-
ary 21-25 2011 in Karlsruhe, Germany. Volume 183 of LNI, pages
63-74, GI, 2011.

— Chapters 3 and 12 are adapted versions of this paper.

Thorsten Arendt and Gabriele Taentzer: Integration of Smells and
Refactorings within the Eclipse Modeling Framework. Proceedings
of Fifth Workshop on Refactoring Tools (WRT 2012) co-located
with ICSE 2012, June 1 2012 in Rapperswil, Switzerland.

— Sections 12.4 and 13.5 use parts of this paper.

7. Thorsten Arendt and Gabriele Taentzer: Besser modellieren: Qual-
itatssicherung von UML-Modellen. Article in magazine Objektspek-
trum, 06 2012, SIGS DATACOM.
= Chapters 4 and 12 are elaborated versions of this article.

8. Thorsten Arendt and Gabriele Taentzer: Composite Refactorings
for EMF Models. Technical report, Philipps-Universitdt Marburg,
FB 12 - Mathematik und Informatik, Marburg, Germany, 2012.
= Chapter 7 is an adapted versions of this report.

9. Gabriele Taentzer, Thorsten Arendt, Claudia Ermel and Reiko
Heckel: Towards refactoring of rule-based, in-place model transforma-
tion systems. Proceedings of the First Workshop on the Analy-
sis of Model Transformations (AMT) co-located with MoDELS
2012, October 2 2012 in Innsbruck, Austria.
= Section 6.3 is an adapted version of this paper.

10. Thorsten Arendt and Gabriele Taentzer: A tool environment for
quality assurance based on the Eclipse Modeling Framework. Jour-
nal Automated Software Engineering, Volume 20, Issue 2 (2013),
Page 141-184, Springer, New York.

— This article is a condensed version of Sections 3.2, 4.2, and
6.1, as well as several sections of Part II.

11. Thorsten Arendt, Gabriele Taentzer and Alexander Weber: Qual-
ity Assurance of Textual Models within Eclipse using OCL and Model
Transformations. Proceedings of 13th International Workshop on
OCL, Model Constraint and Query Languages (OCL) co-located
with MoDELS 2013, September 30 2013 in Miami, CA, USA.
= Section 6.2 and Chapter 13 are extended versions of this

paper.

Furthermore, the author presented the EMF Refactor at the following
conference events:

1. Thorsten Arendt and Gabriele Taentzer: Improving the Quality of
EMF models using metrics, smells, and refactorings. Tutorial at 8th
European Conference on Modelling Foundations and Applica-
tions (ECMFA 2012), July 2 2012 in Lyngby, Denmark.
= Section 6.1 and Chapter 12 are extended versions of this
tutorial.

2. Thorsten Arendt: Improve the Quality of your EMF-based Models!
Talk at EclipseCon Europe 2012, October 22 2012 in Ludwigs-
burg, Germany.
= Chapter 12 is an elaborated version of this talk.

3. Thorsten Arendt, Timo Kehrer and Gabriele Taentzer: Under-
standing Complex Changes and Improving the Quality of UML and
Domain-Specific Models. Tutorial at ACM/IEEE 16th International

Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS 2013), September 30 2013 in Miami, CA, USA.
— Sections 6.1 and 6.2 as well as Chapters 12 and 13 are ex-
tended versions of this tutorial.

Finally, Chapter 5 is a results of three tasks within the project SPES
2020 Software Platform Embedded Systems [2, 88] funded by the German
Federal Ministry of Education and Research from 2009 to 2012.

1.4 HOW TO READ THIS THESIS

This thesis is subdivided into two main parts. Part I comprises the
conceptual contributions presented in Section 1.2.1. Here, the struc-
tured process for quality assurance of software models that can be
adapted to project-specific and domain-specific needs is presented.
Moreover, several topics related to this process and corresponding
results are included in this part. Part II presents the second main con-
tribution of this thesis, i.e., the provided tool environment for model
quality assurance in Eclipse (see Section 1.2.2). This part includes top-
ics related to development and evaluation of the tooling as well as
examples for applying and specifying new model quality assurance
techniques. A brief description of each section can be found in the
introductory chapter of the corresponding part. Finally, this thesis
contains several appendices containing comprehensive catalogs with
structured descriptions of metrics, smells, and refactorings for UML
class models as well as study material concerning the evaluation.

Though this thesis can be read in chronological order, different
kinds of readers may read only parts of it without losing the overall
context. However, each reader should start reading Chapter 3 since
the defined process represents the foundation for the subsequent
chapters. Afterwards, the reader may continue as follows:

Project managers respectively quality assurance managers may con-
tinue reading Chapter 4 and (if interested in examples) Chapters 5
and 6. Furthermore, the practical Chapters 12 and 14 may be of inter-
est to this kind of readers.

(Modeling) language designers may continue reading Chapter 4
and the examples in Chapter 5. In particular, the specification Chap-
ters 7 and 13 are of specific interest to this kind of readers.

(UML) modelers may continue reading Chapter 4 and the UML ex-
amples in Chapters 5 and 6. Moreover, the practical Chapters 12, 13,
and 14 may be of interest to this kind of readers.

Finally, Eclipse developers respectively EMF developers may con-
tinue reading the practical chapters of Part II in arbitrary order.

Part1

A STRUCTURED QUALITY ASSURANCE
PROCESS FOR SOFTWARE MODELS

INTRODUCTION TO PART I

The paradigm of model-based software development (MBSD) has be-
come more and more popular since it promises an increase in the ef-
ficiency and quality of software development. In this paradigm, mod-
els play an increasingly important role and become primary artifacts
in the software development process. In particular, this is true for
model-driven software development (MDD) where models are used
directly for automatic code generation. Here, high code quality can
be reached only if the quality of input models is already high. There-
fore, software quality and quality assurance frequently leads back to
the quality and quality assurance of the involved models.

Developers use models for different purposes, e.g., for specifying
the software architecture and design, as input for code implementa-
tion or retrieving information for tests and test case generation. Often
these developers are not on one site, i.e., architects may be located
in Germany and the implementers in India. In these cases, models
are an essential part of developer communication and their quality
influences the quality of the final product to a great extent. In addi-
tion, model-based software projects are often part of the development
of safety critical systems where safety-related aspects need to be ad-
dressed. For example, the safety standard IEC 62304 [39] requires that
for a medical system all intermediate results during the development
process including software models must be of an appropriate quality.

A widely accepted standard in software modeling is the Unified
Modeling Language (UML) [123], a general-purpose language man-
aged by the Object Management Group (OMG). It is a very compre-
hensive and powerful language, but does not cover any particular
method and comes without built-in semantics. On the one hand, this
allows a flexible use. On the other hand, this includes a high risk of
misunderstanding. Without tailoring a project-specific usage of UML
before starting development, practical experience showed that mod-
els can be difficult to understand or even misinterpreted.

In the literature, well-known quality assurance techniques for mod-
els are model metrics and refactorings. They origin from correspond-
ing techniques for software code by lifting them to models. Especially
class models are closely related to class structures in object-oriented
programming languages such as C++ and Java. For behavior models,

11

the relation between models and code is less obvious. Finally, the con-
cept of code smells can be lifted to models, leading to model smells.
However, these techniques are often considered in isolation, i.e.,
they address specific scenarios only without taking further techniques
into account in order to provide a more global view on the qual-
ity of the model. Therefore, an integrated approach is needed in or-
der to perform model quality assurance systematically. To satisfy this
need, this first part of the thesis presents a structured process for
quality assurance of software models that can be adapted to both
project-specific and domain-specific needs. Moreover, we discuss sev-
eral topics related to this process and present corresponding results.

The chapters of Part I contain the following:

Chapter 3 gives an overview on model quality assurance and model
quality assurance techniques and defines two processes for model
quality assurance: a process for the application of project-specific
model quality assurance techniques in ongoing projects and a pro-
cess to specify these project-specific techniques in a structured way.

Chapter 4 defines a quality model for model quality consisting of
high-level quality attributes and low-level characteristics based on a
discussion on quality models for software products in general, their
adaptation to models, and comprehensive definitions of quality as-
pects and characteristics extracted from selected review articles.

Chapter 5 presents an (incomplete but comprehensive) overview
on metrics, smells, and refactorings for UML class models discussed
in literature. For each technique, we cite the main sources, present
structured descriptions of selected examples, and discuss relations to
the quality model discussed in Chapter 4.

Chapter 6 demonstrates three example applications serving as proof-
of-concept evaluation of the quality assurance process defined in Chap-
ter 3. The example cases include UML as general-purpose language,
a domain-specific language for developing simple web applications,
and a DSL for rule-based model transformation systems.

Chapter 7 discusses an approach for the specification of refactoring
composition. It is motivated by the fact that the specification of com-
posite model refactorings is not yet sufficiently supported by existing
approaches, in the sense that composite refactorings are consequently
built up from existing ones being developed independently.

Finally, Chapter 8 concludes and discusses directions for future
work on systematic model quality assurance.

12

A STRUCTURED MODEL QUALITY ASSURANCE
PROCESS

Achieving high quality is one of the major challenges on today’s prod-
uct development processes. This is especially true for those processes
that are concerned with the development of software being intended
to make people’s lives easier. According to Sommerville [143], soft-
ware quality management aims at managing the quality of software
and its development process. It can be subdivided into three main
tasks: assuring, planning, and controlling of software quality.

This chapter deals with the definition of a structured model quality
assurance process that concentrates on the syntactical dimension of
model quality. It is structured as follows: first, we give an overview on
model quality assurance and selected model quality assurance tech-
niques in Section 3.1. The following Section 3.2 describes the defined
quality assurance process. Here, Section 3.2.1 presents a process for
the application of project-specific model quality assurance techniques
in ongoing projects. In order to specify these project-specific tech-
niques in a structured way, we define such a process in Section 3.2.2.

3.1 MODEL QUALITY ASSURANCE

For defining a structured model quality assurance process we first
give an overview on model quality assurance and selected model
quality assurance techniques.

Quality management can be either product-oriented or process-
oriented. The former perspective means that software artifacts (but
also intermediate results) are checked against predefined quality as-
pects whereas the latter perspective addresses artifacts that are re-
lated to the software development process like methodologies, tools,
guidelines, and standards.

A prominent example for process-oriented quality management
is CMMI (Capability Maturity Model Integration) [25]. CMMI is a
model and de-facto industry standard that consists of best practices
that address the development and maintenance of products and ser-
vices. It covers the life cycle of a product from conception through de-
livery to maintenance and integrates essential bodies of knowledge
for developing products, such as software engineering, systems en-

13

gineering, and acquisition. Furthermore, CMMI is the successor of
the capability maturity model (CMM) for Software that was devel-
oped from 198y to 1997 at Carnegie Mellon Software Engineering
Institute (SEI) [152]. However, since we consider the quality of soft-
ware models, we do not refer to process-oriented quality management
techniques. Instead, this thesis uses product-oriented model quality
assurance tasks and considers software models as artifacts under ob-
servation.

Since modeling languages often provide at least one graphical view,
model quality can be either considered for this visual representa-
tion(s), i.e., the concrete model syntax, or for the underlying structure,
i.e., the abstract syntax of the model.

Several research papers dealing with the quality of software mod-
els address the concrete syntax level. Here, especially models of the
Unified Modeling Language (UML) [123] are considered since it pro-
vides the concept of views on selected parts of the model, called di-
agrams. In [154] for example, van Elsuwe and Schmedding discuss
three generic metrics being usable to assess information on diagrams
that help on reasoning about their quality. The metrics address the in-
formative content of the diagram, its visual size as well as its complex-
ity. In another work, Storrle reports on the results of three controlled
experiments using compound layouts on requirements analysis mod-
els, i.e., on UML use case, class, and activity diagrams [145]. He ob-
served (1) that the impact of layout quality should be more apparent
in models and diagram types used in earlier life cycle phases and
(2) that good layouts use many different heuristics simultaneously
instead of using them in isolation. Furthermore, Storrle noticed that
novice modelers benefit far more from good layouts than advanced
modelers. However, this thesis concentrates on on the syntactical di-
mension of model quality, i.e., on those quality aspects which can be
checked on the model syntax only.

Quality assurance is the definition of processes and standards that
should lead to high-quality products and the introduction of quality
processes into the manufacturing process [143]. A variety of model
quality assurance techniques exist and are subject of several research
activities. They can be subdivided into two categories. Analytical tech-
niques measure the current quality level of the artifact (in our case the
software model) whereas constructive techniques guarantee for higher
quality when applied during the development of the artifact (in our
case the modeling activity).

In this thesis, we consider the analytical model quality assurance
techniques model metrics and model smells. Metrics can be used to
obtain quantitative information about processes or artifacts like soft-
ware models. Especially for evaluating quality issues metrics are very
helpful. In this context, the use of Goal-Question-Metrics paradigm
(GQM) presented by Basili et al. [9], a mechanism for defining and

14

evaluating a set of quality goals by using measurements (metrics),
has been proven well for the last 20 years. The concept of code smells
has been coined by Kent Beck and Martin Fowler [11, 64] and has
been lifted to models leading to model smells. They represent suspi-
cious model parts that are potential candidates for improvements, i.e.,
they are not synonyms for problems but are worthy of an inspection.

Special kinds of model smells are model clones representing simi-
lar or identical fragments in a model. Again, this concept originates
from the corresponding counterpart on the code side, that is code
respectively software clones. A fair bit of research has been done ad-
dressing several topics on code clones, for example clone prevention,
detection, and deletion. A comprehensive survey of research on soft-
ware clones can be found in [92]. Here, Koschke discusses (among
others) several notions of redundancy and similarity as well as vari-
ous categorizations of clone types. A representative research on the
model side is presented in [146]. Here, Storrle analyzes the concept of
clones in UML domain models, i.e., use case, class, activity, and state
machine models. He establishes a practical definition of model clones
based on a structural analysis of real clones, develops heuristics and
a clone detection algorithm, and presents an implementation of the
approach. However, we do not further follow the concept of model
clones in this thesis in order to narrow its scope to be manageable.

Constructive model quality assurance techniques can be used to
improve the quality of software models. In the following, we discuss
two kinds of constructive techniques, namely modeling guidelines
and model refactoring. A further constructive quality assurance tech-
nique is the structured use of software design patterns [85] for provid-
ing a general reusable solution to a commonly occurring problem in
software design possibly combined with providing syntax-oriented
complex editing operations to increase the convenience of the corre-
sponding model editor [149].

In order to avoid problems with respect to model quality, in partic-
ular model smells, the use of modeling conventions analogue to cod-
ing conventions are appropriate. In [98], Lange et. al. define modeling
conventions as conventions to ensure a uniform manner of modeling
and to prevent for defects. They report on the results of a controlled
experiment to explore the effectiveness of modeling conventions for
UML models with respect to prevention of defects. The results in-
dicate (1) that decreased defect density is attainable at the cost of
increased effort when using modeling conventions, (2) that this trade-
off is stressed if tool support is provided, and (3) that efficient integra-
tion of convention support in the modeling process forms a promis-
ing direction towards preventing defects. Since in this thesis we do
not consider the prevention of inserting model smells, we do not use
this technique in the following. Instead, we consider another construc-

15

tive model quality assurance technique that is usable to correct model
smells in order to improve the model’s quality: model refactoring.

‘Refactoring is the process of changing a software system in such
a way that it does not alter the external behavior of the code yet
improves its internal structure’ [64]. Basically introduced to software
code, refactoring has been successfully lifted to the level of software
models, especially for (UML) class models being closely related to
class structures in object-oriented programming languages such as
C++ and Java. For behavior models, the relation between models and
code, and therefore the adoption of code refactorings to model refac-
torings, is less obvious.

In summary, we use the following model quality assurance tech-
niques in the remainder of this thesis:

o model metrics and model smells as analytical model quality assur-
ance techniques for detecting quality defect, and

e model refactoring as constructive model quality assurance tech-
nique for correcting them.

However, the problem concerning these techniques (respectively
their discussions in literature) is that metrics, smells, and refactor-
ings are used in different kinds of model quality assurance tasks, i.e.,
are considered in isolation. So, the challenge is to combine them to
provide an integrated usage within a structured quality assurance
process for software models. The following section defines such an
integrated process.

3.2 PROCESS DEFINITIONS

The increasing use of model-based or model-driven software devel-
opment processes induces the need for high-quality software models.
Therefore, we propose a model quality assurance process that consists
of two sub-processes: a process for the specification of project-specific
model quality assurance techniques, and a process for applying them
on concrete software models during a model-based software develop-
ment process.

3.2.1 Application process

Figure 3.1 illustrates the process for the application of project-specific
model quality assurance techniques. For a first rough model overview,
a report on model metrics might be helpful. Furthermore, a model
can be checked against the existence (respectively absence) of spec-
ified model smells. Each model smell found has to be interpreted
in order to evaluate whether it should be eliminated by a suitable
model modification (either by a manual model change or a refactor-
ing). However, we have to take into account that also new model

16

smells can be induced by refactorings and care should be taken to
minimize this effect. This check-improve cycle should be performed
as long as needed to get a reasonable model quality.

G S N

Model Analysis

Calculate
Model Metrics ,
Check Model Interpretation
Smells

\ J
2 $

Model Modifications

Refactoring Manual Change
\ /

Figure 3.1: Process for the application of project-specific model quality as-
surance techniques

The application process can be embedded into several kinds of soft-
ware development process models, for example:

e According to the traditional waterfall model, the application
process can be embedded at several points in time during the
design phase. However, it must be completed before the subse-
quent implementation phase starts.

e In iterative process models such as the spiral model [18], the ap-
plication process should be embedded after each iteration step
in order to analyze and improve the design of the current in-
crement. The same applies to agile methods such as extreme
programming (XP) [10] and Scrum [139].

e In model-driven software development processes, the applica-
tion process should be embedded definitely before the genera-
tion process starts, either the generation of models of the subse-
quent stage, of documentation artifacts, or even code.

Ideally a quality assurance process is fully specified before using
it within model-based software development projects. However, it is
not seldom that the process has to be adapted during the model de-
velopment phase. Our process allows the straight adaptation to new
model checks and refactorings.

17

3.2.2 Specification process

Figure 3.2 shows the process for specifying new model quality assur-
ance techniques. After having identified the intended modeling pur-
pose the most important quality goals are selected. Here, we have to
consider several conditions that influence the selection of significant
quality aspects being the most important ones for modeling in a spe-
cific software project. The first issue to consider is that the selection of
significant quality aspects highly depends on the modeling purpose.
There is a variety of purposes for modeling in software projects. For
example, models can be used for communication purposes between
stakeholders, being customers and requirements engineers or project
managers and software designers. In other projects, software models
may be used for code generation purposes, to generate the applica-
tion code and/or code that is used in tests for implemented software
components. Since modeling purposes are quite different and vary
in several software projects, a quality aspect that is very important
in one software project might be less important in other ones. For
instance, in projects that use software modeling for communication
purposes the comprehensibility of the model might be the most relevant
quality aspect whereas aspects correctness and completeness are more
important for models that are used for the generation of application
or test code, respectively.

r — ~
Quality Model Smells 1
M Metrc

|-> o
N—
NG J

Figure 3.2: Process for the specification of project-specific model quality as-
surance techniques

Another factor that influences the significance of a model quality
aspect is the corresponding application domain. This means that soft-
ware models are used in various domains like web applications or
embedded systems having different impacts on the significance of
a certain model quality aspect. For example, for models of safety-
critical embedded systems, correctness is more important than models
of usual web applications.

The preceding discussions show that it is appropriate to set up a
specific model quality assurance process for each software project be-

18

ing dependent on the modeling purpose as well as the corresponding
modeling domain.

In the next step, static syntax checks for these quality aspects are
defined. This is done by formulating questions that should lead to so-
called model smells hinting to model parts that might violate a spe-
cific model quality aspect. Here, we adopt the goal-question-metrics
approach (GQM) that is widely used for defining measurable goals
for quality and has been well established in practice [9]. In our ap-
proach, we consider the syntax of the model in order to give answers
to these questions. Some of these answers can be based on metrics.
Other questions may be better answered by considering specific pat-
terns which can be formulated on the abstract syntax of the model.
However, further static analysis techniques could be incorporated to
find out additional potential model smells. Furthermore, the project-
specific process can (re-)use general metrics and smells as well as spe-
cial metrics and smells specific for the intended modeling purpose.

Refactoring is the technique of choice for fixing a recognized model
smell. A specified smell serves as precondition of at least one model
refactoring that can be used to restructure models in order to improve
model quality aspects but appreciably not influence the semantics of
the model. In this context, it is also recommended to analyze the spec-
ified refactorings whether the application of a certain refactoring may
cause the occurrence of a specific model smell.

Since the process of manual model reviews is very time consuming
and error prone, several tasks of the proposed project-specific model
quality assurance process should be automated as effectively as pos-
sible. The following tasks of the process can be automated:

e Support for the implementation of new model metrics, smells,
and refactorings using several concrete specification languages.

e Calculation of implemented model metrics, detection of imple-
mented model smells, and application of implemented model
refactorings.

o User-friendly support for project-specific configurations of model
metrics, smells, and refactorings.

e Generation of model metrics reports.

e Suggestion of suitable refactorings in case of specific smell oc-
currences.

e Provision of warnings in cases where new model smells come
in by applying a certain refactoring.

Part II of this thesis presents a flexible tool environment for model
metrics reports, smell detection, and refactoring for models that is
based on the Eclipse Modeling Framework (EMF) [144, 44].

19

MODEL QUALITY AND MODEL QUALITY ASPECTS

To evaluate the quality of a software product the use of a well-defined
quality model representing the characteristics of the product that de-
scribe the quality has been established for more than three decades.
The objective of this chapter is to define a quality model for model
quality consisting of high-level quality attributes and low-level qual-
ity characteristics which condenses the mainly discussed topics in
research literature. In the following sections, we first discuss quality
models for software products in common and their adaptation to soft-
ware models. Then, we present comprehensive definitions of quality
aspects and characteristics extracted from selected review articles. Fi-
nally, we develop a quality model for model quality based on these
articles which serves as basis for several parts in the remaining chap-
ters of this thesis.

4.1 FROM SOFTWARE QUALITY TO MODEL QUALITY

In this section, we first present several quality models for software
products. Afterwards, we discuss related work on the quality of soft-
ware models, especially models of the Unified Modeling Language
(UML) [123].

4.1.1 Software quality models

The development of high-quality products is a broadly discussed re-
search topic throughout the last 40 years. In the 1970s and 1980s,
several quality models for software products gradually evolved (for
example, McCall Model, Boehm Model, and FURPS/FURPS+ Model)
resulting in the quality model specified in the ISO/IEC 9126 standard
which was first established in 1991. The following paragraphs shortly
describe the core concepts of these quality models and summarize
the explanations taken from [74].

The McCall Model

One of the first quality models for software products representing a
corner stone for today’s quality models was established by Jim Mc-

21

Call et al. in 1977 [112]. It consists of 11 high-level quality factors
(maintainability, flexibility, testability, portability, reusability, interoperabil-
ity, correctness, reliability, efficiency, integrity, and usability) reflecting
both the user’s and the developer’s view which are classified in three
major types (product revision, transition, and operations).

Each quality factor is positively influenced by a set of quality crite-
ria whereby each criterion in turn can influence a number of quality
factors. The quality model defines altogether 23 quality criteria like
modularity and storage efficiency and 32 relations between high-level
quality factors and low-level criteria. Further major contributions of
the McCall Model are the relationships created between quality char-
acteristics and metrics to concretely measure quality criteria.

The Boehm Model

In 1978, Barry Boehm et al. [19] presented a quality model for soft-
ware products that also addresses hardware characteristics. Similar
to the McCall Model this model specifies quality characteristics in a
hierarchical structure. The focus of the Boehm Model is on maintain-
ability being one of the three high-level quality characteristics (as-is
usability *, maintainability, and portability).

On the intermediate level, the Boehm Model includes seven quality
factors (portability, reliability, efficiency, usability, testability, understand-
ability, and flexibility) which are further sub-divided into 15 primitive
characteristics (for example, device independence and structuredness) to
provide the foundation for defining quality metrics.

The FURPS/FURPS+ Model

Another quality model for software products is the FURPS/FURPS+
Model originally presented by Robert Grady at Hewlett Packard [77,
76]. This model is organized quite differently from either McCall
Model or Boehm Model.

The FURPS/FURPS+ Model provides five general categories being
of two different types according to the user’s requirements: functional
requirements defined by input and expected output (Functionality)
and non-functional requirements (Usability, Reliability, Performance,
and Supportability). Finally, more than 30 quality characteristics (like
aesthetics and modifiability) again form a hierarchy similar to the mod-
els discussed before.

The ISO/IEC 9126-1 (ISO/IEC 25010) Quality Model

To overcome problems and uncertainties with the diversity of the de-
scribed quality models the International Organization for Standard-
ization (ISO) [42] and the International Electrotechnical Commission

This is the main focus of the McCall Model.

22

(IEC) [26] developed a standard quality model for software products.
The ISO/IEC 9126-1 standard Software engineering — Product quality
— Part 1: Quality model [41] was first published in 1991 and slightly
enhanced in 2001.

’ Characteristic | Description ‘

Functionality | This quality characteristic describes the capabil-
ity of the software product to provide functions
which meet stated and implied needs when the
software is used under specified conditions (what
the software does to fulfill needs).

Reliability This quality characteristic describes the capability
of the software product to maintain its level of
performance under stated conditions for a stated
period of time.

Usability This quality characteristic describes the capa-
bility of the software product to be under-
stood, learned, used and attractive to the user,
when used under specified conditions (the effort
needed for use).

Efficiency This quality characteristic describes the capability
of the software product to provide appropriate
performance, relative to the amount of resources
used, under stated conditions.

Maintainability | This quality characteristic describes the capability
of the software product to be modified. Modifica-
tions may include corrections, improvements or
adaptations of the software to changes in the envi-
ronment and in the requirements and functional
specifications (the effort needed to be modified).

Portability This quality characteristic describes the capabil-
ity of the software product to be transferred
from one environment to another. The environ-
ment may include organizational, hardware or
software environment.

Table 4.1: High-level quality characteristics of the ISO/IEC 9126-1 quality
model (taken from [101])

In the ISO/IEC 9126-1 quality model, the totality of software prod-
uct quality attributes are classified in a hierarchical tree structure of
characteristics and sub characteristics. The standard specifies six in-
dependent, not directly measurable high-level quality characteristics
as described in Table 4.1. They are further divided into 21 sub charac-
teristics (respectively quality criteria) as shown in Figure 4.1.

23

Suitability

Installability Accuracy_ .
Conformance Interope_rablhty
Replaceability COSmpllance
ili ecurit,
Adaptability Portability Fanctionality urity
Maturity

Recoverability
Fault tolerance

ISO/IEC

Maintainability 9126-1

Stability Reliability
Analyzability
Changeability
. Efficiency
Testability Usability

Time Learnability
Behaviour Understandability
Resource Operability

Behaviour

Figure 4.1: The ISO/IEC 9126-1 quality model

In 2011, ISO/IEC 9126-1 has been revised by the new ISO/IEC
25010:2011 standard Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — System and
software quality models [40]. However, the vast majority of research lit-
erate and software economy still focus on the ISO/IEC 9126-1 quality
model since it represents the commonly accepted state-of-the-art of
software product quality specifications.

4.1.2 Software model quality

As demonstrated in the previous section, there has been a great deal
on research on software quality, especially on the quality on software
code. Since in modern software development processes models be-
come the main artifacts, reasoning about software quality often leads
back to reasoning about the quality of the involved software models.
However, there has been relatively little work on model quality ba-
sically caused by the lack of an understanding what model quality
exactly means.

Existing knowledge on software quality as presented in the previ-
ous section can be applied on model quality to a limited extent only.
There are significant differences between source code and software
models, for example different levels of abstraction or a different use
with respect to execution (mostly, models are not intended to be exe-
cutable). Therefore, several quality characteristics having a significant
relevance for the quality of software products can not be considered
when reasoning about model quality (for example, quality character-
istics Reliability, Efficiency, and Security).

24

The following paragraphs give an overview on the related work
on model quality in model-based software development in general
and specifically when modeling with the Unified Modeling Language
(UML) [123].

Model quality in model-based software development

In a systematic literature review (SLR) following the guidelines pre-
sented in [87], Mohegheghi et al. analyzed 40 primary studies focused

on model quality within the domain of model-based and model-driven
software development [116]. The analyzed studies have been pub-
lished between 2000 and 2007; their sources include books, journals,
conference and workshop proceedings, PhD theses, and online publi-
cations. The following listing shows the main results of the SLR:

e The authors identified six main quality goals: Correctness, Com-
pleteness, Consistency, Comprehensibility, Confinement, and Change-
ability. We discuss these so-called 6C Goals in more detail in Sec-
tion 4.2.1.

e Best practices with respect to the development process are:

— Use of a model-based development process with ongoing
model analyses during reviews using mechanisms like met-
rics. The quality assurance process presented in Chapter 3
refers to this recommendation.

— Use of modeling guidelines to avoid syntactical and seman-
tical errors and verification of the proper use, for example
by using checklists.

— Use of a One-Diagram-Strateqy when using modeling lan-
guages which provide multiple diagram views like the UML
to avoid misunderstandings, incomprehensibilities, and in-
consistencies.

e Best practices with respect to formal methods and automation are:

— Use of formal models to provide precise modeling, formal
analyses and proofs, execution, and generation.

— Use of domain-specific languages or UML extensions to avoid
incorrect models by encoding domain-specific concepts and
rules.

— Use of generation facilities to generate models from other
ones in order to improve consistency between models and
completeness of the resulting model.

e The most models being discussed in literature are UML models.

The last result leads to another SLR present in the following section.

25

Quality of UML models

A SLR specifically dedicated to the quality of conceptual models writ-
ten in UML is presented by Genero et al. in [73]. In this SLR, the
authors extracted and analyzed altogether 266 peer-reviewed papers
published between 1997 and 2009. The main results of this SLR are:

e There is no clear view of the real state of the field, " ... although
quality of models ...is a 'hot topic’ that needs further investiga-
tion [157]."

e More than half of the research concentrates on semantic consis-
tency (113 out of 266 papers). We discuss this result in more
detail later on in this section.

e The application of quality assurance techniques being well es-
tablished for software code (like testing, analysis, and inspec-
tion) in the context of UML models is still in an ‘embryonic
phase’. However, more than 75% of the extracted papers deal
with UML quality assurance techniques and the evaluation of
UML model quality.

e The type of UML diagram that has been studied most is the
class diagram (83 out of 163 papers dealing with models of spe-
cific diagram types; being 50.9%).

One research question examined in the SLR addresses the type of
quality which is covered in the corresponding paper(s). However, the
authors do not use a quality model specific to UML. Instead, they
use a mixture of quality characteristics from ISO/IEC 9126 and those
drawn from selected papers (without giving concrete references).

As mentioned above, one result of the SLR is that semantic con-
sistency is the quality characteristic which has been researched most.
An overview on this specific topic can be found in the SLR performed
by Lucas et al. [102]. Here, the authors reviewed 44 papers published
between 2001 and 2007 focusing only on consistency within UML
models. Their conclusion is that UML consistency is a "highly active
and promising line of research’ but there are still some gaps being
not addressed in literature.

One of the prominent researches in this field is done in the work of
Alexander Egyed [33, 34]. Here, mainly (in)consistencies across two
or more UML diagrams that makes up a complete UML model are
addressed. However, this work differs on the approach presented in
this thesis in several facts. First, the majority of considered inconsis-
tencies represent either violated well-formedness rules respectively
constraints (like a message in a sequence diagram having no corre-
sponding class operation). Second, several considered inconsistencies
should be better addressed by the UML language definition (for ex-
ample, the need for a referenced concrete class when modeling a life-

26

line in a sequence diagram) leading back to violated constraints men-
tioned above instead of representing model smells in the sense of this
thesis. Finally, the author concentrates on an approach for ‘quickly ...
deciding what consistency rules to evaluate when a model changes’
while the smell analysis presented in this thesis is neither performed
during modeling nor is it time critical.

The results of the SLR performed by Genero et al. [73] also show
that more than 9o% of the addressed quality types correspond to
five of the main model quality characteristics extracted in the SLR
performed by Mohagheghi et al. [116] as presented in the previous
section (the 6C Goals). These are (in the order of significance): Consis-
tency, Comprehensibility, Correctness, Changeability, and Completeness.

As a consequence of using a mixture of model quality characteris-
tics (see above), Genero et al. state that there is no consensus on the
quality characteristics addressed nor on their definitions (even not in
the book by Bhuvan Unhelkar [151]). They extracted only one quality
model for UML model quality that has been proposed in literature
leading us to another related work in the field of model quality.

In the work of Christian FJ. Lange [95, 97], a quality model is de-
fined which is specific for UML modeling. The purpose of this quality
model is to provide guidance in selecting metrics and rules to assess
the quality of UML models. These concepts are closely related to the
concepts used in this thesis, however the work (1) concentrates on the
quality of UML models only and (2) does not use any techniques like
refactorings to eliminate quality defects respectively model smells.

The quality model presented in [97] consists of four levels. The first
two levels represent two Usages (development and maintenance) and
eight Purposes of software models (like communication and code gener-
ation). The third level of the quality model contains 12 inherent quality
characteristics (like complexity, detailedness, and aesthetics) whereas the
fourth level represents metrics and rules to measure these character-
istics. In the resulting quality model, purposes are related to usages,
quality characteristics are related to purposes, and metrics respec-
tively rules are related to quality characteristics. However, the quality
model implies several imprecise facts which are hard to understand
and therefore at least worthy to discuss. First, the relations between
the purpose of modeling and the use of the models form a total func-
tion in a sense that each purpose is related to exactly one use. This is
quite unusual since, for example, models which are used to compre-
hend a system (purpose comprehension) my occur in both the develop-
ment and the maintenance phase. Second, also the relation between
quality characteristics and purposes seems to be incomplete. Here,
the missing relation between characteristic communicativeness and pur-
pose communication is an obvious example. Third, several metrics are
considered concretely (like DIT and NCU) whereas other metrics are
clustered (like ratios and code matching) making a relation between

27

such a cluster and the quality characteristic which can be measured
by it very hard. Similar observations can be made when looking at
the rules considered in the fourth level of the quality model. Here,
concrete defects like Multiple Definitions of Classes with Equal Names
as well as clustered defects like Adherence to Naming Conventions are
addressed. Nevertheless, the work by Christian FJ. Lange give inspi-
rations within several parts of this thesis.

4.2 MODEL QUALITY ASPECTS

This section presents the core concepts of two articles concerning
model quality characteristics in the context of a model-based software
development process. These concepts serve as a basis for the develop-
ment of a quality model for model quality which is presented in the
subsequent section.

4.2.1 6C model quality goals

In [116], Mohegheghi et al. present the results of a systematic litera-
ture review (SLR) discussing model quality in model-based software
development according to the guidelines presented in [87]. Among
others, the purpose of the SLR was to identify what model quality
means, i.e., which quality goals are defined in literature. The review
was performed systematically by searching relevant publication chan-
nels for papers published from 2000 to 2007. From 40 studies covered
in the review, the authors extracted six classes of quality goals in
model-based software development, the so-called 6C goals. They state
that other quality goals discussed in literature, like conformity and
simplicity, can be satisfied if the 6C goals are in place. The remainder
of this section shortly introduces the identified 6C goals.

CORRECTNESS: A model is correct if it includes the right elements
and correct relations between them and, what is most important,
if it includes correct statements about the domain. Furthermore,
a model must not violate rules and conventions. This definition
includes syntactic correctness relative to the modeling language
as well as semantic correctness related to the understanding of
the domain.

COMPLETENESS: A model is complete if it has all necessary infor-
mation that is relevant, and if it is detailed enough according to
the purpose of modeling. For example, requirement models are
said to be complete when they specify all the black-box behavior
of the modeled entity, and when they do not include anything
that is not in the real world.

28

CONSISTENCY: A model is consistent if there are no contradictions
within. This definition covers horizontal consistency concerning
models/diagrams on the same level of abstraction, vertical con-
sistency concerning modeled aspects on different levels of ab-
straction as well as semantic consistency concerning the meaning
of the same element in different models or diagrams.

COMPREHENSIBILITY: A model is comprehensible if it is under-
standable by the intended users, either human users or tools.
In most of the literature, the focus is on comprehensibility by
humans including aspects like aesthetics of a diagram, model
simplicity or complexity, and the use of the correct type of di-
agram for the intended audience. Several authors also call this
goals pragmatic quality.

CONFINEMENT: A model is confined if it agrees with the modeling
purpose and the type of system. This definition also includes
relevant diagrams on the right abstraction level. Furthermore, a
confined model does not have unnecessary information and is
not more complex or detailed than necessary. Developing the
right model for a system or purpose of a given kind also de-
pends on selecting the right modeling language.

CHANGEABILITY: A modelis changeable if it can be evolved rapidly
and continuously. This is important since both the domain and
its understanding as well as requirements of the system evolve
with time. Furthermore, changeability should be supported by
modeling languages and modeling tools as well.

4.2.2 A taxonomy of model quality characteristics

In another article concerning model quality in model-based software
development, Fieber et al. present a taxonomy of model quality as-
pects [38]. For a better differentiation from the 6C goals recalled in
the previous section, the quality aspects presented by Fieber et al.
are referred to as quality characteristics in the following. The following
paragraphs describe selected model characteristics similar to the 6C
goals described above.

PRESENTATION: How good is the visual perception and acceptance
by the user? How good is the layout of a diagram? How many
elements are displayed in a diagram?

SIMPLICITY: Isamodel too complex? Is it possible to simplify model
structures? Is the model complexity necessary? Simplicity ad-
dresses the aspect of how complex something is modeled. A
model should not be more complex than required. Some fea-
tures of a model can be expressed using different kinds of struc-
tures without changing the semantics or precision. In case of

29

behavior models, simplicity can also be understood as the op-
posite of control flow complexity. Another interpretation of this
quality aspect is related to the purpose of the model. Anything
that does not contribute to proper modeling purpose should not
be displayed.

CONFORMITY: Are all naming conventions respected? Are any mod-

eling conventions violated? Conformity means the conformance
to modeling standards, e.g., all attributes in a class diagram
have to be named in camel case>.

COHESION/MODULAR DESIGN (MODULARITY): Does each model

element have a well-defined responsibility? Are modeled fea-
tures reusable in other projects? Cohesion and modular design
are strongly related to the coupling of model elements. While
cohesion is related to dependent system aspects, the modular
design is related to technical independent aspects or indepen-
dent aspects with regards to content. For example, the fact that
security is modeled in one component is addressed by the cohe-
sion aspect. In contrast, modular design requires that each class
has only one role of responsibility.

REDUNDANCY: Is the used redundancy in the model mandatory?

On the one hand, redundancy in models should be reduced,
because redundancy is always error-prone. On the other hand,
some controlled redundancy can be useful, e.g., for test-code
generation. Fieber et al. give an example where they use state
charts as input for the application-code generator and sequence
diagrams as input for the test-code generator.

SEMANTIC ADEQUACY: Does the model use a proper modeling lan-

guage? Are adequate elements or diagrams used for modeling a
specific aspect? Some aspects of a model can be modeled using
different kinds of diagrams or modeling languages. If this kind
of diagram fits the modeled aspect, it is a question of semantic
adequacy.

CORRECTNESS: Is a model semantically and syntactically correct?

For example, if an object model uses an instance of an abstract
class this violates the correctness. If a model element is useless,
that may be a semantical error in the model.

PRECISION: How detailed are the relevant aspects of the system

described? Precision of a model concerns how only relevant
features of the domain or other artifacts are addressed by the
model. In a precise model each omitted feature of the original

2 A naming convention which is common practice in Java. It uses medial capitals, one
example is: WindowAdapter.

30

aspect is in fact irrelevant for the current development phase or
modeling purpose.

COMPLETENESS WRT. PRECEDING PHASES Are all requirements com-
pletely covered by the model? Are all information from the pre-
ceding phase in the model chain completely transfered to the
correct phase?

COMPLETENESS WRT. SUBSEQUENT PHASES This model character-
istics means that the model contains all necessary information
to deduce or generate the artifacts of the subsequent phase. In
fact, this is a semantic characteristic related to models of one
level in the model chain.

TRACEABILITY Traceability is a relationship between models across
multiple stages. Changes in corresponding artifacts can be traced
in order to get statements about effect and effort of necessary
changes. By using traceability statements, the completeness wrt.
preceding phases can be determined, for example.

CHANGEABILITY Isis possible to change respectively evolve the model
in an easy way? Is it possible to reuse the model respectively
parts of the model in other projects? Changeability can fur-
ther be sub-divided in aspects maintainability, extensibility, and
reusability.

4.3 A QUALITY MODEL FOR MODEL QUALITY

In this section, we develop a quality model for model quality based
on the concepts presented in the previous section. We use this quality
model later on in this thesis, for example in Chapters 5 and 6.

To combine the concepts of the presented articles, we analyzed the
model characteristics presented in [38] with respect to their relation-
ships to the 6C goals defined in [116]. General relation: Our percep-
tion is that model characteristics by Fieber et al. are more specific
than corresponding 6C goals. In more detail, we detected that some
model characteristics represent partial definitions of certain 6C goals
whereas other just influence some of them. Table 4.2 presents the re-
sults of this analysis. An entry D in cell (i,j) denotes that model char-
acteristic j represents a (partial) definition of goal i. An entry I in cell
(i,j) indicates that model characteristic j influences goal i. This matrix
is helpful in matching quality assurance techniques to specific model
quality goals as presented in Chapter 5.

As shown in Table 4.2 there are some characteristics used by Fieber
et al. that are synonyms or partial definitions of corresponding 6C
goals. Conformity in the sense of Fieber et al. can be a synonym for
syntactic correctness. By semantic adequacy Fieber et al. address confine-
ment as goal. Furthermore, there are characteristics which are com-

31

parable to equally called quality goals (correctness, completeness, and
changeability).

Quality Characteristics
—
=
= @
-~
g A
~_~
2 0| §
= S 2
Lo TS
< SIS
gl
Q > QL 195}
5 g N
= N = .
E = 2| 3
S % © 9] 3
= = Q| @ =
S| D28 %8 S 8| |2
-— oy = ~ = &)) Y Y - =
S SIS SIS |SIEIgls |l =
S8 E|S(T|E|S|E|2|2 2
SIS 8| 38|88 8888
SRS SEHRS § S| 23| 3|8 =
6C Goals AN | OO »w| O]~ O|O|IKE|0
Correctness D|I |1 DI
Completeness I ' D|D
Consistency I I
Comprehens. | I |1 I |1 I
Confinement I D I
Changeability I I I |D

Table 4.2: Relationships of quality characteristics presented by Fieber et
al. [38] to 6C quality goals defined by Mohagheghi et al. [116]

Nevertheless, Fieber et al. define model characteristics which do
not define but just influence 6C goals. First, it is obvious that char-
acteristic presentation only influences goal comprehensibility. Simplicity
however influences comprehensibility since a complex model is hard to
understand, goal confinement since a complex model might be a hint
to a wrong level of abstraction or a wrongly selected modeling lan-
guage, and goal changeability since complex models are hard to evolve.
Fieber’s Cohesion/Modular Design (Modularity) represents a technique
that influences correctness since an incorrect assignment of a model el-
ement to a module might not reflect the real world’s aspect and goal
comprehensibility since an incorrect assighment of a model element to
a module might lead to misunderstandings. Redundant model parts
can be seen as incorrect modeling since they do not reflect the mod-
eled aspect of the real world when single aspects are represented
multiply. They may lead to contradictions in the model and may be
harder to understand and to maintain. An imprecise model might be
neither correct nor complete. Furthermore, this may be a hint to a
disagreement with the modeling purpose or the current level of ab-

32

straction. Last but not least, model parts that can not be traced may
be hints to an incomplete model and may lead to contradictions and
misunderstandings and are harder to maintain.

K 6C Goals \

Quality Quality
Characteristics Characteristics

Modularity
Precision

Redundancy

AN

// | Presentation
Comprehensibility
Traceability [

_ /

Figure 4.2: A quality model for model quality

Based on Table 4.2 and the discussion above a corresponding qual-
ity model for model quality can be derived as shown in Figure 4.2.
Here, the 6C goals represent the center of the model while the quality
characteristics on their right and left influence the associated goal(s)
to some extent. For simplicity reasons, synonyms and partial defini-
tions as discussed above are left out.

The relations presented in Table 4.2 and Figure 4.2 show that the
6C goals are not disjoint in nature. For example, redundant model
parts influence both, goal comprehensibility and goal changeability. Fur-
thermore, the 6C goals my influence each other. For example, it is
easy to see that incorrect model parts are also hard to understand.
In this case, a reduced quality with respect to a certain quality goal
(correctness) also influences another one (comprehensibility) in the same
negative way (type A). On the other hand, the more complete a model
is, the more complex it gets. In this case, improving a certain quality
goal (completeness) may influence another one (comprehensibility) in the
opposite direction (type B).

Figure 4.3 illustrates these potential dependencies between 6C goals
from an abstract view. It shows that for dependencies of type A the

33

Correctness

Changeability Completeness

Confinement Consistency

Comprehensibility

Figure 4.3: Abstract illustration of mutual dependencies between 6C goals

overall quality of the model is reduced (respectively improved), i.e.,
the inner area is getting smaller (respectively bigger). The influence
of dependencies of type B (one edge is shifted outwards, the other
one is shifted inwards) on the overall model quality can not exactly
be determined. For this reason, it is recommended to prioritize the
quality goals with respect to the modeling purpose and domain as
discussed in Section 3.2.2.

34

SELECTED MODEL QUALITY ASSURANCE
TECHNIQUES

The Unified Modeling Language (UML) [123] is a general-purpose
modeling language in the field of object-oriented software engineer-
ing that is standardized by the Object Management Group (OMGQG).
Since its adoption in 1997 it has become the mostly used MOF-based
modeling language [140]. The UML provides 14 types of diagrams di-
vided into two categories. Seven diagram types represent structural
information, and the other seven represent general types of behavior,
including four that represent different aspects of interactions.

The structured quality assurance process presented in Chapter 3
uses the quality assurance techniques model metrics and model smells
for analyzing quality aspects, and model refactorings for improving
them while not changing the semantics respectively the meaning of
the model. Metrics, smells, and refactorings for UML models are in
the scope of a variety of researchers during the last 15 years.

In this section, we give an overview on these techniques for UML
class models being developed and discussed in literature from 1997
to 2009. We concentrate on class models for two reasons: first, be-
cause class diagrams are the mostly used UML diagram type [29],
and second, since the literature search has been performed as part of
a collaboration with Siemens Corporate Technology [142] in the con-
text of the SPES 2020 Software Platform Embedded Systems [2, 88] project
funded by the German Federal Ministry of Education and Research
from November 2009 to January 2012. We start with an overview on
metrics, continue with a summary on smells, and finally present a
survey on refactorings for UML class models. Note that since these
research fields are very broad and active, we consequently do not
claim the overviews to be complete.

For each technique, we first present an overview on the total num-
bers and main sources of the corresponding technique. Then, we
present structured descriptions of selected techniques and discuss re-
lations to the quality model discussed in Section 4.3. Comprehensive
catalogs with structured descriptions of all techniques found in liter-
ature can be found in Appendices A to E of this thesis.

35

5.1 METRICS FOR UML CLASS MODELS

The use of metrics to obtain quantitative information about software
development processes and artifact has been proven well for the last
30 years. Especially for evaluating quality issues metrics are very use-
ful which lead to a systematic approach (Goal-Question-Metrics Ap-
proach — GQM) presented by Basili et al. in 1994 [9]. Here, they start
with the following motivation for the use of metrics:

As with any engineering discipline, software development
requires a measurement mechanism for feedback and eval-
uation. Measurement is a mechanism for creating a corpo-
rate memory and an aid in answering a variety of ques-
tions associated with the enactment of any software pro-
cess.

In this section, we give a brief overview on the research on metrics
being discussed in literature for measuring quality issues of UML
class models. We further present some descriptions of selected met-
rics and discuss potential relations to the quality aspects discussed in
Chapter 4 of this thesis.

5.1.1 An overview on UML class model metrics

The evaluation of UML design models using appropriate metrics is a
very active research field in the the 2000s. Here, the majority of UML
metrics are based on the object-oriented design metrics developed
during the 1990s, for example by Chidamber and Kemerer [24] but
also in [100, 109, 23, 110].

50
45
40
35
30
25
20
15
10

52

Context: Model

Context: Package Context: Class

Figure 5.1: Extracted UML class metrics with respect to the contextual type

36

In a (non-systematic) literature search we concentrated on metrics
for UML class diagrams and extracted altogether 98 metrics. These
metrics are classified with respect to the contextual type, i.e., the UML
meta model element type the metric is calculated on. As can be seen
in Figure 5.1, the majority of UML class model metrics is defined for
the context type class (49 metrics, respectively 50%).

Model

Package

Class

0 5 10 15 20 25 30

B Complex Metrics ™ Basic Metrics

Figure 5.2: Extracted basic and complex UML class model metrics

Furthermore, we distinguish between basic and complex metrics.
This means that the definition of a complex metric might rely on
one or more basic metrics. Appendix A presents all 46 basic and
52 complex metrics in a comprehensive catalog. Figure 5.2 shows an
overview on the basic and complex UML class model metrics.

One of the main research on UML metrics is done by Marcela Gen-
ero et al. [69, 70, 71, 72]. In this work, more than 60 metrics for UML
class models are discussed. Further main sources concerning UML
class model metrics are [105, 84, 86]. During the literature search we
further identified 6 metrics for UML use case models and 6 metrics
for UML state machines. Here, the main sources are [105] (for use
case models) and [115] (for state machines).

5.1.2 Selected UML class model metrics

In this section, we present a selection of complex model metrics found
in literature. We describe one metric for each context type presented
in Figure 5.1 (model, package, and class) as representative. For each
metric its name, the context type, a short description, the range of val-
ues, and a potential interpretation (including assignments to quality
aspects they can measure) are given. The definition of a complex met-
ric might rely on one or more basic metrics. Detailed descriptions of
the complex metrics as well as a comprehensive list of basic metrics
can be found in the corresponding catalog in Appendix A.

37

UML class model metric AvsC

CONTEXT: Model

DESCRIPTION: Relation between the number of attributes and num-
ber of classes [71]. It is defined as AvsC = (%)Z where
NAM is the total number of attributes in the model, NCM is the

total number of classes in the model, and (NAM + NCM) > 0.
RANGE: 0 < AvsC < 1

INTERPRETATION: If the value is higher, model classes have more
attributes and the model can be considered to be more com-
plex (affected quality attribute Comprehensibility). It is also pos-
sible that the model contains unnecessary information and does
therefore not correspond to the modeling purpose (Confinement).
On the other hand, a lower value could be a hint for relevant but
missing information (affected quality attribute Completeness).

UML class model metric A

CONTEXT: Package

DESCRIPTION: Ratio between number of abstract classes (and inter-
faces) and total number of classes within the package (abstract-
ness) [84, 109, 110]. It is defined as A = %ﬁ\ﬁg’ where
NACP is the number of abstract classes within the package, NIP
is the number of interfaces within the package, and NCP is the

number of classes within the package.
RANGE: 0 <A L1

INTERPRETATION: A higher value indicates a heavier use of abstract
classes and interfaces making the model harder to understand
(affects quality attribute Comprehensibility). This could be inter-
preted differentially. First, the modeler(s) could use the UML
language feature of abstract classes respectively interfaces too
exhaustively and therefore not in sync with the modeling pur-
pose (affected quality attributes Consistency and Confinement).
Second, classes could be marked as abstract by mistake (Cor-
rectness). Third, a high abstractness value could be a hint for
relevant but missing concrete classes (affected quality attribute
Completeness).

UML model metric CBC

cONTEXT: Class

DESCRIPTION: Number of attributes and associations with class type
(Coupling between classes) [86]. It is defined as CBC = DAC +
NAC where DAC is the number of attributes having another

38

class as type and NAC is the number of associations to other
classes.

RANGE: 0 < CBC < (NATC 4+ NASC) (total number of attributes +
total number of associations)

INTERPRETATION: A higher value indicates that the class is stronger
coupled to other classes leading to a more complex part of the
model which is harder to understand than other ones (quality
attribute Comprehensibility). Since such a class bears special re-
sponsibilities it is also harder to maintain (Changeability). How-
ever, a high CBC value could be a hint that these responsibilities
are modeled by mistake (quality attribute Correctness).

5.1.3 Affected quality aspects

The following Tables 5.1 to 5.3 show the assignments of the 52 com-
plex class model metrics to the quality aspects they measure.

6C quality attributes

Correctness
Completeness
Consistency
Comprehensib.
Confinement
Changeability

UML metric; context: Model

01. AGvsC
02. ANA X
03. AvsC
04. AScsC X | x| x
05. DEPvsC X X
06. GEvsC X
07. MaxDIT

08. MaxHAgg
09. MEvsC X
10. MGH
11. MMI X
12. OA3
13. OA4
14. OA5
15. OA6
16. OA7y

X

X

X | X [X [X | X | X

X I X [X [X X | X [X [X[X|X|X[|X[X[X]|X]|X

X | X [X [X | X

Table 5.1: 6C quality aspects affected by UML metrics (context: Model)

39

6C quality attributes

ol 8| 5 :‘% = £

S22 |8 8| >
UML metric; context: Package || O | O | O O O | U
01. A X | X | x| X | X
02. AHF X X | x
03. AIF X X | x| X
04. Ca X X | x| X
05. Ce X X | x| %
06. DN X X
o7. DNH X | X
08. H X | X X
09. I X X | x| X
10. MHF X X | x
11. MIF X X | X | X
12. NAVCP X | X | x| x| x| %
13. PF O O I
14. PK1 X X | x| X
15. PK2 X X | x| X
16. PK3 X X | X | X

Table 5.2: 6C quality aspects affected by UML metrics (context: Package)

Note that these assignments are not substantiated by solid evi-
dence, for example by performing empirical studies. Such evaluation
is out of scope of this thesis. Here, we refer to the corresponding

sources of the extracted UML class model metrics.

We summarize the assignments of the 52 complex metrics extracted
from literature to quality aspects they can measure in Figure 5.3 on
page 42. The most affected quality aspect is Comprehensibility (46 met-
rics respectively 88.5%). This is due to the fact that the majority of
metrics is concerned with the complexity of the corresponding model
element. The higher the complexity is, the harder is it to understand

the model respectively the modeled part.

40

6C quality attributes
=
Sl (2|8 |& | &
UML metric; context: Class QIO 10O |0 |0 |0
o1. APPM X X | x | X
02. CBC X X X
03. CBO X | X X X
04. CL1 X
o5. CL2 X
06. DAM X X X
o7. DCC X | X X X
08. DIT X
09. HAgg X
10. MAgg X
11. MFA X X | x| X
12. NASC X | X | X X
13. NATC2 X X | x
14. NDepln X X | x| X
15. NDepOut X X | x| X
16. NP X
17. NW X
18. RFC X X X
19. SIX X X | x | X
20. WMC X X | X

Table 5.3: 6C quality aspects affected by UML metrics (context: Class)

5.2 SMELLS FOR UML CLASS MODELS

Model smells occur in model parts that are potential candidates for
improvements, i.e., they are not synonyms for problems but are wor-
thy of an inspection. The term smell is adopted from the concept of
code smell and lifted to models leading to model smells. The concept

41

50

40 I I
30 : :
20 - f —
’ I I | s
0 - ; .
& & & \'\{6 & %‘Q\
& 5 & © & ©
< x& -5 o) &
r.:f*& S & *C‘q'o é\{\ o
O (_,0{0 o 2 Q‘E (‘0 Caéb
®

Figure 5.3: Summary of affected quality attributes when interpreting com-
plex UML class model metrics

of code smells has been coined by Kent Beck and Martin Fowler [11].
A useful definition is given on the website of Martin Fowler [65]:

... smells don’t always indicate a problem. Some long meth-
ods are just fine. You have to look deeper to see if there
is an underlying problem there - smells aren’t inherently
bad on their own - they are often an indicator of a problem
rather than the problem themselves.

In this section, we concentrate on model smells for class models
being the mostly used UML diagram type [29]. After presenting an
overview on smells found in literature we give structured descrip-
tions of selected ones. Finally, we discuss potential impacts of UML
class model smells on the quality aspects discussed in Chapter 4.

5.2.1 An overview on UML class model smells

We extracted altogether 26 smells for UML class models discussed in
literature. They are mostly adopted from corresponding code smells
presented in [64] and [133]. Further sources are [127] and [97]. A cat-
alog of the identified UML class model smells can be found in Ap-
pendix B of this thesis. In this catalog, each model smell is presented
by its name and a short description.

Besides smells for UML class models we also identified 4 smells
for use case models, 6 smells for sequence diagrams, and 5 smells for
state machines. Here, the main sources are [97] (for sequence diagram
smells) and [3] (for use case diagram and state machine smells).

Searching for UML model smells in literature is not a straight for-
ward task. On the one hand, the term model smell is not commonly

42

used. Synonyms are for example inconsistencies and defects (as used
by Lange [97]). On the other hand, model smells are seldom main
subjects of research. However, since smells are strongly coupled to
refactorings, several smells can be derived from appropriate litera-
ture in this area (like for example from [127]). Therefore, we do not
claim that the catalog Appendix B is complete.

Moreover, we have to filter located smells whether they fit to the
right dimension, i.e., whether they affect the abstract model syntax
being the basis of the quality assurance process defined in Chap-
ter 3. Therefore, the catalog in Appendix B does not include smells
which (1) affect the concrete syntax (like smell Prominent Attribute),
and which (2) affect the semantic of the model (like smell Inverted
Operation Name), both taken from [27], and which (3) do not fit to
the definition of model smell but instead represent inconsistencies,
i.e., violated constraints and well-formedness rules (like Unnamed Use
Case [3] and Message without Method [97] *).

5.2.2 Selected UML class model smells

In this section we describe selected UML class model smells listed in
Appendix B in a structured way. We recognized that several smells
described in this catalog can be either specified by appropriate met-
rics or by corresponding patterns defined on the abstract syntax of
the UML [124]. Therefore, we describe one model smell for each of
these specification types as representative.

For each model smell a short description is given as well as pos-
sible indicators to detect this smell in a given model. Furthermore,
we present a list of quality characteristics and quality goals affected
by this smell according to the quality model defined in Section 4.3
of this thesis. Lists of refactorings being suitable for eliminating the
smell and an example complete each model smell description. Fur-
ther structured descriptions of UML class model smells can be found
in Section 6.1.2 and Appendix D of this thesis.

Long Parameter List

DESCRIPTION An operation has a long list of parameters that makes
it really uncomfortable to use the operation. Long parameter
lists are hard to understand and difficult to use. Furthermore,
using long parameter lists is not intended by the object-oriented
paradigm. An operation should have only as much parame-
ters as needed for solving the corresponding task. It is recom-
mended to pass only those parameters that cannot be obtained
by the owning class itself [11, 131].

1 See constraint [2] in the specification of meta element Message in [124].

43

saoije-
0

ploA : (Buoj : 9oud)aoudias+
PIOA : (BuL}S : Bweu)aweN}es+
ploA : (
buo) : ()aoudieb+
BuLyg : ()oweN1eb+
jur 2 (JoNeb+

Buoj : @oud-
BuLyg : sweu—
Ul ou—

sy

sajole—

sejoipe-

[,0] 8wy : ()sepmyieb+
PIOA : (BIOIY : SO)BJOIYPPE+

Jul : ONJBWOISNO—

Isiysimiawolsny

[0l 2oy : ()saomyiab+
PIOA : (BJOIY : B[OIE)BjoIuYPPE+

Ul : ONJBWOJSNO—

3siBuiddoysiawoisny

%.o
[0l apmy : ()sejpiuyieb+

[.0] Buls : ()sjureidwogyeb+ [.0] Buiys : ()sjuswiwon)eb+
ploA : (Bug : 0)uredwopppe+ ploA : (JUBWWOY : JUBWIWOD ‘BI0IUY : S|2ILE JjUsWWOoDPpPE+

[,0] Buis : jurejdwoo-
Jul : ONJBWO)SNd—

[, 1] BuLyg : Juswwoo—
Ul : ONJBWO)SNO—

3siurejdwogiswolsny JSITIUBWIWOD}ONPOIIdWOISND

PIOA : (Jul : OU)ONISS+

jul : (JoNyeb+
ploA : (Buwls : sweu)aweN}as+
Buis : (JeweNiob+

Buys : sweu—
Ul Ou-

Jawoysny

UBs|00q : (ISITHUBWIIOD}ONPOIJIBWO}SNY : ISITHUBWWO0D }s[ule|dWo)I8WolSny ¢ 3sIulejdwod JSITYSIMIBWOISNY : }SIYSIM }s1BuUIddoySIaWo}sny : 3SIbuIddoys JeWo}sny) : JoWo)Snd)jUuesaldAepypigpuas+

1129|100 : (}SI HUBWUWIOD}ONPOIGISWOISND : JSIHUBUWIOD JSITHUIEIdWODIBWO}SND |

jureidwod Jsiysippiewoisng : 3siysim isibuiddoysiswolsny :isiqbuiddoys Jswolsny : 1owoisnd)jussaidsew)suydpuas+

1abeuepdiysuoneayiawoisngy

Example UML class model smell Long Parameter List

Figure 5.4

44

EXAMPLE Figure 5.4 shows class CustomerRelationshipManager that
owns two operations each having a long parameter list. Here,
this smell can easily be detected by observation.

DETECTION This smell can be simply detected by observing the model
(see above) or by evaluating metric Number of Input Parameters
and evaluating its value with respect to a predefined threshold
value. Metric Number of Input Parameters can be specified by the
OCL expression

self.ownedParameter

-> select(direction = ParameterDirectionKind::_in or
direction = ParameterDirectionKind::inout)

-> size()

that returns the number of owned parameters of a given op-
eration with direction in respectively inout.

USABLE UML MODEL REFACTORINGS Introduce Parameter Object for
extracting information to a new class. Remove Parameter for re-
moving not needed information.

AFFECTED QUALITY CHARACTERISTICS AND GOALS Long param-
eter lists may be harder to understand and may contain re-
dundant information. Presentation/Aesthetics, Simplicity, Co-
hesion/Modular Design — Comprehensibility, Changeability,
Correctness

Specialization Aggregation

DESCRIPTION The association is a specialization of another associa-
tion. This means, that there is a generalization relation between
the two involved associations. People are often confused by the
semantics of specialized associations. The suggestion is there-
fore to model any restrictions on the parent association using
constraints [119].

EXAMPLE Figure 5.5 shows class Journey that is subclassed by class
AirJourney. Also there is a similar class inheritance hierarchy
including classes Route and AirRoute. Furthermore, there is an
association between both subclasses Journey and Route. This as-
sociation is also specialized by a corresponding association. In
fact, this association hierarchy might be confusing.

DETECTION This smell can be detected by matching a corresponding
(anti-) pattern based on the abstract syntax of UML. Figure 5.6
shows such a specification. It defines two UML Associations
(named assoc_1 and assoc_2) which are related by a correspond-
ing Generalization relationship.

45

+ journey + route
Journey AN Route
(1 (1]

(1] (1]
AirJourney AirRoute
+ airJourney + airRoute

Figure 5.5: Example UML model smell Specialization Aggregation

USABLE UML MODEL REFACTORINGS No existing model refactoring
can be used to eliminate this smell. Either a new one has to be
developed, or the smell has to be eliminated directly, for exam-
ple by restructuring the model considering this specific aspect.

= Rule mainRule
«preserve» «preserve»
assoc_l:Association assoc_2:Association
[}
«require#HasGeneralization» «require#HasGeneralization»
neralization - .
generalization | require#HasGeneralization» general
gen:Generalization

Figure 5.6: Pattern specification of model smell Specialization Aggregation

AFFECTED QUALITY CHARACTERISTICS AND GOALS Specialized as-
sociations are hard to understand and might represent redun-
dant modeling since involved classes can be already specializa-
tions. Simplicity, Redundancy — Comprehensibility

5.2.3 Affected quality aspects

Considering a model smell, it is not always clear which quality as-
pects are affected by this smell. Nevertheless, this section presents a
first assignment of selected UML class model smells described in Ap-
pendix D to quality aspects presented in Chapter 4. However, these
assignments need further consideration in future.

Table 5.4 shows a first assignment of selected UML model smells
being suitable in an early stage of a model-based software develop-
ment process to 6C quality attributes presented in Section 4.2. An
entry x in cell (i,j) indicates that UML smell i influences quality

46

attribute j to some extent. The entries in this table result from the cor-
responding discussions in the smell descriptions which can be found
in Appendix D of this thesis but also in the case study presented in
Section 6.1.

6C Quality Attributes
£
o« 8| s 3 s | &
15151883
R AR
UML Model Smell OO0 | 0 |0 |0 |0
o1. Concrete Superclass X X
02. Data Clumps X | X
03. Diamond Inheritance X | x| X
04. Equally Named Classes X X | x X
o5. Large Class X | % X | X
06. Long Parameter List X X X
07. No Specification X | x| x| x| x
08. Primitive Obsession X | X X | X
09. Redefined Attribute X | x| x | x
10. Specialization Aggregation X | X
11. Speculative Generality X X | X
12. Unnamed Element X | x| x
13. Unused Class X | X X

Table 5.4: Possible impacts of class model smells on 6C quality attributes

The most affected quality attributes in this table are Confinement
and Comprehensibility. This is not surprising since (1) modeling
tries to raise the abstraction level in order to be more understandable,
and since (2) the UML offers a variety of language features which
are only of limited suitability for specific purposes like modeling the
problem domain.

Moreover, it seems that an impact on quality attribute Consistency
induces a potential impact on quality attribute Comprehensibility.
This is also not surprising since most smells affecting quality attribute
Consistency address contradictorily modeled facts which are conse-
quently hard to understand.

47

5.3 REFACTORINGS FOR UML CLASS MODELS

One technique for improving the quality of a software artifact is Refac-
toring. Refactoring was introduced by Martin Fowler who gives a fit
and proper definition in [64] probably being the most cited clause in
this field of research:

Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior
of the code yet improves its internal structure.

Basically introduced to software code, refactoring has been success-
fully lifted to the level of software models, especially for (UML) class
models being closely related to programmed class structures in object-
oriented programming languages such as C++ and Java. For behav-
ior models, the relation between models and code, and therefore the
adoption of code refactorings to model refactorings, is less obvious.

It is hard to establish the preserving of the model’s behavior since
modeling languages such as the UML do not have a formal seman-
tic in general. However, if the modeling languages are used for code
generation purposes (e.g., by using the corresponding facilities pro-
vided by the Eclipse Modeling Framework (EMF) [44, 144] or the IBM
Rational Software Architect [82]) the formal semantics of the target
programming language such as Java can be considered instead.

In this section, we first present an overview on refactorings for
UML class models discussed in literature. Then we give structured
descriptions of selected refactorings. Finally, we discuss relationships
between class model refactorings and class model smells presented
in the previous section.

5.3.1 An overview on UML class model refactorings

We extracted altogether 23 UML class model refactorings from re-
search literature. In Appendix C of this thesis, we present a catalog
where each refactoring is presented by its name and a short descrip-
tion. Note that similar to the model smells catalog presented in Ap-
pendix B we do not claim that this catalog is complete.

The most refactorings for UML models are adopted from corre-
sponding code refactorings presented by Fowler [64] but in the last
decade research also concentrated on UML models in particular (for
example, see [30] and [107] for a variety on refactorings for UML
class models). Most of them focus on smaller model changes. How-
ever, 6 out of 23 refactorings are built up from those existing, so-called
atomic refactorings. So, in the catalog presented in Appendix C, we
distinguish between atomic and complex refactorings (with Extract
Superclass being the mostly discussed and therefore the most promi-
nent one). Chapter 7 presents an approach for the specification of

48

refactoring composition. Furthermore, most of the refactorings dis-
cussed in literature come with an inverse refactoring, taking back the
original refactoring effect, for example Pull Up Attribute and Push
Down Attribute. Finally, few refactorings are often discussed using
slightly different descriptions, i.e., they come up with some variants.
Several researchers also discuss refactorings for behavioral UML
models like state machines (18 refactorings) and activity diagrams
(2 refactorings). Here, the main sources are [147, 127] (for state ma-
chines) and [20] (for activity diagrams and also for state machines).

5.3.2 Selected UML class model refactorings

In this section, we describe selected UML class model refactorings
(one atomic and two complex ones). We describe these refactorings
along a structured definition scheme. For each model refactoring a
short description, the contextual meta model element type for apply-
ing the refactoring, and the input parameters of the refactoring are
given. Furthermore, we present preconditions that have to be checked,
either before or after parameter input by the refactoring user, as well
as postconditions that specify the behavior preservation of the refac-
toring. We then specify the transformation that has to be performed
after the precondition checks have passed. Finally, an example com-
pletes each model refactoring description. Further structured descrip-
tions of UML class model refactorings can be found in Appendix E.

Rename Operation

DESCRIPTION The current name of an operation does not reflect its
purpose. This refactoring changes this name [30, 107].

EXAMPLE Figure 5.7 shows a class Book owning an operation gettitle.
Since camel case [17] makes it easier to read the operation’s name
is changed to getTitle.

Book Book

+gettitle()

b +getTitle()

Figure 5.7: Example UML model refactoring Rename Operation

CONTEXTUAL ELEMENT Operation

INITIAL PRECONDITIONS CHECK There are no initial preconditions
that have to be checked.

49

REFACTORING PARAMETERS newName - New name of the contextual
operation.

FINAL PRECONDITIONS CHECK (1) There is no operation with name
newName and with the same parameter list (equal parameter
names and types) as the contextual operation in the class own-
ing the contextual operation. (2) There is no operation named
newName and with the same parameter list (equal parameter
names and types) as the contextual operation in the inheritance
hierarchy of the class owning the contextual operation.

MODEL TRANSFORMATION Change the name of the contextual op-
eration to newName.

rosTCONDITIONS The name of the contextual operation is newName.

Extract Superclass

DESCRIPTION There are two or more classes with similar features.
This refactoring creates a new superclass and moves the com-
mon features to the superclass. The refactoring helps to reduce
redundancy by assembling common features spread through-
out different classes [141, 106, 150, 107, 160].

EXAMPLE In Figure 5.8 classes Bike and Car have common attributes
and operations. Extract these common features to a new super-
class Vehicle.

Vehicle

wheels

getSpeed()

Bike Car Bike Car
wheels wheels horsepower
gearShift21 horsepower gearShift21
getSpeed() getSpeed() changeBareback()
changeBareback()

Figure 5.8: Example UML model refactoring Extract Superlass

CONTEXTUAL ELEMENTS Set of Classes

INITIAL PRECONDITIONS CHECK The contextual classes have simi-
lar features, i.e., attributes with the same name, type, visibility
and multiplicity, or operations with the same name, visibility
and parameter list. Additionally, the initial preconditions of the
involved refactorings have to be checked properly.

50

REFACTORING PARAMETERS Each parameter of refactoring Create
Superclass. Additionally, a list of attributes and operations which
have to be pushed to the new subclass is taken from one contex-
tual class.

FINAL PRECONDITIONS CHECK No final preconditions have to be
checked. However, the final preconditions of the involved refac-
torings have to be checked properly.

MODEL TRANSFORMATION (1) Use refactoring Create Superclass on
the contextual classes with the given parameters. (2) Use refac-
toring Pull Up Property on each attribute of the appropriate pa-
rameter list with the corresponding parameter. (3) Use refac-
toring Pull Up Operation on each operation of the appropriate
parameter list with the corresponding parameter.

POSTCONDITIONS In each step the postconditions of the used refac-
torings have to be checked. No additional postconditions are
required.

Introduce Parameter Object

DESCRIPTION There is a group of parameters that naturally go to-
gether. This refactoring replaces a list of parameters with one
object. This parameter object is created for that purpose [64, 104,
161].

EXAMPLE In Figure 5.9 a date range is used in several operations.
Use refactoring Introduce Parameter Object to build class Dat-

eRange.
Customer Customer
+amountlnvoiced(start : date, end : date) +amountlnvoiced(d : DateRange)
+amountReceived(start : date, end : date) +amountReceived(d : DateRange)
+amountOverdue(start : date, end : date, cstatus : int)| +amountOverdue(d : DateRange, cstatus : int)

=)

DateRange

—start : date
-end : date

+getStart() : date
+getEnd() : date
+setStart(start : date)
+setEnd(end : date)

Figure 5.9: Example UML model refactoring Introduce Parameter Object

CONTEXTUAL ELEMENTS List of Parameters

INITIAL PRECONDITIONS CHECK All contextual parameters belong
to the same operation.

51

REFACTORING PARAMETERS className - Name of the new param-
eter class.
namespaceName - Name space of the new parameter class given
by a qualified name.

FINAL PRECONDITIONS CHECK There does not already exist a clas-
sifier named className in the name space named namespaceName.

MODEL TRANSFORMATION (1) Create a new class named className
in the name space named namespaceName with default visibility.
(2) Create for each contextual parameter a private attribute with
getter and setter operations. (3) Replace the parameter list in all
operations of the class owning the operation with the contextual
parameters with a new parameter with type of the parameter
class. Use refactorings Add Parameter and Remove Parameter for
this purpose.

POSTCONDITIONS (1) There is a new class named className in the
name space named namespaceName with default visibility. (2)
For each contextual parameter there is a private attribute with
getter and setter operations. (3) There is a new parameter with
type of the parameter class in all operations of the class owning
the operation with the contextual parameters.

5.3.3 Smell-Refactoring relationships

Since refactoring is the technique of choice for eliminating model
smells, there is a strong coupling between concrete UML smells and
refactorings. But the suitability of a certain model refactoring to fix
a recognized model smell is not the only relation between these two
model quality assurance techniques. Another potential relationship
is motivated by the fact that the application of a certain refactoring
may cause the occurrence of a specific model smell. This section ad-
dresses these relations between UML model refactorings and UML
model smells.

Table 5.5 gives an overview on refactoring alternatives to eliminate
the 13 UML class model smells presented in Table 5.4 on page 47. An
entry x in cell (i,j) indicates that UML refactoring i can be used to
eliminate smell j. The entries in this table are derived from the cor-
responding discussions in the refactoring descriptions which can be
found in Appendix E of this thesis but also in the case study pre-
sented in Section 6.1.

52

UML Model Smells

UML Refactorings

Concrete Superclass
Data Clumps
Diamond Inheritance
Equally Named Classes
Large Class

Long Parameter List
No Specification

Primitive Obsession

Speculative Generality

Unnamed Element

Create Subclass

X

X

Extract Associated
Class

X
X

Extract Subclass

Extract Superclass

Inline Class

Introduce Parameter
Object

Move Attribute

Move Operation

Pull Up Attribute

Pull Up Operation

Push Down At-
tribute

X [X [X [X | X

Push Down Opera-
tion

Remove Empty As-
sociated Class

Remove Empty Sub-
class

Remove Empty Su-
perclass

Remove Parameter

Remove Superclass

Rename Attribute

Rename Class

Rename Operation

Table 5.5: Positive impacts of UML refactorings on UML model smells

53

As last topic in this section we discuss ‘negative’ relations between
UML refactoring and UML smells, in which the application of a refac-
toring may cause the occurrence of a specific smell. A first assignment
is given in Table 5.6. An entry in cell (i,j) indicates that refactoring
i can cause the occurrence of smell j. Completely new smell occur-
rences are marked with ® whereas smells which already existed be-
fore the refactoring but in another context are marked with x.

UML Model Smells
195)
192} 3 § 0 = -‘?
S @ =
2 5|0 S S|
§ RS §18¢3
S &= 8 SRR
»n | £ | 2 2| 8 \L;i O S
2 |2 | E S|S| T8
SIO|E|I2|IY 2|8 |83
S | = S| S| &| 0|, g 3
SIS | S| 5|8 |8 |2 |F|&
UML Refactorings Ol QA lAWwmia |3 |2 |5l a
Add Parameter ® ®
Create Associated ®
Class
Create Subclass ®
Create Subclass ® ® | &
Extract Associated X ® | X | % ®
Class
Extract Subclass X ® | x | X &
Extract Superclass Q| X | ®]| ® | x| X ®
Inline Class ® Q | x ®
Introduce Parameter ® R | & | X ®
Object
Move Attribute ® &
Move Operation ® | X
Pull Up Attribute ® ®
Pull Up Operation ® | x
Push Down Attribute ® &
Push Down Operation ® | X
Remove Empty Sub- ® ®
class
Remove Superclass ® ® | x X
Rename Class &

Table 5.6: Potential negative impacts of UML refactorings on UML smells

54

EXAMPLE APPLICATION CASES

In this chapter, we present three example cases performing the model
quality assurance process presented in Chapter 3. The example cases
serve as proof-of-concept implementations of this process and show
its applicability, its flexibility, and hence its effectiveness. The first ex-
ample case, a classical model-based software development scenario,
uses the Unified Modeling Language (UML) [123] for modeling the
problem domain in an early phase of a software development process.
In contrast to the use of a General Purpose Language (GPL) in this
example case, the subsequent example cases show the applicability
of the quality assurance process on models of Domain Specific Lan-
guages (DSLs). The second example case uses a textual DSL whose
models serve as main artifacts in a modern model-driven process for
developing simple web applications. In the third example case, we
specify quality assurance techniques for rule-based, in-place model
transformation systems which are used for refactoring specification,
for example.

6.1 QUALITY ASSURANCE OF UML CLASS MODELS

In this section, we discuss a simple example of the process presented
in Chapter 3 concerning UML class modeling in early phases of a
model-based software development process. After presenting the sce-
nario, we describe the definition and application of a sample model
quality assurance process in detail.

6.1.1 Scenario description

In our example, we consider a software project for the development of
an accounting system for a vehicle rental company. This company has
a headquarter and owns cars, trucks, and motorbikes which can be
rented by customers via a vehicle rental service. These three kinds of
vehicles have some common and some differing properties. A car has
a manufacturer, a registration number, an engine power, and a num-
ber of seats. A truck has a manufacturer, a registration number, an
engine power, and a weight. Finally, a motorbike has a manufacturer,
a registration number, an engine power, and a cylinder capacity. Each

55

customer has a name and an email address and is related to a consul-
tant being an employee of the company. Furthermore, the company
has some subcontractors being specific employees and customers.

We assume that software models are used in the domain analy-
sis phase in order to get an overview on real world entities in the
problem domain. The modeling of the problem domain is done using
UML class models.

Figure 6.1 shows a first UML example model that has been devel-
oped in an early stage of the problem analysis. Here, the example
model is displayed in concrete syntax using the UML CASE tool IBM
Rational Software Architect (RSA) [82].

QCompany 1 - company
Eaname : String o——
- company | g headquarters 1 -company
1 - * - ownedCar
H person 1 company
} - company EHcar
employee 1 - ownedMotorbike - -
E& kind : CarKind
N = Motorbike £ power : UnlimitedNatural

& manufacturer : String
E®No : String
5 noSeats : UnlimitedNatural

E Employee | - consultant 6 kind : MbKind
1 55 power : UnlimitedNatural
58 manufacturer : String

~ customer | * + customer E6 cylinderCap : UnlimitedNatural
6 regNo : String 1
El customer
E&name : String ; 1 - rentedCar
5@ emailAddress : String i - ownedTruck | *
- rentedMotorbike
i S Truck «enumeration»
+ service|
1 + renter - — MbKi
Zr * & weight : UnlimitedNatural = bKind
= Subcontractor H service 5 power : UnlimitedNatural - CUSTOMBIKE
& manufacturer : String CHOPPER
& regNo : String -
«enumeration»
.
N El VehicleRental 1 /P - rentedTruck Carkind
Hl RentalPeriod = CABRIOLET
= CARAVAN
#rent ()

Figure 6.1: Example UML class model showing the first version of domain
model Vehicle Rental Company (before model review)

Concerning quality issues, the model contains several suspicious
parts. For example, information on the vehicles (cars, trucks, and mo-
torbikes) is modeled redundantly (such as power). Furthermore, class
RentalPeriod is not associated to any other class at all (which hints
at some incompleteness). During a model review (see Figure 3.1 on
page 17) this initial model is analyzed in terms of project-specific
model metrics and model smells. Several refactorings in combination
with additional model changes are applied subsequently.

Figure 6.2 shows the improved model after this review. The afore
mentioned redundancies have been eliminated and incomplete model
parts have been supplemented with further information. We discuss
the concrete applied techniques, i.e., calculated metrics, detected model
smells, and applied model refactorings, in the following sections.

56

1 = company - company
E&name : String

- company | i5g headquarters 1 * | - ownedVehicle
1 S vehicle
E person 1 y -
- company 1 |E&power: UnlimitedNatural
- employee —————————> Eg manufacturer : String
- rentedVehicle | @ regNo : String
o

= Employee | - consultant ‘ ‘

1

+ customer

% * E Motorbike Hcar
- customer - - - -
& kind : MbKind E& kind : CarKind
S customer 6 cylinderCap : UnlimitedNatural % noSeats : UnlimitedNatural

E&name : String
& emailAddress : String

1 + vehicleRentalServic E Truck <<Emera.tion»
+ renter * | £ weight : UnlimitedNatural | £ MbKind
El subcontractor - - = CUSTOMBIKE
E VehicleRentalService = CHOPPER
@rent () «enumeration»
CarKind
1 |- period = CABRIOLET
-from 1 = CARAVAN
E RentalPeriod E pate
-to 1

Figure 6.2: Improved sample UML class model after model review

6.1.2 Specification of quality assurance techniques

In this section, we demonstrate how the specification process for the
used model quality assurance techniques (see Figure 3.2 on page 18)
is applied along our example. Please note that this process must not
be applied for each individual project in its full extent. Once these
techniques are defined they can be reused in future projects as well.

Specification of relevant model quality aspects

In our example, we use the quality model described in Section 4.3
which is based on the 6C quality goals presented in Section 4.2.1 and
determine those aspects which are most relevant as follows.

The most important property of a domain analysis model is that it
models the problem domain in the right way, i.e., choosing the right
elements and making correct statements on the domain. So, 6C goal
Correctness is an essential quality aspect that has to be considered
when applying a model quality assurance process. Since an analysis
model is used for communicating with problem domain experts who
are typically inexperienced in software modeling, it is also important
that the model is easily understandable. This implies that the model
must not contain any obvious ambiguity. Furthermore, the analysis
model must not have unnecessary information that make it more
complex as necessary. So, 6C goals Comprehensibility, Consistency, and
Confinement can be seen as essential quality aspects.

Since the modeling purpose in our example is to get an overview
on the problem domain, it is justifiable if less important information

57

is missing. So, 6C goal Completeness is a less important quality aspect
in our example. Furthermore, since the domain to be modeled is very
simple and manageable, model reviewers do not have to prioritize
the quality goal Changeability.

Please note that we are arguing from a selective point of view only
to keep the argumentation compact. However, the selection of the
main quality aspects may vary depending on the intended modeling
purpose. This demonstrates the complexities and challenges of this
basic task.

Formulation of questions leading to static quality checks

After having specified relevant quality aspects we have to think about
how to check the compliance with these aspects during the concrete
modeling activity. This is done by formulating questions that lead to
model smells. These questions have to be formulated in a way that
they can be answered by static model analysis, i.e., they need answers
which can be given by the model syntax only. In the following, we
concentrate on one single quality aspect, namely Confinement, and
present a selection of appropriate questions. Example questions are:

Q1: Are there classes being not used by any other model element? This is a
typical case of unnecessarily modeled information.

Q2: Are there classes inheriting from another class several times? This
would indicate that the modeler uses the inheritance concept
in a too complex way, i.e., the model is more detailed than nec-
essary.

Q3: Are there abstract classes not doing much? Again, this might be an
indicator for unnecessary information within the model.

Q4: Ave there at least three similar attributes staying together in more than
one class? This might be a hint that the modeler does not use the
inheritance concept of the UML which might be more suitable
in this case.

Q5: Are there attributes redefining other ones within the inheritance hierar-
chy? Since the purpose of the model is to get an overview about
the problem domain the use of this language construct might
be too complex, i.e., it does not suit to the modeling purpose.

Further questions that consider other quality aspects are:

Q6: Are there equally named classes owned by different packages? Equally
named classes could lead to misunderstandings of the modeled
aspects (aspect Comprehensibility). If they are representing the
same real world entity the modeler uses some kind of controlled
redundancy that in turn can compromise quality aspect Change-
ability.

58

Qy: Are there abstract classes that are subclasses of non-abstract classes?
This would be an example for incorrect modeling, i.e., it com-
promises quality aspect Correctness.

Q8: Are there abstract classes that are not specialized by at least one con-
crete class? This might indicate that there is something missing
in the model, i.e., quality aspect Completeness is violated.

Specification of project-specific UML smells

The questions formulated in the previous section lead to model smells
that hint at model parts possibly violating the quality aspect Confine-
ment. A structured definition of each smell including a name, the cor-
responding question, an informal description, an example, affected
6C quality goals, and ways to detect the smell can be found in Ap-
pendices B and D of this thesis. The derived UML smells are:

UNUSED CLASS (DERIVED FROM QUESTION Q1): An unused class
often stands alone in the model without any references to other
classes. This smell is adapted from Riel who analyzed object-
oriented design [133] and can be detected by two different mech-
anisms. First, we can define the absence of child classes, asso-
ciated classes, and attributes with class type as anti-patterns
based on the abstract syntax of UML and check whether they
do not match on a concrete instance class. Second, we can de-
fine a constraint that uses three metrics (Number of direct children,
Number of associated classes, and Number of times the class is exter-
nally used as attribute type) and that checks whether each metric
is evaluated to zero. Nevertheless, the former alternative seems
to be the most appropriate one.

DIAMOND INHERITANCE (QUESTION Q2): This smell is based on
the multiple inheritance concept of UML. It occurs when the
same predecessor is inherited by a class several times. It is
known in literature as ‘"diamond” inheritance problem for object-
oriented techniques using multiple inheritance and was first dis-
cussed by Sakkinen [136]. An adequate mechanism to detect
this smell is to specify a corresponding pattern on the abstract
syntax of UML and to find matches in concrete UML instances.

SPECULATIVE GENERALITY (QUESTION Q3): If there is an abstract
class inherited by one single class only, this smell is found. It is
based on the corresponding code smell introduced by Fowler [64]
and refined by Zhang et al. [161]. To detect this smell we can
check whether metric Number of direct children evaluates to 1 on
an arbitrary UML class. Of course, the corresponding constraint
must check whether this class is abstract. Furthermore, it is pos-
sible to specify this smell by a corresponding pattern based on

59

the abstract syntax of UML and try to match this pattern on
classes of a concrete UML instance model.

DATA CLUMPS (QUESTION Q4): A UML model holds this smell if
interrelated data items often occur as ‘clump’. More precisely,
this smell can be defined as follows:

e At least three attributes stay together in more than one
class.

e These attributes should have the same signatures (same
names, same types, and same visibility).

e The order of these attributes may vary.

Again, this smell is also based on the corresponding code smell
introduced by Fowler [64] and refined by Zhang et al. [161].
To detect this smell there must be a mechanism to detect sim-
ilarities in UML models. This is due to the fact that one can
not predict how many attributes are involved in this smell. Fur-
thermore, there might be variants wrt. similar attributes when
using a more general definition of this smell than here (think of
attribute names that need not to be equal but just similar or at-
tributes with different visibilities). Another possibility to detect
this smell is to define a metric for an UML class counting all
equal attributes with other classes. Nevertheless, using a strict
definition with exactly three attributes and equal signatures it
is possible to define this smell as pattern based on the abstract
syntax of UML.

REDEFINED ATTRIBUTE (QUESTION Q5): UML allows for redefin-
ing attributes owned by ancestor classes. However, using this
language feature could lead to misunderstandings of the mod-
eled aspect and might be confusing for model readers. It can be
checked by matching a corresponding pattern or by evaluating
metric Number of redefined attributes to zero.

Table 6.1 summarizes the impact of the UML smells described
above on 6C quality aspects. An entry x in cell (i,j) indicates that
UML smell i influences quality goal j to some extent. The entries in
this table result from the corresponding discussions in the smell de-
scriptions from above. Furthermore, the table contains three model
smells that can be deduced from questions Q6 to Q8. Here, UML
smells Equally named Classes and Concrete Superclass are based on the
thesis from Christian Lange [97] who calls them defects, whereas
smell No Specification is adapted from the corresponding object-oriented
design smell described by Riel [133].

60

Olo|lololola
AT
@ »5 @, _5 BB
o' = | @ = | B2 | 9
S| 28|88
&8 |23 | 7|8 | T
(7)) =} N] o) =
12|22 |82
& =T A
5
Unused Class X | X X
Diamond Inheritance X | x| X
Speculative Generality X X | %
Data Clumps X | X
Redefined Attribute X | X | x| %
Equally Named Classes X X | % X
Concrete Superclass X X | X
No Specification X | X | X | X | X

Table 6.1: Possible impacts of UML model smells on 6C quality attributes

Specification of project-specific UML refactorings

After having specified appropriate model smells as done in the previ-
ous section, suitable refactorings have to be defined in order to sup-
port the handling of 'smelly’ models. Table 6.2 gives an overview on
refactoring alternatives to eliminate the UML smells presented above.
An entry x in cell (i,j) indicates that UML refactoring i can be used
to eliminate smell j.

To eliminate the Unused Class smell no single suitable refactoring
can be deduced since one can not determine automatically whether
this class is either useless or if there are some missing relationships.
So, this smell can either be eliminated by removing the class (i.e.,
by using the simple refactoring Remove Unused Class) or by adding
further information to the model not indicated as refactorings.

Smell Diamond Inheritance can be eliminated by applying refactor-
ings Remove Superclass or Remove Intermediate Superclass. Both refactor-
ings can also be used to eliminate UML smell Speculative Generality.
Here, the unnecessarily modeled abstract class has to be removed by
one of those refactorings, depending on whether this class has a par-
ent class or not. A further applicable refactoring addresses missing
information, more precisely missing subclasses of the abstract class.
This refactoring is called Extract Subclass. It creates a new subclass
and applies refactoring Push Down Attribute to a set of attributes of
the contextual class (which is empty in our case).

61

c|I9¥| 9|z
S5 8|28
o B (o) oV)
®© | © =3 Nl
QB D = %
O\ F 8|2
jo¥)
23 %2
® | o =y
S8 B
S e
®
<
Extract Class X
Extract Superclass X
Extract Intermediate Superclass X
Extract Subclass X
Remove Superclass X | X
Remove Intermediate Superclass X | X
Remove Redefined Attribute X
Remove Unused Class X

Table 6.2: Suitable refactorings to erase specific UML model smells

The Data Clumps smell can be removed in two different ways: either
by moving the corresponding attributes to a new associated class or
by moving them to a new class that is a common superclass of the
owning classes. The first option uses UML refactoring Extract Class
that internally uses refactorings Create Associated Class and Move At-
tribute. The second alternative uses either refactoring Extract Super-
class or Extract Intermediate Superclass if the owning classes have a com-
mon superclass already. Besides the creation of an empty (intermedi-
ate) superclass, both refactorings use refactoring Pull Up Attribute to
move equal attributes to this newly created class.

Last but not least, UML smell Redefined Attribute can be eliminated
using refactoring Remove Redefined Attribute that removes the redefi-
nition relationship as well as the contextual attribute if and only if
the redefined attribute is visible to the owning class of the redefining
attribute.

In Appendix E, you find a structured definition of each UML refac-
toring including a name, a short description, an illustrating example,
the contextual meta model element for applying the refactoring, and
the input parameters. Furthermore, we use a three-part specification
scheme reflecting a primary application check for a selected refactor-
ing without input parameters, a second one with parameters, and the
proper refactoring execution steps. Please note that some of the UML

62

refactorings are adapted from corresponding UML refactorings, for
example discussed in [150], [160], and [107].

As last topic in this section we discuss relations between UML refac-
toring and UML model smells. Inter-relations are presented in Table
6.3. An entry in cell (i,j) indicates that UML refactoring i can cause
the occurrence of UML smell j.

n 3!
clelelglziz gz
Sz |38 |8 8|3 |
& c =R
[¢) o = 0 =g —_)
Q| 5 5 =2 | < 2 @
A&l 251828 =
2Bl12| A3z 8L |8
» 5 O @ | =« 8 | g o,
20 B S -
5B Zlol &
=] S FT | 5| @
2} — ¢} 2 »n
o | = A
< o)
7]
Extract Class X ®
Extract Superclass ® X ® | ®
Extract Intermediate Supercl X ® | ®
Extract Subclass ® ® | x ®
Remove Superclass ®
Remove Intermediate Supercl ®
Remove Redefined Attribute || ®
Remove Unused Class

Table 6.3: Possible impacts of UML refactorings on UML model smells

Each Extract ... Class refactoring may cause UML smell Data Clumps
if appropriate attributes are moved to the newly created class. Please
note that this smell already existed before the refactoring but in an-
other context (without the newly inserted class). We mark this kind of
smell with x whereas completely new smell occurrences are marked
with ®. Furthermore, smell Data Clumps can also be introduced by
refactorings Remove Superclass and Remove Intermediate Superclass when
moved attributes complete an equivalent set of attributes in some sub-
classes.

The application on refactoring Extract Superclass can introduce smell
Diamond Inheritance to the model if the contextual classes from which
the new superclass shall be extracted have a common subclass al-
ready. Furthermore, it can introduce smell Concrete Superclass if it is
applied on an abstract class. This could be avoided by restricting this
refactoring on concrete classes only. For the same reason, smell Con-
crete Superclass can be introduced by refactoring Extract Intermediate
Superclass as well.

63

Refactoring Extract Subclass can lead to an used class if no attribute
is pushed down to the new class. Furthermore, if this refactoring is
applied on an abstract class that is not inherited so far UML smell
Speculative Generality is introduced.

Except for smell Data Clumps there is no UML smell (in the set
of analyzed smells) that can be introduced by refactorings Remove
Superclass and Remove Intermediate Superclass, respectively. Refactoring
Remove Redefined Attribute can lead to an unused class if the type class
of the removed attribute has been the only use of this class in the
model. Finally, refactoring Remove Unused Class does not cause any
smell from the analyzed list.

6.1.3 Application of quality assurance techniques

In this section, we discuss the application of our quality assurance
process on the UML class model presented in Figure 6.1 in detail.

Metrics calculation and interpretation

For the first overview on a model, a report on project-specific model
metrics might be helpful. In our example, we calculate model met-
rics for UML packages concerning abstractness and inheritance is-
sues. Within the package depicted in Figure 6.1 there are altogether
11 classes (9 concrete and two abstract classes). The concrete classes
own altogether 20 attributes from which 2 are inherited from parent
classes (attributes name and email Address of class Subcontractor).

Three metrics are calculated using these ’basic” metrics. The ab-
stractness (A) of the package is 0.18 (ratio between the number of
abstract classes and the total number of classes in the package), the
attribute inheritance factor (AIF) is 0.10 (ratio between the number of
inherited attributes in all concrete classes in the package and the total
number of attributes in all concrete classes in the package), and the
average number of attributes in concrete classes within the package
(AVNAtP) is 2.22. As a first evaluation of these metrics results, one can
state that the model might not be complete since (1) there are only
11 classes modeled for the vehicle company domain, and (2) these
classes have little more than two attributes on average. Furthermore,
language concepts of abstractness and inheritance are not used too
exhaustively. So the model is less complex and easier to understand.
On the other hand, the low values of A and AIF can be interpreted as a
hint that the modeling purpose is not yet achieved since the modelers
use the provided language features insufficiently only.

Smell detection and interpretation

The discussion of metrics results shows that a manual interpretation
of metric values seems to be unsatisfactory and error-prone. So, an-

64

other static model analysis technique is required, more precisely an
automatic detection of specific smells for UML models.

Some smells can be found when looking for specific patterns de-
fined on the abstract model syntax, other model smells are based
on corresponding metrics. For a metric-based model smell, an ap-
propriate threshold can be configured. In our example, we consider
UML smell Data Clumps as metric-based smell. It relies on metric NEAC
(number of equal attributes with further classes) and comparator >
(greater or equal). We set the limit for smell Data Clumps to 3, i.e.,
this smell occurs if a class owns more than two attributes with same
name, type, and visibility in at least one other class.

Analyzing the example UML model shown in Figure 6.1, the smell
detection analysis discovers the existence of altogether six concrete
smells which affect quality aspect Confinement. Smell Data Clumps oc-
curs three times, more concretely in classes Car, Truck, and Motorbike.
Smell Diamond Inheritance occurs once. Here, the involved elements
are classes Person, Employee, Customer, and Subcontractor. Another
detected smell is Speculative Generality since abstract class Service
has one single child class only. Furthermore, there is the unused class
RentalPeriod.

The next step during a model review is to interpret the results of
the smell detection analysis. Potential reactions on detected smells
are:

e Use refactoring Extract Superclass on classes Car, Truck, and
Motorbike to insert a common parent class Vehicle and pull
up attributes manufacturer, power, and regNo to it.

o The diamond inheritance smell detected on class Subcontractor
should not be eliminated since this seems to be an important
detail that has to be addressed in the domain model.

e Smell Speculative Generality should be removed by using refac-
toring Remove Superclass on class Service since the company
does not offer further services.

e Class RentalPeriod is unused up to now. It should be associated
to class VehicleRental and shall refer a new class Date twice
(named from and to).

Refactoring application and manual model changes

Besides manual changes, model refactoring is the technique of choice
to eliminate occurring smells. Figure 6.3 shows our example UML
model after performing several model changes, being refactorings
and manual changes, as described at the end of the last section. Now,
classes Car, Truck, and Motorbike have a common superclass Vehicle
owning the afore redundant attributes manufacturer, power, and regNo.

65

Class Service has been removed so that VehicleRentalService is the
only offered service left. Finally, class RentalPeriod has been com-
pleted by additional information, i.e., class Date and associations pe-
riod, from, and to.

J B Company 1 - company
Egname : String O —
- company| g headquarters 1 - company
1 E vehicle
=12 1
erson -
- company company 5 power : UnlimitedNatural
- employee 1 56 manufacturer : String
'4 E& regNo : String
o
= Employee | - consultant * | - ownedMotorbike - ownedCar
! + customer = Motorbike
 customer | * * 5 kind : MbKind Hcar
& cylinderCap : UnlimitedNatural 6 kind : CarKind
E Customer E& noSeats : UnlimitedNatural
5@ name : String 1/|* rentedMotorbike
& emailAddress : Strin - ownedTruck | * 171" - rentedCar

+ i :
+renter | 1 semvies = Truck «egl\mnir:'tlodn»

* E& weight : UnlimitedNatural in
= = CUSTOMBIKE

Subcontractor H VehicleRentalService 1 1\7 rentedTruck = CHOPPER
@rent () <<e§?e|2.tit;n»

- period arKin

1 = CABRIOLET
-from 1 = CARAVAN
El RentalPeriod = pate

-to 1

Figure 6.3: Example UML class model after several model changes during a
first model review

From the detected smell occurrences only one is left (smell Diamond
Inheritance in class hierarchy Subcontractor = Person). Nevertheless,
there are model parts remaining suspicious with respect to several
model quality aspects. For example, there are two elements indicat-
ing incorrect modeling. First, class Vehicle is concrete even though
it should represent a generic term for concrete vehicle kinds, hence
should be abstract. Moreover, the association between classes Company
and VehicleRentalService has a too general name and should be
named vehicleRentalService instead. Furthermore, there are associa-
tions from class Company to classes Car, Truck and Motorbike respec-
tively from class VehicleRentalService to these classes hinting to
some kind of redundant modeling.

The former discussion shows that project-specific model quality as-
surance techniques do not have to be completely defined before a
project starts. In our example, the quality assurance process should be
adapted during the model development phase in order to be steadily
improved. UML smells Concrete Superclass and Association Clumps as
well as UML refactorings Rename Association and Pull Up Association
would extend the suite of project-specific model quality assurance
techniques in a meaningful way.

66

6.2 QUALITY ASSURANCE OF TEXTUAL MODELS FOR THE DEVEL-
OPMENT OF SIMPLE WEB APPLICATIONS

In this section, we present the design and implementation of an exam-
ple case for quality assurance of textual models. As example language
we take a domain-specific modeling language (DSML) called Simple
Web Model (SWM) for defining a specific kind of web applications
in a platform-independent way". In this example, we concentrate on
quality aspect Completeness. This means that we analyze SWM mod-
els whether they are ready for code generation and improve model
parts using domain-specific refactorings. After presenting an example
scenario, we describe definition and application of a sample model
quality assurance process for SWM models in detail.

6.2.1 Motivation and scenario description

The use of (often textual) DSMLs is a promising trend in modern soft-
ware development processes to overcome the drawbacks concerned
with the universality and the broad scope of general-purpose lan-
guages like the Unified Modeling Language (UML) [123]. Such a
DSML can help to bridge the gap between a domain experts view and
the implementation. Often, a DSML comes along with a code genera-
tor and/or interpreter to provide functionality that should be hidden
from the domain expert. In the generator case, high code quality can
be reached only if the quality of input models is already high.

In this example case, we assume the following scenario (taken from
[21]): A software development company is repeatedly building sim-
ple web applications being mostly used to populate and manage per-
sistent data in a database. Here, a typical three-layered architecture
following the Model-View-Controller (MVC) pattern [68] is used. As
implementation technologies, a relational database for persisting the
data as well as plain Java classes for retrieving and modifying the data
are employed for building the model layer. Apache Tomcat is used as
Web Server. The view layer, i.e., the user interface, is implemented
based on JavaServer Pages and the controller layer is implemented
based on Java Servlets. The company decided to develop its own tex-
tual DSML called Simple Web Modeling Language (SWM) for defin-
ing their specific kind of web applications in a platform-independent
way. Furthermore, platform-specific models following the MVC pat-
tern should be derived with model transformations from which the
Java-based implementations are finally generated.

The SWM language is defined as follows. A WebModel consists of
two parts: a DatalLayer for modeling entities which should be per-
sisted in the database, and a HypertextLayer presenting the web
pages of the application. An Entity owns several Attributes (each

1 Several variations of SWM are used in literature, for example in [21].

67

O 0N O Ul A~ WN R

I T S o S S~ S~ S S U
O O N ONU A~ W N R O

21
22
23
24
25
26
27
28
29
30
31
32

having a SimpleType) and can be related to several other entities (see
meta class Reference). A Page is either a StaticPage having a static
content or a DynamicPage having a dynamic content depending on the
referenced entity. An IndexPage lists objects of this entity whereas
a DataPage shows concrete information on a specific entity like its
name, attributes, and references. Pages are connected by Links.

WebModel := 'webmodel’ Name '{’
DataLayer
HypertextLayer
"y
DataLayer := ‘'data {’
Entityx
o
Entity := ‘'entity’ Name '{’
Attributex
Referencex
"o
Attribute := 'att’ Name ’':’ SimpleType .
Reference := 'ref’ Name ':’' (Entity)
HypertextLayer := "hypertext {’
Page+
'start page is’ (StaticPage)
"y
Page := StaticPage | DynamicPage .
StaticPage := ’'static page’ Name ’'{’
Linkx
'y
DynamicPage := IndexPage | DataPage .
IndexPage := 'index page’ Name [’'shows entity’ (Entity)] '{’
Linkx*
'y
DataPage := 'data page’ Name [’'shows entity’ (Entity) 1 ’'{’
Linkx
"o
Link := '1link to page’ (Page)
Name := Letter+
Letter := "A" | ... | 2" | "a" | ... | 'z’
SimpleType := ’'Boolean’ | 'Email’ | 'Integer’ | ’String’

Listing 6.1: Grammar of the SWM language in EBNF

Listing 6.1 shows the grammar of the SWM language in Extended
Backus-Naur Form (EBNF) [159]. The grammar owns altogether 15
production rules, e.g., for WebModel, Entity, and DynamicPage. Lan-
guage terminals are defined using inverted commas (like "index page’).
Optional parts are specified in squared brackets whereas round brack-
ets represent cross-references to already existing language constructs
(for example, ' (Entity)’ refers to an already existing instance of an
entity in the model). The logical or is encoded by ’|” whereas oper-

68

ations +" and ¥ mean repeat 1 or more times, or o or more times,
respectively.

6.2.2 Specification of quality assurance techniques

In this section, we use the specification process for quality assurance
techniques concerning textual models of the SWM language as pre-
sented in Section 3.2.2.

Since in our scenario platform-specific models should be derived
from SWM models and should be used to generate the Java-based
implementations, the major quality aspect to be fulfilled on SWM
models is Completeness. A model is complete if it contains all rele-
vant information, and if it is detailed enough to serve the modeling
purpose [116]. This means for SWM models that (A) on the data layer
each entity must contain all relevant attributes and references to other
entities whereas (B) the hypertext layer must contain a complete set
of (potentially linked) pages which should be part of the web applica-
tion. Potential SWM model smells violating quality aspect Complete-
ness are:

EMPTY ENTITY The entity does not have any attributes or references
to other entities. (This violates completeness issues of type A.)

NO DYNAMIC PAGE The entity is not referenced by a dynamic page
to be depicted in the web application. (type B)

MISSING DATA PAGE The entity is referenced by an index page but
not by a data page. (type B)

MISSING INDEX PAGE The entity is referenced by a data page but
not by an index page. (type B)

UNUSED ENTITY The entity is referenced neither by a dynamic page
nor by another entity. (types A and B)

MISSING LINK The index page is not linked by the start page of the
web application. (type B)

Further SWM model smells violating quality aspects Correctness
and Confinement because of redundantly modeled parts are:

MULTIPLE LINK DEFINITIONS The page has multiple links to the
same destination page.

EQUALLY NAMED PAGES There are pages within the hypertext model
having the same name.

In addition to the model smells described above, several metrics
can be used to analyze completeness of SWM models. For example,

69

metrics Number of Entities in the Model (NEM) and Number of Dynamic
Pages in the Model (NDPM) can be used to get a first overview on the
model structure. Here, a ratio between the values of these metrics less
than 1 : 2 might be a hint for missing dynamic pages, i.e., one entity
should be referenced by two dynamic pages - both an index page
and a data page. Similarly, metrics Average number of Attributes (resp.
References) in Entities of the Model (AvNAE resp. AvNRE) are useful to
detect missing information in the data layer.

After having specified appropriate model smells, suitable refactor-
ings have to be defined in order to support the handling of "smelly’
SWM models. Smells No Dynamic Page and Unused Entity can be
eliminated by a refactoring which inserts both an index page and
a data page referencing the corresponding entity to the hypertext
layer (refactoring Insert Dynamic Pages). A missing index page ref-
erencing the same entity as an existing data page can be inserted by
refactoring Add Index Page to Data Page. Similarly, refactoring Add
Data Page to Index Page inserts a new data page to the hypertext
layer that references the same entity as an existing index page.

To eliminate smell Missing Link an appropriate refactoring Update
Links to Index Pages can be used. This ensures that the start page
owns links to all index pages of the model. However, there is no
adequate refactoring to eliminate smell Empty Entity. Here, manual
model changes should be performed (such as deleting the entity or
adding attributes or references, respectively).

The smells violating quality aspects Correctness and Confinement be-
cause of redundantly modeled parts can be simply eliminated using
refactorings Remove Multiple Links from Page (smell Multiple Link
Definitions) and Rename Page (smell Equally Named Pages).

6.2.3 Application of quality assurance techniques

In this section, we demonstrate how the techniques presented in the
previous section are applied to a concrete SWM instance model. We
now assume that the software company has to develop a web appli-
cation for the rental system of a vehicle rental company. Listing 6.2
shows a first SWM model being developed in an early stage of the de-
velopment process. This model is the object of interest in the model
review described in the remainder of this section.

For a first overview, a report on project-specific model metrics might
be helpful. In our example model, metrics NEM and NDPM (see pre-
vious section) evaluate to 4 and 3, respectively. This means that there
are more entities in the web model than dynamic pages hinting at po-
tentially missing dynamic pages. Moreover, the extremely low values
of metrics AVNAE and AvNRE (1.25 and o.25, respectively) are hint-
ing at some missing information within the data layer of the model.

70

O 00N Ol kA WN R

N R R R R R R A R R R
O O N oMUl A~ W N B O

21
22
23
24
25
26
27
28
29
30
31
32
33

To make this problems more explicit (and thus more obvious), an
analysis with respect to so-called model smells representing model
parts to be improved can be performed. In our example model shown
in Listing 6.2, there are altogether six concrete smell occurrences
which should be investigated in detail.

webmodel VehicleRentalCompany {
data {
entity Customer {
att name : String
att email : Email
ref address : Address
}
entity Address {
att street : String
att city : String
}
entity Car {
att type : String
}
entity Agency {
b
}

hypertext {
index page carindex shows entity Car {
link to page cardata
}
data page cardata shows entity Car {
b
index page agencyindex shows entity Agency {
}

static page indexpage {
link to page carindex
link to page agencyindex
link to page carindex

}

start page is indexpage

}

Listing 6.2: Example SWM instance showing the first version of model
Vehicle Rental Company (before model review)

Two entities are not referenced by a dynamic page. This leads to
two occurrences of model smell No Dynamic Page on entities Customer
and Address. Moreover, entity Customer is not referenced by another
one leading to smell Unused Entity. Entity Agency is also involved
in two smell occurrences. On the one hand it is referenced by an
index page only (smell Missing Data Page). This seems to be well since
entity Agency does not have any attributes or references to be depicted
within a data page. One the other hand, the absence of any attributes

71

O Oy Ol A WON KR

HooR
= O

=
N

[y
[SS]

and references lead to smell Empty Entity, of course. Finally, the start
page indexpage owns two links to index page carindex resulting in
smell Multiple Link Definitions.

Besides manually changing the model, refactoring is the technique
of choice to eliminate occurring smells. In our example, we can use
refactoring Insert Dynamic Pages to eliminate smell No Dynamic Page
on entity Customer. Please note that we do not eliminate smell No
Dynamic Page on entity Address since this entity is referenced by entity
Customer, i.e., it is part of this entity. The result of refactoring Insert
Dynamic Pages is shown in Listing 6.3. Two dynamic pages (an index
page and a data page) referencing entity Customer are inserted into
the hypertext layer of the model. Furthermore, the inserted data page
is linked by the index page which is in turn linked by the static page
named indexpage being the starting page of the hypertext layer.

webmodel VehicleRentalCompany {
hypertext {

static page indexpage {
link to page carindex
link to page agencyindex
link to page customerindex }
data page customerdata shows entity Customer { }
index page customerindex shows entity Customer {
link to page customerdata }

Yool

J

Listing 6.3: Inserted and changed model elements after applying refactoring
Insert Dynamic Pages

In order to eliminate smell Empty Entity we add a new attribute
address to entity Agency. Afterwards, the smell Missing Data Page
should also be eliminated using refactoring Add Data Page to Index
Page on index page agencyindex. Here, a new data page referencing
entity Agency is inserted into the hypertext layer and the inserted data
page is linked to the contextual index page agencyindex.

Obviously missing information within the data model (detected
by low AVNAE and AvNRE values) is added to the model: entity
BankAccount with attributes number, bankCode, and bankName, attribute
account to entity Customer, attribute postalcode to entity Address,
and finally attributes manufacturer and power to entity Car.

Last but not least, we use refactoring Remove Multiple Links from
Page to eliminate smell Multiple Link Definitions on the starting page
which is renamed to startingpage since name indexpage could lead
to misunderstandings because of the key words index page within the
SWM grammar. Listing 6.4 shows the improved resulting model after
the model review.

72

O O N o Ul A~ WON R

[N R e e o e)
©C O Ny ONUl A~ W N R O

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

webmodel VehicleRentalCompany {
data {
entity Customer {
att name : String
att email : Email
ref address : Address
ref account : BankAccount
}
entity Address {
att street : String
att postalCode : Integer
att city : String
}
entity BankAccount {
att number : Integer
att bankCode : String
att bankName : String
}
entity Car {
att manufacturer : String
att type : String
att power : Integer
}
entity Agency {
ref address : Address

}
hypertext {
index page carindex shows entity Car {
link to page cardata
}
data page cardata shows entity Car { }
index page agencyindex shows entity Agency {
link to page agencydata
}
data page agencydata shows entity Agency { }
index page customerindex shows entity Customer {
link to page customerdata
}
data page customerdata shows entity Customer { }
static page startingpage {
link to page agencyindex
link to page carindex
link to page customerindex
}

start page is startingpage

}

J

Listing 6.4: Example SWM instance of model Vehicle Rental Company (after
model review)

73

63 QUALITY ASSURANCE OF RULE-BASED IN-PLACE MODEL
TRANSFORMATION SYSTEMS

In many model transformation approaches, model transformations
are software models themselves. Consequently, model transformation
is a suitable scenario for adapting the structured process for specify-
ing model quality assurance techniques presented in Section 3.2.2.
Following this process, we identify quality aspects for model trans-
formation systems and introduce suitable smells (potential indicators
of low quality) and refactorings that make existing knowledge ex-
plicit about how to write model transformation systems. As a result,
this section provides a first collection of useful quality assurance tech-
niques, especially refactorings, for rule-based in-place model transfor-
mation systems. To integrate these refactorings into a systematic qual-
ity assurance process, we further discuss quality aspects for model
transformation systems and define a first collection of smells based
on metrics and patterns.

6.3.1 Background and core transformation concepts

Model transformations have been applied to solve various tasks in
model-driven engineering (MDE) such as model refactoring and opti-
mizations, translation into other modeling languages, simulation and
analysis, model migration and code generation [156].

While model translations are typically out-place, i.e., constructing
new result models, endogenous model transformations (sticking to
one language) may also be in-place, i.e., modifying the input model
directly [28]. Model simulation and refactoring as well as other kinds
of model modifications such as further model optimizations and ad-
vanced editing operations are typically realized by in-place transfor-
mations. Note that we consider refactorings of in-place model trans-
formations in this section, since our refactorings do not refer to ei-
ther source or target model elements only. Refactorings of out-place
model-to-model transformations are presented in detail in [158]. Nev-
ertheless, we could also apply our techniques and tool to out-place
(model-to-model) transformations, which can be emulated by con-
sidering an integrated domain model constructed from the source
and target domain, and defining a rule set where only target domain
model elements are generated [37].

The core concepts of rule-based in-place model transformation ap-
proaches form the basis for our catalogs of smells and refactorings. Of
course, taking further concepts into account, the corresponding trans-
formation language is widened and the catalogs shall be extended
accordingly. Transformation languages offering (most of) these core
concepts are, e.g., Henshin [4, 54], ViaTra [61], Groove [78], and ATL

(in-place) [63].

74

An instance model consists of a set of objects having attributes and
references. While attributes are typed over data types, references are
typed over classes. All instance models have to conform to a domain
or type model, also called meta model, supporting class inheritance,
including abstract classes (without instances) and containment relations.
As example, consider the domain model for phones in the upper left-
most screen shot in Figure 6.4. Due to simplification purposes, we do
not discuss multiplicities and further constraints here.

u PhoneSystem
4 LN
. yd g ‘\ b .
clients - phones-\ N il
o 0.*\
B Person | B B Phone | \“a 9.2 ‘ |=> Rule liftFixed
[‘,9:1——‘ e | | B Location
owner R AT = ;
T T — [inresaron
| — ‘ __locatedAt fF'x?dphO"e |
| B MobilePhone | B FixedPhone | o isldle=true->false
} = isldle : EBoolean| | = isIdle : EBoolean |
Transformed Model Original Model
4 Phone System - <> m
4 Mobile Phone 4+ Mobile Phone
4 Fixed Phone false ~ 4 Fixed Phone true
4 Person <+ Person
4 Location 4 Location

Figure 6.4: Domain model, rule, and a transformation step in Henshin

Transformation rules specify local changes on instance models. Usu-
ally, a rule r contains two model patterns, called left-hand side (LHS)
specifying the precondition and right-hand side (RHS) formulating
the postcondition of the rule. Either the differences between LHS and
RHS show us the modifications induced by the rule (as in Henshin
and ViaTra) or all modifications are defined in the RHS only (as in
ATL). Alternatively, one pattern may be given being an integration
of both rule sides where elements and references to be deleted or cre-
ated are annotated accordingly. In addition, checks and computations
of attribute values can be specified by expression languages such as
JavaScript and OCL [121]. In Henshin, a rule is applicable to some
model if the LHS pattern occurs in the model® or the guard pattern
is satisfied, including the satisfaction of all attribute value checks. In
that case, all specified rule actions are performed3. Rule elements may
be typed over abstract classes, however, when applied, each rule el-
ement has to be mapped to some model element concretely typed.
Rule elements specifying object creation have to be typed concretely

We restrict to injective matching of the LHS.
Formally, we follow the DPO graph transformation approach for rule applica-

tion [35].

75

already in the rule. Furthermore, variables for attribute values may be
defined in the scope of a rule to be used for checks and computations.
When a rule is applied, its variables are bound to concrete data type
values.

The application of a rule may be further restricted by conditions be-
ing any kind of propositional expression over the existence of model
patterns. In the following, we restrict our considerations to the most
simple ones being used by graph transformation-based approaches,
i.e., negative application conditions (NACs) and positive application condi-
tions (PACs) which forbid respectively require the existence of certain
model patterns in instance models the rule is applied to.

Figure 6.4 shows an example using Henshin: A simple domain
model for phone systems is shown together with rule liftFixed for
lifting a fixed phone. The only effect of this rule is to unset attribute
isldle. This rule is applied to a simple instance model shown under-
neath using EMFCompare [45]. Note that the transformed instance
model is shown on the left, while the original one is on the right.

6.3.2 Quality aspects

In this section, we motivate quality aims for model transformation
systems. As for other software artifacts, the correctness of a model
transformation system is defined w.r.t. the transformation language
used and its interpretation in terms of the domain. While language
correctness is considered syntactical, the interpretation forms the model
semantics. Refactorings are supposed to preserve the model semantics.

Conciseness is concerned with the compactness of models which
should present systems on the right abstraction level. It is open how
to measure conciseness effectively. We can consider the size of trans-
formation models, i.e., the size of domain models and the numbers
of rules and rule elements. Sticking to a level of abstraction, we can
say that the smaller these numbers are, the more concise is the model.
A discussion on model transformation metrics can be found in [153].

A model transformation system is changeable, if it can be evolved
rapidly and continuously. Conciseness and moreover, low redundancy
and low coupling of modules, seem to be necessary prerequisites for
the changeability of model transformation systems.

A model transformation system is comprehensible if it is understand-
able by the intended users. Comprehensibility is increased if a system
is simple, concise, and structured enough to grasp its design. More-
over, comprehensibility is also influenced by the quality of the used
concrete syntax (textual or graphical layouts), however, we do not
consider this quality aspect throughout this section.

In summary, in the following catalogs we concentrate on conciseness,
changeability, and comprehensibility of model transformation systems

76

when discussing potential relationships between quality aspects and
smells respectively refactorings.

6.3.3 Selected smells

In this section, we present a small set of selected smells for rule-based
in-place model transformation systems. Smells indicate suspicious
system parts which should be inspected closer. Since we are mainly
interested in the conciseness, comprehensibility, and changeability of
model transformation systems, we investigate size and redundancy
issues. Each smell is described in a structured way including affected
quality aspects and refactorings that can eliminate them (the refactor-
ings are described in detail in Section 6.3.4).

Large Rule

A rule specifies a model pattern and replaces it. It should handle a
single aspect of the behavior. A large rule seems to care about too
many different concerns.

DETECTION: This smell can be easily detected by counting the num-
ber of elements in a given rule. This smell depends very much
on the modeling purpose: First, it has to be decided if objects, re-
lations, preconditions, or actions are counted. Second, the thresh-
old value has to be determined by experimental investigations.

AFFECTED QUALITY ASPECTS: Large rules do not represent a good
modular design and can contain redundant information. Con-
ciseness and comprehensibility might be affected.

USABLE REFACTORINGS: Loop Edges to Boolean Attributes, Extract
Precondition

Redundant Attributes and References

Several model element types have equivalent attributes and refer-
ences.

DETECTION: This smell can be detected by comparing the number
of all attributes and references and the number of equivalent
attributes and references.

AFFECTED QUALITY ASPECTS: Redundant information blows up the
meta model and potentially also the rule set. It affects the con-
ciseness, comprehensibility, and changeability of model trans-
formation systems.

USABLE REFACTORINGS: Pull Up Attribute, Pull Up Reference

77

Redundant Rules

Several rules with equal pattern structures may differ in model ele-
ment and attribute types used only.

DETECTION: This smell can be detected by comparing the number
of all rule pairs differing in types only.

AFFECTED QUALITY ASPECTS: Redundant information blows up the
meta model and the rule set. It affects the conciseness, compre-
hensibility, and changeability of model transformation systems.

USABLE REFACTORINGS: Pull Up Attribute, Pull Up Reference, Ab-
stract Rule

Unused Object Type

There are object types that are not used in rules at all. Here, the pur-
pose of the transformation rule set has to be considered when inter-
preting this smell (e.g., transformation of the entire model vs. local
transformation).

DETECTION: This smell can be detected by counting the rules using
a specific object type.

AFFECTED QUALITY ASPECTS: Unused object types may affect the
correctness, the completeness and the conciseness of of transfor-
mation systems, dependent on the reason for this smell. Wrong
types may be used, rules may be missing, or types may not be
needed.

USABLE REFACTORINGS: Eliminate Object Type, Change Object Type

Delete and Create the Same Object

There are rules with objects being first deleted and then created again
with the same attribute values but different contexts, or the same
contexts but different attribute values.

DETECTION: This smell can be detected by applying clone detection
to find corresponding patterns in rules.

AFFECTED QUALITY ASPECTS: If objects are deleted and immedi-
ately created again keeping their attribute values or their con-
texts, rules are not as concise and comprehensible as possible
and can be improved.

USABLE REFACTORINGS: Move vs. Delete / Create

78

Rules With Common Subrule

The model transformation system has several rules containing the
same subrule.

DETECTION: This smell has to apply some clone detection to find
common subpatterns in rule parts.

AFFECTED QUALITY ASPECTS: If rules have common subrules, they
contain redundant information that may affect the quality as-
pects conciseness, changeability, and comprehensibility.

USABLE REFACTORINGS: Unify Rules with Same Actions

Further smells are the well-known object-oriented smells that may
be checked on the meta model having also effects on the rule set in
general.

6.3.4 Selected refactorings

In this section, we present a collection of refactorings for rule-based
in-place model transformation systems, each described in a system-
atic way. This collection mirrors our experiences in the application of
model transformation to various purposes. It shows a range of refac-
torings serving several quality aims. For example, refactoring Pull
Up Attribute reduces the amount of redundancy with respect to at-
tribute definitions and potentially also reduces the number of rules.
Extract Precondition reduces the number of rule elements and thus
improves the conciseness. Each refactoring is systematically described
including an example and change of identified smells before and af-
ter a refactoring, and an argumentation how semantics is preserved.
For model transformation systems, semantics preservation may refer
to the preservation of model transformation sequences, the preser-
vation of transformed models, or the preservation of the amount of
information in models.

Note that we do not present a refactoring which is probably most
useful, i.e., the renaming of transformation systems, rules, types, etc.,
since its specification is obvious. Furthermore, the well-known refac-
torings of object-oriented models such as Extract Superclass, Pull
Up Attribute, Remove Middle Man, etc. are applicable to domain mod-
els. Changes in domain models can imply changes in rules [36]. It
may happen that rules differing in types only can be merged by us-
ing a superclass as type. Furthermore, most of the refactorings pre-
sented below come with an inverse, taking back the original refac-
toring effect. For instance, the inverse of Pull Up Attribute is Push
Down Attribute which might be useful to prepare a variation of at-
tribute definitions in subtypes. The inverse of refactoring Extract
Precondition, called Inline Precondition, may be helpful for rule
modifications. Inverse refactorings are not presented in detail.

79

Merge Rules Differing in Types Only

If there are rules which differ in object types only and these types
are subclasses of the same superclass, they can be merged to one
rule. This refactoring is often combined with a Pull Up Attribute
refactoring of the domain model.

Input parameter: Names of the rules to be merged.

Example: Phones are refined to fixed and mobile phones. Both sub-
types are attributed by a Boolean attribute isldle. Two rules de-
scribe the lifting of fixed resp. mobile phones (see Figure 6.5
with domain model in Figure 6.4 on page 75). A refactoring
Pull Up Attribute is performed on the domain model first to
pull attribute isldle up to class Phone (if class Phone does not
have the isldle attribute already). Figure 6.6 shows the desired
domain model and contains a lift rule for phones in general be-
ing abstracted from the two original lift rules. This is possible,
since the rules in Figure 6.5 differ in types only and thus, can
be merged to the rule in Figure 6.6.

[Rule liftFixed | [Rute tiftMobite |
:FixedPhone | |:MobilePhone |
l = isldle=true->false | = isldle=true->false |

Figure 6.5: Before refactoring Merge Rules Differing in Types Only

[E PhoneSysten
— <
Iy \
\
; . .
: \ “~._places = Rule]
/clients [phones p ‘ ft
0.* 0. '|I —
P = :..i’ = v_\ preserve
[BPerson |0.1 1 B Phone 0.* '8 Location | :Phone
§ ‘owner | © iSidie EBoolean) == = isldle=true->false
Ayl 0.1
_~TocatedAt
|E MobilePhong |E FixedPhone
|

Figure 6.6: After refactoring Merge Rules Differing in Types Only

Precondition: Indicated rules differ in one object type only. The set of
varying object types found contains all subclasses of a common
superclass.

Strategy:

1. Identify all varying object types being classes with a com-
mon superclass.

8o

2. Construct a new rule by taking one original rule and re-
placing identified subclasses by identified superclass. Re-
name the modified rule, if necessary.

3. Delete all remaining original rules.

Postcondition: All original rules are replaced by one new rule using
the identified superclass as object type.

Affected smells: Redundant rules

Quality improvement: The number of rules becomes smaller. The model
becomes more concise.

Semantics: The semantics is preserved, since the same transformation
sequences are induced.

Extract Precondition

This refactoring makes preconditions explicit by extracting preserved
parts as positive application conditions.

Input parameter: name of the rule

Example: A new fixed phone is installed. The rule mainly consists
of context, i.e., preserved model elements that are not trans-
formed. We extract the context that is not needed for inserting
new edges into a positive application condition to make it more
explicit (see Figure 6.7). Note that this reduces the size of the
internal rule representation, though this effect is not visible in
our compact notation.

= Rule insertFixedPhoneBefore = Rule insertFixedPhoneAfter
[‘ oreserves «require» |«preserve» «require»
. (= %
“|:PhoneSystem |:PhoneSystem
clients places clients places
phones er e»] { phones
:Location | : u
: | «create» [TL — | «create» [
«create»
OWNEr |«create» «create» OWNET lecreaten
«create» FixedPhone locatedAt «Create» FixedPhone locatedAt

Figure 6.7: Before and after refactoring Extract Precondition

Precondition: none

Strategy:
1. Determine the preserved part of the input rule.

2. Create a new PAC and put those preserved objects into it
that are not needed as targets for newly created references.

81

3. Reduce the rule’s preserved part to the boundary objects
needed for creating new references.

Postcondition: The preserved part of the rule is minimal.
Affected smells: Large Rule, Implicit Precondition

Quality improvement: The rule is more comprehensible, since the pre-
condition is expressed more explicitly.

Semantics: The semantics is preserved, since the same transformation
sequences are induced.

Move Vs. Delete / Create

Rule elements being deleted and created in the original rule, are
moved afterwards.

Input parameter: Name of the rule

Example: Taking up the Phone example again, we consider a rule
that replaces a fixed phone at one location by another one at
another location, i.e., the fixed phone at the original location is
deleted and a new one is created at the new location. After the
refactoring, the rule specifies the movement of a fixed phone
from one location to another one (see Figure 6.8).

= Rule replacePhone
= Rule movePhone
«<GEletex |pp oneSystem eate -
phones | s phones E5ETVe
wErm " - :FixedPhone
cgdelete ‘ ot " eals b = |
:FixedPhone SOCICCs owner _TixedPhone | = isldle=true
o isldle=true . OWNer = isldle=true | IogaetSdeAt i eate
N e ; ’ locatedAt
«delete» 2 «presery i
:Person R
locatedAt I locatedAt " - —
‘Location | ‘Location
ILocation ‘Location |

Figure 6.8: Refactoring of deletion and creation of a fixed phone

Precondition: There are model objects being first deleted and then cre-
ated again with the same attribute values but different contexts
or same contexts but different attribute values.

Strategy:

1. Identify objects and references being deleted and created
afterwards. If these elements are attributed, they are either
identified if the attribute values of created elements are the
same as of deleted ones or if their adjacent references are
created in the same way as they existed before.

82

2. Preserve identified elements instead of deleting and creat-
ing them.

Postcondition: The rule does not contain any object that is deleted
and created with the same attribute values or the same context.

Affected smells: Delete and Create the Same Object

Quality improvement: The resulting rule is more concise, since unnec-
essary actions are avoided.

Semantics: The semantics is preserved in the sense that the same
models are created, when both rules are applicable; however,
the number of transformation effects when applying the refac-
tored rule is reduced. Note that the original rule is not applica-
ble if the FixedPhone node has more incident edges than speci-
tied by the rule (in the DPO approach), whereas the refactored
rule is applicable also to fixed phones with more connections.

Unify Rules with Same Actions

Given a set of rules which share a subset of actions. This subset is
encapsulated in a new rule to be applied first. The original rules are
reduced to their remaining actions each.

Input parameter: Set of rule names

Example: For registering a new phone, it suffices for mobile phones to
set the person who will own it. For fixed phones, their location
has to be registered in addition. These two cases are specified
in rules registerMobilePhone and registerFixedPhone in the upper
part of Figure 6.9. However, the owner registration is common
to both rules. Thus, we can form a kernel rule for phone reg-
istration handling the owner registration only. While this is all
what has to be done for mobile phone there is a remainder rule
for fixed phones. It specifies the location registration only. We
have to make sure that to fixed phones both rules in the lower
part of Figure 6.9 are applied.

Precondition: None

Strategy:

1. Identify the set of actions being shared by the set of input
rules.

2. Besides the common actions identify also the common pre-
served model part.

3. Create a new rule, called kernel rule containing all identi-
fied actions and the identified preserved part. If common
actions and preserved parts differ only in all subclasses of

83

= Rule registerFixedPhone = Rule registerMobilePhone
:FixedPhone| .:Mob!IePhonei
R L
creater / \ «create createn/
owner / locatedAt owner/
preserves| preserves| |«pres
:Person | l:Location | |:Person
= Rule registerPhone = Rule registerFixedPhonelocation
:Phone
create «Ccreate
wnenl locatedAt
erson | iLocation |

Figure 6.9: Before refactoring Unify Rules with Same Actions (top) and after-
wards (bottom)

a common super class, this common super class is used as
object type instead.

4. Reduce each of the original rules, called remainder rule, by
the identified set of actions. Reduce the preserved part if it
is common and not needed for the remaining actions, i.e.,
if it forms a precondition.

5. Make sure that the kernel rule is applied before remain-
der rules. This can be done e.g. by an additional control
structure putting both rules into a sequence.

Postcondition: There is a new rule, the kernel rule, that contains all
common actions and the common preserved part. All remainder
rules do not contain common actions or preconditions anymore.
A remainder rule is not applicable without applying the kernel
rule beforehand.

Affected smells: Rules With Common Subrule

Quality improvement: The number of elements in the considered rule
set is reduced, i.e., its conciseness is increased.

Semantics: Each original rule can be constructed by the composition
of the kernel rule and optionally, a remainder rule. There may
be more transformation sequences than before, since the result-
ing transformations allow for more interleaving of rule applica-
tions than before.

84

COMPOSITE MODEL REFACTORING

In Section 5.1, we discuss several complex metrics which rely on more
basic metrics. Consequently, the question comes up whether the con-
cept of composition can also be applied to other model quality assur-
ance techniques considered in this thesis. In this chapter, we present
an approach for composite model refactorings that concentrates on
the specification of refactoring composition. The main idea of the ap-
proach is to specify composite model refactorings by a hierarchy of
so-called refactoring units with parameter passing between different
units by ports and port mappings.

The chapter is organized as follows: after motivating this work us-
ing selected refactoring examples for the UML, we reflect require-
ments and design decision for our approach. Then, we present the
concepts of the approach and present an example specification in de-
tail. Discussions on the automatic deduction of composite precondi-
tions and related work conclude this chapter.

7.1 MOTIVATION AND EXAMPLES

This section motivates our work on composite model refactorings and
gives some selected refactoring examples for UML models.

7.1.1 Motivation and state-of-the-art

In the literature, a variety of model refactorings, especially UML refac-
torings, are presented. See e.g. [147, 107, 130] for class model and stat-
echart refactorings. While mainly focusing on smaller model changes,
larger model refactorings are rarely considered though. Looking at
code refactoring, however, it was soon clear that refactorings should
be distinguished in atomic ones performing primitive changes and
composite refactorings that are built up from existing ones [125, 134].

There is a number of approaches for specifying model refactorings,
for example [129, 107, 114]. They differ heavily in the way refactor-
ings are specified. It is common to all these approaches to use a
preferred model transformation approach for specifying model refac-
torings and to concentrate on the specification of atomic ones. But
atomic refactorings are rarely applied in isolation. Instead, they are

85

part of a group of refactorings that are all needed to perform a larger
change. Despite the multitude of model refactoring approaches, the
specification of composite model refactorings is not yet sufficiently
supported by existing approaches in the sense that composite refac-
torings are consequently built up from existing ones being developed
independently.

7.1.2 Example refactorings

The development of a specification language for composite model

refactorings requires an analysis of model refactorings found in lit-

erature. In this section, we analyze composite statechart refactoring

Merge States [130, 20] in detail that is used as running example through-
out this chapter. Furthermore, we discuss a selection of further com-

posite class model refactorings wrt. their reuse of more basic ones.

The purpose of this analysis is to extract the important information

of model refactoring composition that need to be specified, whereas

we do not consider the specification of atomic checks and changes.

Running example: Merge States

State diagrams are used in software development to describe the be-
havior of systems [80]. They mainly consist of states, transitions be-
tween states, events, conditions, and actions. Refactoring Merge States
is used to form a set of states into a single one [20]". Figure 7.1 (a)
shows a simple statechart diagram dealing with the verification of
the delivery address of a customer (i.e., it describes the life cycle of
an object of class DeliveryAddress). It is started in state not verified
and after performing the verification process (states requested and
retrieved) it either returns to not verified or moves to verified,
depending on the result of the verification. To further simplify the
model, states requested and retrieved can be merged. This is pos-
sible since (1) the two states are arranged in a simple sequence, (2)
there are only one entry and one exit action and nothing happens in
state retrieved, and (3) the transition from requested to retrieved
does not have a specified effect.

Refactoring Merge States is triggered from a contextual state (State
requested in our example) and has one further parameter specify-
ing the state that should be merged into the contextual state (State
retrieved in our example). In contrast to [20], we treat this refactor-
ing as composition of altogether three simpler ones. First, refactoring
Merge State Features moves all actions from the parameter state to
the contextual state, redirects all external transitions of the parameter
state to the contextual state, and finally removes all inner transitions
in between both states. Then, refactoring Remove Isolated State is ap-

For simplicity reasons we restrict this set to consist of only two states here.

86

(@) (b)

\l/ requested |
not verified /entry createRequestTicket()
/exit openRequestTicket()

[else]

[else] (verifying |

/entry createRequestTicket()
/exit openRequestTicket()

retrieved

[InfolsValid] [InfolsValid]
m verified

Figure 7.1: Example UML statechart (a) before and (b) after refactoring
Merge States

plied (on state retrieved). Finally, refactoring Remove Redundant Tran-
sition is applied on each incoming transition of the contextual state
requested. Whereas the application of the former two refactorings is
mandatory, the application of the latter one is optional in order to
execute refactoring Merge States successfully (in our example, it is not
applied).The refactored statechart diagram is depicted in Figure 7.1
(b). Here, states requested and retrieved are merged. In addition,
state requested is renamed to verifying by refactoring Rename State
afterwards.

Extract Superclass

One of the most prominent refactorings for UML class models is Ex-
tract Superclass [64, 107]. It generates a new class as parent of a set
of existing classes and pulls up their common features (attributes
and operations) to the newly created class. Each of these actions can
be considered as atomic refactorings. Refactoring Extract Superclass
is triggered from a set of classes and has one further parameter, the
name of the new class to be inserted. After checking several precondi-
tions, refactorings Create Superclass can be applied on each contextual
class, Pull Up Attribute on each attribute of the first contextual class,
and Pull Up Operation on each operation of the first contextual class.

Extract Composite

This refactoring is motivated by the objective to improve the quality
of a class diagram when introducing well-approved design patterns
as presented in [85]. Figure 7.2 (a) shows a class diagram modeling
the formula concept of the propositional calculus. Here, the informa-
tion that exactly two formulae are combined to another one (either
disjunction or conjunction) is modeled redundantly. Refactoring Ex-
tract Composite removes this redundancy as shown in Figure 7.2 (b).

87

The specification of this composite refactoring is similar to Extract Su-
perclass. First, refactoring Create Abstract Intermediate Class is applied
on classes Conjunction and Disjunction. It has one further param-
eter: the name of the new class (CompositeFormula in our example).
Then, refactoring Pull Up Composite Aggregation is applied on attribute
formulae of both selected classes. Finally, further common features
(attributes and operations) are moved to the new class by (composite)
refactoring Pull Up Features.

(a)

- formulae

- formulae - formula

- formulae

(b)
Formula

Formula
1 A 2
: i
- formula ‘ ’ Negation ‘ CompositeFormula
AtomicFormula
’ AtomicFormula Negation ‘ ’ Disjunction Conjunction

Figure 7.2: Example UML class model (a) before and (b) after refactoring
Extract Composite

Further examples for composite model refactorings are Extract Class,
Inline Class, Extract Subclass, Inline Subclass, Remove Superclass, and In-
troduce Parameter Object (compare Appendix E of this thesis).

7.2 REQUIREMENTS AND DESIGN DECISIONS

This section discusses requirements and design principles for our ap-
proach on composite model refactoring based on the examples pre-
sented in the previous section.

7.2.1 Requirements

The main motivation to develop an approach for composite model
refactoring is to raise the abstraction level as well as the grade of flex-
ibility for specifying composite model refactorings. Doing so, the de-
velopment of high-quality refactorings shall become easier and faster.
This general motivation results in the following list of requirements:

e Standard refactoring structure: Each refactoring consists of
an initial precondition check without taking parameters into ac-
count, a final precondition check using parameters, and a model
change. A composite refactoring has to be a refactoring again.

e Declarative composition: The refactoring designer should be
able to concentrate on the composition of refactorings, while
neglecting technical details.

88

e Simple and clear specification of composite refactorings:
A refactoring-specific and powerful set of specification language
features is needed to support a simple and clear specification of
composite model refactorings.

e Black box composition: The component refactorings are con-
sidered as black boxes, i.e., it does not matter how component
refactorings are specified. The refactoring designer considers
refactoring signatures only and can easily reuse existing refac-
torings (potentially coming from a pre-defined library).

e Composite pattern: Composite refactorings can be used as com-
ponents of other composite refactorings. Their usage does not
differ from that of atomic refactorings.

7.2.2 Design decisions

The requirements lead to the following basic design decisions our
refactoring specification language is based on:

e Refactorings are model transformations with input parameters
only. They are not supposed to return values. This principle is
underlying most refactoring approaches in the literature.

e Model refactorings consist of three parts: an initial precondition
check, a final precondition check, and the actual model change
being a special kind of model transformation.

e Composite model refactoring units are composed from already
existing refactorings using the composite design pattern [68].
The leaves of the applied composite design pattern are given
by so-called atomic units. Each atomic unit represents a call of
an existing model refactoring. Following this design, atomic as
well as composite refactorings can be reused inside a composite
refactoring.

e For parameter passing we use the concept of typed ports and
port mappings.

e To adapt ports to special needs of component refactorings we
use so-called helper units. Each helper unit represents a call of an
existing helper, i.e., helpers can be reused in different contexts.

7-3 CONCEPTS, EXAMPLE SPECIFICATION, AND EVALUATION

In this section, we present the main concepts of our approach on
composite model refactoring. The concepts are illustrated by a de-
tailed example specification of the example refactoring Merge States
as presented in Section 7.1.2. Finally, we give a short evaluation.

89

Figure 7.3: Meta model of the CoMReL language

Jo1oweled
sadjoy Pulisy : anjea o algoeAe(s : anjeA o
< HogMINW | 1919weleda|dwis | Ja1aweled|3poiN |
alqoene(3 : anjea
sse|DeAe(3 : 9dA} Hodajbuis F T T T
Bbulisy :aweu - | T ur LT 1X91U0D
= BuLIST : sWeU T | odA
Hod [. Buiddenriod JadjeH H }
- o 1 12]1aWDIDd [
- 0 *0 bullsy : sweu o
poginding g | Hodinduj g TP |buddew |sadparpasn spwered | T INEMEEERAEENE
"1 : -
T <11 | Hodinduy e Tkt BuLS3 - [20e] - wapp |0
Modindino «Bupiopeeyaysodwoy | Bulas3:uondudssp 01SULIOJUOd T
ulew . bulIST : BWeU bullsy : sweu o
Hodindul I - Bulioideay|spoIN | [SPONBISN
V[Nl eL-TEY!
HUN2IWONY
v 0 B f T
QMmD\mQEI B nunbunopvjay aspo 170 | @bueydepow 170 | YPdYDlEUY PPaAyderul | 170
x 0 « 1 T| usyr
yunuadiay plIy2 11U [BUOIIPUOD [abueydBpOoIN [[M28yDuonipuodaidleuly {| [¥28yduonipuodaideniu] {
_ |
<+ punaysodwod [A_|_ r]# Aw AW
}28yDuoiipuod | d ! yoduwi
hunamvad Y ——Dhunuonpayads g wun | deds
nuna4 ues|oog3 : LIS ues|00g3 : VIS o Lonpofads
nunpanang Hunlenuanbas 5

90

7.3.1 Main concepts

We developed a domain-specific language for composite model refac-
toring, called CoMReL (Composite Model Refactoring Language), based
on the requirements and design decisions presented in the previous
section. The approach consists of the following concepts (compare
right-hand-side of the corresponding meta model in Figure 7.3):

Refactoring units. Composite model refactorings are specified by
so-called RefactoringUnits defining their internal control structures
of CompositeRefactorings building up on existing refactorings. Each
composite refactoring is represented by exactly one RefactoringUnit
which is normally composed by further units using the composite
design pattern [68]. So-called AtomicUnits form the leaves of corre-
sponding refactoring unit trees. They represent calls to already de-
fined ModelRefactorings. A composite refactoring is considered again
as ModelRefactoring, thus atomic units need not contain atomic refac-
torings only but also composite refactorings to be reused.

Ports and port mappings. To specify unit parameters, our approach
uses Ports. A port is specified by a name and a type. Furthermore, it
has a value representing an instance object that conforms to the type at-
tribute. To pass port values from parent units to child units and from
helper units to other units, so-called PortMappings are used. Each
PortMapping connects a source port with a target port having identi-
cal types. Refactoring and helper units use different kinds of ports
with respect to their direction: input and output ports. Furthermore,
a port differentiation with respect to the multiplicity of values is use-
ful. To address these two differentiations, we introduce altogether
four abstract port kinds, InputPort, OutputPort, SinglePort, and
MultiPort as well as four concrete port kinds, i.e., SingleInputPort,
SingleOutputPort, MultiInputPort, and MultiOutputPort. Note that
each kind of port mapping has an input port as target. This is due to
the fact that output ports are used by helper units only.

Helper units. It can happen that ports of existing model refactoring
units have types different from expected ones for composite refactor-
ings. To solve this problem, we introduce the concept of HelperUnits
intended to prepare the application of existing refactorings. Similarly
to atomic units and existing model refactorings, a helper unit calls
a corresponding Helper providing the intended functionality. Using
this technique, it is possible to reuse existing helpers as often as
necessary. Our approach provides two main kinds of helper units:
FeatureUnits and FilterUnits. A feature unit extracts a specific fea-
ture of a model element, while filter units are used to extract elements
from collections, for example.

Control constructs. For defining the execution flow of composite
refactoring units, our approach uses three core constructs of iterative

91

programming: sequences, conditions, and loops. A SequentialUnit
consists of at least one child unit. In general, sequential units are
distinguished with respect to the semantics of the execution. If a se-
quential unit is defined to be strict, it is successfully executed if each
child unit is executed successfully. In other words, if at least one child
unit is not executed successfully, the entire sequence does not lead to
any model changes. Vice versa, a non-strict sequential unit is always
executed successfully, even if some of its child units are not executed
successfully. A ConditionalUnit consists of a ConditionCheck being
a specification unit and one or two refactoring units. If the condition
check is executed successfully, the then unit is called, otherwise the
else unit is called, if existing. A looping execution of refactoring units
is defined by a QueuedUnit that consists of exactly one child unit.

7.3.2 Example specification

Figure 7.4 shows a visual representation of the specification model
of refactoring Merge States. As described in Section 7.1.2, refactor-
ing Merge States relies on three atomic model refactorings. The main
refactoring unit Merge States is a strict Sequential Unit consisting
of two AtomicUnit and one SingleQueuedUnit. The first AtomicUnit
moves all actions from the parameter state to the contextual state,
redirects all external transitions from the parameter state to the con-
textual state, and finally removes all inner transitions in between both
states. The second AtomicUnit removes the (now empty) parameter
state and finally the SingleQueuedUnit is applied on each incoming
transition of the contextual state. This execution order of sub-units is
defined by the usual direction of reading (left-to-right). Each refactor-
ing unit is depicted with two compartments for maintaining included
helper units respectively refactoring units.

Each AtomicUnit calls an already existing model refactoring, in our
example Merge State Features, Remove Isolated State, and Remove Re-
dundant Transition. The latter refactoring is applied to each incoming
transition of the contextual state but need not be executed success-
fully on each transition. Hence, this atomic unit is put into a non-
strict SingleQueuedUnit to address the looping execution for each re-
dundant transition. We specify two parameters for refactoring Merge
States, thus the main unit (SequentialUnit Merge States) must have
two input ports. In Figure 7.4, input ports are visualized as rectan-
gles. To distinguish single-valued and multi-valued ports, the latter
ones are shown in red. The ports of each atomic unit are deduced
from its referenced model refactoring. For example, the atomic unit
that references Merge State Features gets two single input ports. Both
ports have type State each whereas the first one represents the se-
lected state and the second port represents the state whose features
should be merged.

92

contextState:State stateToMerge:State

Merge States:Sequential Unit -strict-

i{Get External Transitions:Multi Feature Unit
state:State

transitions:Transition

transitions:Transition ﬁ

:Single Queued Unit -non strict-

targetState:State ﬂﬂ owningState:State [_, isolatedState:State

Merge State Features:Atomic Unitl

Remove Isolated State:Atomic Unit] redundantTransition:Transition m

Remove Redundant Transition:Atomic Unit]

Figure 7.4: Unit specification of composite model refactoring Merge States

To model parameter passing, appropriate port mappings have to
be created between corresponding ports, shown as dotted arrows in
Figure 7.4. To ensure conformity with respect to typing and multiplic-
ity of included ports, the main refactoring unit Merge States requires
one helper unit: MultiFeatureUnit Get External Transitions takes the
contextual state as input and yields all incoming and outgoing tran-
sitions except for potential reflexive transitions (transitions to itself).
The corresponding output ports are visualized as circles.

7.3.3 Evaluation

As a proof of concept evaluation, our approach has been used to
specify over 15 composite model refactorings such as extract and re-
move superclass, extract associated class, and introduce parameter
object. While most of them combine atomic model refactorings only,
we also considered the composition of composite model refactorings,
e.g., for specifying refactoring Extract Associated Class. Our concepts
have proved to be well suited for the specification of these composite
model refactorings taking existing refactorings as black boxes. All
needed helpers are simple and can be reused often. Concrete im-
plementation details including appropriate CoMReL models can be
found in Appendix F of this thesis.

7.4 TOWARDS AUTOMATIC DEDUCTION OF PRECONDITIONS

Composite refactorings are specified by a hierarchy of composite and
atomic refactorings. Although each child refactoring behaves well in

93

the sense that its model changes can be performed once its precondi-
tions are satisfied, the application of the composite refactoring may
be performed partially only. This can happen since preconditions of
child refactorings are not checked as early as possible but immedi-
ately when applying them. This situation can be improved by shifting
preconditions of subunits to the precondition part of their surround-
ing composite refactoring. Such an automatic deduction of compos-
ite preconditions can be performed if the specification language sup-
ports conflict and dependency analyses. Preconditions may be depen-
dent on model changes of preceding refactorings. If a precondition is
purely dependent on preceding model changes, i.e., does not contain
independent parts, it can even be erased since it is ensured by those
corresponding model changes. Moreover, the automatic precondition
deduction can be optimized by erasing equal or included precondi-
tions.

In our approach for the automatic deduction of composite precon-
ditions, we define a refactoring as a quadruple R = (Pg, Ig, Fr, Cr)
with Pg being a set of parameters, Ig and Fgr being sets of initial and
final preconditions and Cg being the actual model change performed
by the refactoring. In case that all refactoring specifications Ig, Fr
and Cg are defined using a model transformation language like Hen-
shin [4], an atomic refactoring can be formalized by algebraic graph
transformation [35]. Assuming the application of composite refactor-
ing R as a simple sequence R = R1;R2, we have to check whether
transformation rules in Cgj are in conflict with rules in Ir, respec-
tively Frz. To deduce composite preconditions, the main idea is to
compute Ir and Fr by exploiting produce/use- and delete/forbid-
dependencies of rules. The presence of such a dependency means
that the corresponding precondition does not become a composite
precondition, since it is automatically true. However, all further pre-
conditions become preconditions of the composite refactoring R.

7.5 RELATED WORK

In this section, we compare our approach with related work on core
concepts of composite refactorings.

In [134], Roberts considers dependencies between refactorings in
a systematic way. Especially the computation of preconditions for
composite refactorings from the preconditions of their components
is useful and has been taken up by subsequent approaches such as
the ones in [118, 89, 135]. O’Cinneide and Nixon [118] present com-
position concepts for Java refactorings, but do not mention language
design and tooling for their concepts. Kniesel and Koch [89] present
their language ConTraCT being based on conditional transformations.
It has some similarities to our approach but seems to be simpler,
since it relies on refactoring chains only. Concepts like conditional

94

and queued units as well as helper units are not mentioned. Their
main contribution is a concept for automatic deduction of compos-
ite preconditions from component preconditions. Saadeh [135] intro-
duces fine-grain transformations to specify UML model refactorings
and to analyze their dependencies and conflicts. This work is purely
conceptual, a domain-specific language for refactoring composition
is not considered.

Our formalization of refactorings by graph transformation and the
automatic deduction of composite preconditions is closely related
to that in [89] and [135]. We use graph transformation, since it can
be used as formal foundation of the model transformation language
Henshin coming with a conflict and dependency analysis for model
transformation rules. However, since specification languages can be
chosen flexibly in our approach, other specification approaches and
analyses may be easily integrated.

95

CONCLUSION AND FUTURE WORK

Since models are the primary artifacts in model-based software de-
velopment, model quality assurance is of increasing importance for
the development of high quality software. In this part, we inspected
several model quality assurance techniques and integrated the tech-
niques model metrics, model smells, and model refactorings into a
syntax-oriented model quality assurance process that can be easily
adapted to specific needs in model-based projects.

The quality assurance process consists of two sub-processes: First,
dependent on the modeling language and the modeling purpose, spe-
cific quality goals, and hence project- and domain-specific quality
checks and refactorings have to be defined. Quality checks are formu-
lated using model smells which can be specified in terms of model
metrics and anti-patterns. Then, the specified quality assurance pro-
cess is applied to concrete software models. Static model analysis uses
the pre-defined model metrics and smells. Based on the outcome of
the model analysis, appropriate model refactoring steps can be per-
formed. However, it has to be considered that new model smells can
be introduced by refactorings. This check-improve cycle should be
performed as long as needed to get a reasonable model quality.

In future work, further model quality assurance techniques such as
a structured use of design patterns may be considered. In this context,
the use of modeling conventions that have to be proven to be effective
with respect to prevention of defects might be integrated into the qual-
ity assurance process. Here, adequate modeling conventions have to
be developed being usable to prevent for specific model smells. More-
over, there are model smells which are difficult to describe by metrics
or patterns. For example, shotgun surgery is a code smell which oc-
curs when an application-oriented change requires changes in many
different classes. This smell can be formulated also for models, but it
is difficult to detect it by analyzing models. It is up to future work to
develop an adequate technique for this kind of model smells.

In our approach, we concentrate on quality aspects to be checked
on the model syntax. They include not only the consistency with the
language syntax definition, but also the conceptual integrity in using
patterns and principles in similar situations, and the conformity with
modeling conventions often defined and adapted to specific software

97

projects. As a conceptual basis for a Goal-Question-Metrics approach
to our quality assurance process we take six classes of quality goals
for software models identified in a systematic literature review [116].
Here, it is up to future work to identify potential dependencies be-
tween these so-called 6C goals in order to support an appropriate
selection on helpful quality assurance techniques.

Since UML is a widely accepted standard in software modeling and
subject of a number of research activities, we provide an overview on
metrics, smells, and refactorings for UML models discussed in litera-
ture including structured descriptions and relations to the 6C goals.
Here, we concentrate on class models since class diagrams are the
mostly used UML diagram type [29]. However, due to the actually
pragmatic search strategy this overview is rather incomplete (how-
ever quite comprehensive). Conducting systematic literature reviews
may be an adequate mean to overcome these limitations in the future.

Finally, this part also presents an approach for composing refactor-
ings to more complex ones. In this context, it is up to future work to
analyze the preconditions of component refactorings with respect to
their execution order and to deduce a composite precondition there-
from. Here, we think of using concepts from algebraic graph transfor-
mations like critical pair analysis [35]. In a similar way, specifications
of model smells and model refactorings could be analyzed in order
to decide whether the refactoring (1) is usable to erase the smell, or
(2) its application would insert a new one.

To conclude, the author is convinced that performing quality as-
surance processes is an essential task to obtain software of high qual-
ity. It has been shown in three example applications that using the
structured model quality assurance process presented in this part,
model-based and model-driven development can be made more ma-
ture yielding software of higher quality.

98

Part II

A FLEXIBLE TOOL ENVIRONMENT FOR
QUALITY ASSURANCE IN THE ECLIPSE
MODELING PROJECT

INTRODUCTION TO PART II

The increasing use of model-based and model-driven software devel-
opment processes induces the need for high-quality software models.
As presented in Part I of this thesis, the model quality assurance pro-
cess might be structured into two sub-processes: a process for the
specification of project-specific model quality assurance techniques,
and a process for applying them on concrete software models during
a MBSD process. Both parts are based on model analysis techniques,
more specifically on reports on model metrics and on checks against
the existence (respectively absence) of model smells. Finally, refactor-
ing is the technique of choice for fixing a recognized model smell.

Since manually reviewing models is time consuming and error
prone, several tasks of the proposed project-specific model quality
assurance process should consequently be automated. In particular,
the following major functionalities should be provided:

o User-friendly support for project-specific configurations of model
metrics, smells, and refactorings.

e Calculation of model metrics, detection of model smells, and
application of model refactorings.

e Generation of model metrics reports.

e Suggestion of suitable refactorings in case of specific smell oc-
currences.

e Provision of suitable information in cases where new model
smells come in by applying a certain refactoring.

e Support for the implementation of new model metrics, smells,
and refactorings.

This part presents a flexible tool environment that has been de-
velopment to fulfill these requirements and that represents a major
contribution of this thesis. The tool environment is part of the Eclipse
Modeling Project (EMP) [49] and can be found and downloaded as
official Eclipse incubation project named EMF Refactor under the
following URL: http://www.eclipse.org/emf-refactor/. It is open
source and available under the Eclipse public license (EPL).

101

http://www.eclipse.org/emf-refactor/

Besides supporting the afore mentioned functionalities EMF Refac-
tor addresses two main concepts. First, it is highly integrated in two
senses. On the one hand, all model quality assurance tasks can be
performed directly within the Eclipse IDE. This means, that the users
do not have to export the model (using its XMI format) and use third-
party tools, for example for analyzing it. On the other hand, the tool
environment integrates the model quality assurance techniques in
various ways. For example, smells are based on specific metrics and
refactorings are proposed as quick fixes for occurring smells. Second,
EMF Refactor is flexible with respect to the specification mechanisms
of new model quality assurance techniques. New techniques can be
either defined using existing ones (e.g., metrics can be composed to
more complex metrics) or they are specified by one of the supported
languages Java, OCL, and Henshin. Here, further languages can be
integrated by new adapters.

The chapters of Part II contain the following:

Chapter 10 introduces basic technologies related to the develop-
ment of EMF Refactor like the Eclipse Modeling Framework (EMF)
and the Language Toolkit (LTK). Furthermore, it presents an overview
on the state-of-the-art of model quality assurance tooling for UML
and EMF as well as a comparison study on refactoring tools in Eclipse.

Chapter 11 discusses several topics concerning the development
process of EMF Refactor. It gives an overview on the specific require-
ments and presents details on its design and the architecture.

Chapter 12 presents the application of model quality assurance
techniques supported by the tools of the EMF Refactor framework.
It covers the main functionalities metrics calculation and reporting,
smell detection, and refactoring along an example UML class model.

Chapter 13 illustrates concrete specification mechanisms for model
quality assurance techniques with respect to a domain-specific model-
ing language. It shows how to define new metrics, new model smells,
and new refactorings as well as how to manually specify relations
between model smells and model refactorings.

Chapter 14 evaluates EMF Refactor. By performing and analyzing
several studies, the suitability of the tools for supporting the tech-
niques of the model quality assurance process presented in Part I as
well as scalability respectively performance issues are considered.

Finally, Chapter 15 concludes and discusses directions for future
work on EMF Refactor.

102

BASIC TECHNOLOGIES AND STATE-OF-THE-ART

This chapter addresses some basic technological topics related to the
development of an integrated tool environment for model quality as-
surance. The chapter starts with a brief introduction to the Eclipse
Modeling Framework (EMF). We decided to use EMF as underlying
technology (1) since it represents a widely-used open source technol-
ogy in model-based software development, (2) since it comes with a
very active community providing a variety of helpful tools, and (3)
due to our comprehensive knowledge in this domain. Then, we give
an overview on the state-of-the-art of model quality assurance tool-
ing for both, EMF and UML, the mostly used MOF-based modeling
language [140]. Finally, we present a comparison study on refactoring
tools in Eclipse as a preliminary step for extracting adequate require-
ments for developing the EMF model refactoring component of the
tool set which is called EMF Refactor in the following.

10.1 THE ECLIPSE MODELING FRAMEWORK (EMF)

The Eclipse Modeling Framework Project (EMF) [44, 144] extends
Eclipse by modeling facilities including the generation, editing and
view of models. It allows defining models and modeling languages
by means of so-called structured data models.

The core of EMF contains Ecore, a meta model similar to the super-
structure of UML class diagrams, and a runtime support for models
including change notifications, XMI serialization, and an API for ma-
nipulating EMF objects. Ecore represents an implementation of the
Essential MOF (EMOF) part of the Meta-Object Facility (MOF) stan-
dard [120] defined by the Object Management Group (OMG) [122]. It
serves as general meta model and is typed over itself, i.e., Ecore is an
EMF model itself.

Figure 10.1 shows a subset of Ecore with its most important meta
classes and relations. The classes essentially correspond to common
entities in UML class diagrames, i.e., EPackage, EClass, and EAttribute
correspond to packages, classes, and attributes. Classes may be de-
clared as abstract classes or interfaces by corresponding attributes
of EClass. Meta class EReference corresponds to associations. How-
ever, these kind of references are always directed. Moreover, refer-

103

eSubpackages o0

eSuperT

0.*
B EClass

ypes

B EReference

= name : EString

0.*
B EAttribute

B EPackage
= name : EString = name : EString eReferences | = containment : EBoolean
= nsURIL : EString eClassifiers | = opgtract : EBoolean . = lowerBound : Ent
= nsPrefix : EString 0 o interface : EBoolean 1 0.5 = upperBound : Elnt
eReferenceType 0.1
eAttributes

eAttributeType

B EDataType

= name : EString

1

= name : EString

Figure 10.1: Subset of the Ecore meta model

eOpposite

ences may be explicitly equipped with lower and upper bound and

be declared as derived references which shall rather be calculated in

a certain way. Additional attributes further support the use of these
Ecore elements in different ways, e.g., the attribute nsURI of EPackage

is very important as it assigns a globally unique namespace to a pack-

age to allow for its unambiguous identification.

EModelE lernent

+efindelElement

@getEAnnotation(source : String) : EAnnotation

0.* | +eAnnaotations
I | 1 +eFactorylnstance
1
SI?Annulatmﬂ EE e EFactory —
@s0urce | String _
narne : Strin
gdetails | EStringToStringMapEntry i 4 ‘creme(ec\ass EClass) : EObject
®createFromString(eDataType | EDataType, literalalue : String) : EJavaObject
[} ®conmvertTaString(eDataType : EDataType, instanceValue : ElavaQbject) : String
+ePackage | 1
ETppedElement ECiassifier EPackage
ordered : boolean = true ginstanceClassMame : String onsURI - String
gunique : boolean = true +eType_| ¢instanceClass | EJavaClass gnsPrefix - String
GlowerBound © int pdefaultvalue : ElavaObject
upperBound : int = 1 0 = getEClassifiername ; String) : EClassifier
gmany ; boolean @islnstance(object : ElavaQbject) : boolean 0.
Srequired : boolean SyetClassifiedD(: int t +eSubpackages

A +eExceptions | 0.7 0.#| +eClassifiers +ePackage +aSuperPackage
ECgarton | |
——
 —
t +eOperation 0. EEl2ss EDataType
0 g @abstract : boolean @serializable : boolean = true
+eParameters ginterface : boolean
+80perations +eContainingClass :lsSuperTypeOf(sumeC\ass EC\a_ss) boolean
getEStructuralF eatur 1D int) : EStructuralFeature [1 =
+eAll0perations @getEStructuralFeature(featureName : String) | EStructuralFeature EEnumLiteral
0 oualue : int
< +eRef T ginstance : EEnumerator
+eAllStructuralFeatures |0 0 +eContainingClass 1| +eReferenceType +eSuperTypes ———
EStructuralFeat +eLiterals | 0.*
TUCtr g eal f’e +eStructuralFeatures +eAlContainments +eAllSuperTypes
gehangeable : boolean = true 0
guolatile : boolean EReference - +eAttributeType
Qtransient : boolean @containment © boolean 0.
ilefaultv/alueliteral © String ¢container : boalean AllReh +eEnum
idefaultalue : EJavaObject resolveProxies : boolean = true b eferences EEnurm
@unsettable - boolean 0*
i) BeelEem +eOpposite 1 07 +eReferences SgetEEnumLiteralfname : String) : EEnumLiteral
SgetFeatureiD() - int 0.x +eAllAttributes ®getEEnumLiteralvalue : int) : EEnumLiteral
@getContainerClass() : EavaClass EAttribute 0.* +eAttributes
@iD - boolean 0.1 +elDAdtribute

Figure 10.2 gives a more detailed overview of the Ecore compo-
nents and their relations, attributes, and operations (taken from the
javadoc API part of the EMF web site [44]). Abstract meta classes are
indicated by italic letters and are colored by a slightly darker back-

ground.

104

Figure 10.2: The Ecore meta model

The basic editors in the Eclipse Modeling Framework are the tree-
based editors providing basic CRUD operations *. EMF also ships a
generic tree-based editor, called Sample Reflective Editor, that allows to
edit arbitrary EMF models, i.e., Ecore models and instance models.
Furthermore, EMF comes with a GMF based diagram editor [53] for
Ecore models as well. EMF instances are by default edited using a
generated tree-based editor or the Sample Reflective Editor. However,
dedicated diagram as well as textual editors can be generated with
some effort using frameworks like GMF, EuGENia [52], Sirius [60],
and Xtext [62].

10.2 TOOL SUPPORT FOR MODEL QUALITY ASSURANCE

The existing tool support for model quality assurance is mainly aim-
ing at UML and EMF modeling.

10.2.1 UML modeling

Considering UML modeling, quality assurance tools are integrated
in standard UML CASE tools to a certain extent. In the following,
we give a rough overview on existing UML model quality assurance
tools: In UML CASE tools such as the IBM Rational Software Ar-
chitect (RSA) [82] and MagicDraw (MD) [103], a number of metrics
and validation rules are predefined and can be configured in metrics
and validation suites. MD supports class model metrics (e.g., mea-
suring the number of classes, inheritance tree depth, and coupling),
so-called system metrics such as Halstead [79] and McCabe [111], and
requirements metrics based on function points and use cases. Valida-
tion rules comprise completeness and correctness constraints such as
all essential information fields are filled, properties have types spec-
ified, etc. Further validation rules can be specified using Java or a
restricted form of OCL. RSA also supports predefined metrics. In ad-
dition, models can be checked against validation rules being based on
metrics. A tool dedicated to the calculation of UML metrics is SDMet-
rics [1]. SDMetrics analyzes the structural properties of UML mod-
els and uses object-oriented measures as well as design rule check-
ing to automatically detect design problems in UML models such as
circular dependencies and violation of naming conventions. Measure-
ment data is displayed in different views (e.g., tables, histograms, and
kiviat diagrams) and can be exported in various formats like HTML
and XML. Furthermore, SDMetrics supports custom definitions of
UML metrics and design rules using XML-based configuration files.
As far as we know, no popular commercial UML CASE tool (such
as Sparx Enterprise Architect [75], IBM Rational Software Architect
(RSA) [82], and MagicDraw [103]) supports model refactoring facili-

1 Create, Read, Update, Delete

105

ties exept for renaming model elements. However, some research pro-
totypes for model refactoring are discussed in the literature, e.g., in
[129, 20, 107]. Most of them are no longer maintained. For example,
Porres [129] describes the execution of UML model refactorings as se-
quence of transformation rules and guarded actions. He presents an
execution algorithm for these transformation rules and constructed
an experimental, meta model driven refactoring tool that uses SMW,
a scripting language based on Python, for specifying the UML model
refactorings.

To summarize, UML CASE tools and further model analysis tools
for UML provide model analysis by predefined metrics and valida-
tion rules and support the custom configuration of metrics and val-
idation suites as well as the definition of further custom techniques
but do not offer an integrated, custom configured quality assurance
environment for UML models based on metrics, smells (validations),
and refactorings.

10.2.2 EMF modeling

Since EMF has evolved to a well-known and widely used modeling
technology, it is worthwhile to provide model quality assurance tools
for this technology. To the best of our knowledge, explicit tool sup-
port for metrics calculation on EMF-based models is not yet available.
However, there is the EMF Model Query Framework [46] to construct
and execute query statements that can be used to compute metrics
and to check constraints. These queries have the form of select state-
ments similar to SQL and can also be formulated based on OCL. Spec-
ified queries are triggered from the context menu. The configuration
of queries in suites as well as reports on query results in various
forms are not provided. The EMF Validation Framework [48] sup-
ports the construction and assurance of well-formedness constraints
for EMF models. Two modes are distinguished: batch and live. While
batch validations are explicitly triggered by the client, live validations
listen to change notifications to model objects to immediately check
that the change does not violate any well-formedness constraint.

The Epsilon language family [51] provides the Epsilon Validation
Language (EVL) to validate EMF-based models with respect to con-
straints that are, in their simplest form, quite similar to OCL con-
straints. Moreover, EVL supports dependencies between constraints,
customizable error messages to be displayed to the user and the
specification of fixes to be invoked by the user to repair inconsis-
tencies. For reporting purposes, EVL supports a specific validation
view reporting the identified inconsistencies in a textual way. Suitable
quick fixes are formulated in the Epsilon Object Language (EOL - the
core language of Epsilon) and therefore not specifically dedicated to
model refactoring. Here, Epsilon provides the Epsilon Wizard Lan-

106

guage (EWL) [91], a textual domain-specific language for in-place
transformations of EMFE. We compare our first refactoring prototype
with EWL in detail in the next section.

Another approach for EMF model refactoring is presented in [132,
32]. Here, the authors propose the definition of EMF-based refactor-
ing in a generic way, however they do not consider the comprehensive
specification of preconditions. Our experiences in refactoring specifi-
cation show that it is mainly the preconditions that cannot be defined
generically.> Furthermore, there are no attempts to analyze EMF mod-
els wrt. model smell detection.

Finally, the MoDisco framework [7] provides a model-driven re-
verse engineering process for legacy systems in order to document,
maintain, improve, or migrate them. Here, several specific models
are deduced (for example, Java models are deduced from Java code)
which can be analyzed in order to detect anti-patterns and then be
manually improved, for example by refactorings. Similar to the UML
and EMF tooling discussed so far, MoDisco supports the specification
and computation of custom metrics and queries on models as well as
metrics visualization. The main difference between MoDisco and the
tool environment presented in this thesis is the intended purpose (re-
verse engineering vs. modeling).

In summary, there are various tools to support EMF model analysis
and to improve EMF models by refactoring. However, there is not yet
a comprehensive tool environment for specifying and applying prede-
fined and custom metrics, smells, and refactorings to EMF models in
an integrated way where metrics, smells, and refactorings are tightly
inter-related. This thesis is heading towards such a tool environment
in the following.

10.3 AN EXPLORATION STUDY ON EMF REFACTORING TOOLS

A variety of tools for quality assurance of code exist, in particular for
the refactoring of Java code as provided, e.g., by the Eclipse Java De-
velopment Tools (JDT) [55]. As demonstrated in the previous section,
tool support for model refactoring is limited, particularly for mod-
els based on the Eclipse Modeling Framework (EMF). In this section,
we present the results of a comparison study that examines three ap-
proaches for EMF model refactoring, namely the Language Toolkit
(LTK), the Epsilon Wizard Language (EWL) and a preliminary pro-
totype of EMF Refactor. The aim of this study is to extract adequate
requirements for developing the EMF model refactoring component
of EMF Refactor.

The section is organized as follows. First, we describe the design of
the comparison study and the criteria for analyzing the approaches.

For example, see [4] for a more complex refactoring with elaborated precondition
checks.

107

Then, we present basic implementation details for each refactoring
solution. Finally, the differences as well as the benefits and drawbacks
of the solutions are discussed.

10.3.1 Study description

Since UML class models are closely related to class structures in
object-oriented programming languages such as C++ and Java, many
existing code refactorings can be directly adopted to UML. However,
few model refactorings are specific to the model level only. The sam-
ple refactoring used in this comparison study is of the latter category.

Bill + bill + customer Customer Address
+ amount: Real [1] . + name: String [1] + street: String [1]
+ payed: Boolean [1] [] customer [1]| 4 address: Address [1] + city: String [1]

Figure 10.3: Example class diagram before refactoring (excerpt)

Figure 10.3 shows an excerpt of an example class diagram. At a
first glance, class Address seems to be isolated from all further model
elements. However, taking a closer look to the model, we identify at-
tribute address in class Customer being of type Address. For a better un-
derstanding of class structures, it would be worthwhile to represent
this relationship more explicitly. This can be achieved by applying
model refactoring Change Attribute to Association End. After refactor-
ing application, attribute address of class Customer will be depicted
as an association end in the same manner as attribute customer of
class Bill. Please note that the result of the refactoring might lead to
misunderstandings, e.g., if there are too many associations such that
the diagram is harder to comprehend 3. Figure 10.4 shows the corre-
sponding part of the UML superstructure specification [124].

[2.*] + memberEnd [0.1]

+class + ownedAttribute L
Class - Property Association

[0.1] Gl rl + ownedEnd [0.1]

Figure 10.4: UML specification for attributes and association ends (excerpt)

We implement this model refactoring by means of the Language
Toolkit (LTK) [67] and the Epsilon Wizard Language (EWL) [91], two
existing solutions to handle refactorings in Eclipse. Furthermore, the
comparison study investigates a preliminary prototype of EMF Refac-
tor [47] that has been presented in the thesis of Lars Schneider [138].

This means, that applying refactoring Change Attribute to Association End is not suit-
able to improve the model’s quality in general.

108

We analyze the implemented solution of each approach with re-
spect to seven defined criteria. For each criterion questions are de-
fined which are observed during the specification and execution of
the refactoring solutions.

Concerning the specification step of the example UML refactoring
we considered the following four criteria:

e Complexity — What is the amount of work to implement the
example refactoring? Are there any ways to reduce this effort?
Here, LoC and the number of specified rules are discussed and
compared according to the personal perception of the author.

e Correctness — Is it possible to specify a refactoring resulting in
an inconsistent model when applied? Are there any precautions
to avoid this?

e Testability — Which effort is needed to test the specified refac-
toring in detail? Are there ways to automate these tests?

e Modularity - Is it possible to combine already implemented
refactorings? This might be an important aspect when defining
more complex refactorings by reusing existing ones.

With respect to the application of the example UML refactoring we
analyzed the following three criteria:

¢ Interaction — How easy is it to apply the refactoring? Are there
any facilities to simplify user inputs? Here, differences consider-
ing UI features have to be discussed from a (indeed subjective)
user’s point of view.

e Features — Does the refactoring provide a preview of its effect?
Does it provide undo and redo functionality?

e Malfunction — What happens if the appropriate refactoring can-
not be executed in the given situation? Are there reasonable er-
ror messages?

10.3.2 Study implementations

Before presenting the interesting parts of the three implementations
using LTK, EWL, and the EMF Refactor prototype 4, these technolo-
gies are introduced first.

Considered tools

The Language Toolkit (LTK) [67] is a language neutral API to spec-
ify and execute refactorings in an Eclipse-based IDE. Therefore, it

4 The prototype is called ProRef in the following.

109

can also be used to handle EMF model refactorings. The API can

be found in the plug-ins org.eclipse.ltk.core.refactoring and

org.eclipse.ltk.ui.refactoring. Their classes provide an exact, pre-
defined procedure for refactorings in Eclipse. Example refactorings

that use LTK are those for Java provided by the JDT [55].

The Epsilon Wizard Language (EWL) [91] is an integral part of Ep-
silon [51], a platform for building consistent and interoperable task-
specific languages for model management tasks. For this purpose,
Epsilon consolidates common facilities in a base language, the Ep-
silon Object Language (EOL) [90], to be extended by new task-specific
languages. EWL is a tool-supported language for specifying and exe-
cuting automated model refactorings 5. These model refactorings are
applied on model elements that have been explicitly selected by the
user. Here, Epsilon provides an Eclipse-based interpreter for execut-
ing EWL programs.

The third tool in this comparison study, ProRef, has been devel-
oped by Lars Schneider in the context of his diploma thesis [138]. It
serves as a preliminary prototype of the refactoring component of
EMF Refactor [47]. In ProRef, the development of new refactorings is
based on EMF Tiger [15, 13], an Eclipse plug-in that performs in-place
EMF model transformations [14, 114]. The model transformation con-
cepts of EMF Tiger are based on algebraic graph transformation con-
cepts. It provides a graphical editor for the design of transformation
rules and a Java code generator which has been extended by ProRef.

The LTK solution

The specification of the example UML refactoring required the im-
plementation of seven Java classes. During the implementation, it be-
came obvious that only four of them are refactoring specific whereas
the remaining three classes can be seen as common for all kind of
EMF model refactorings. The refactoring specific classes are:

e RefactoringInfo - This class manages all required informations
like the selected attribute (object of meta type Property), the
name of the new association and the name of the association’s
ownedEnd property.

e RefactoringInputWizardPage - This class is responsible for Ul
tasks like displaying and handling the required input (name
of the new association and name of the association’s ownedEnd

property).

e RefactoringAction - This class is responsible for refactoring ini-
tiation. It sets the selected attribute and initializes instances of
several LTK classes. Moreover, this class serves the extension
point org.eclipse.ui.popupMenus.

5 Kolovos et al. [91] call them update transformations in the small.

110

MR
= O

oo
@ N

e RefactoringProcessor - This is the main class for executing the
sample refactoring. Method checkInitialConditions() checks
whether the type of the selected attribute is an instance of Class
and whether it is not already part of an Association (see List-
ing 10.1). Method createChange() creates an instance of class
EMFChange by generating a ChangeDescription® that describes
all required model changes and is also used for undo and redo
functionality. Listing 10.2 shows an excerpt of this method. Here,
feature name of the newly created Association is set to the ap-
propriate String managed by the RefactoringInfo object.

RefactoringStatus result = new RefactoringStatus();
Property property = this.refactoringInfo.getProperty();
if (property.getType() != null
&& property.getType() instanceof Class) {
if (property.getAssociation() != null) {
result.addFatalError("The selected Property is " +
"already an association end!");

=

}
} else {
result.addFatalError("The type of the selected " +
"Property is not a Class!");

O 00N ol A~ WN

}

return result;

Listing 10.1: Method body RefactoringProcessor::checkInitialConditions()

Association as = UMLFactory.eINSTANCE.createAssociation();

Map.Entry<EObject, EList<FeatureChange>> entryAsName =
createEObjectToChangesMapEntry(as);

FeatureChange fCAsName = createFeatureChange();

fCAsName. setFeatureName ("name") ;

fCAsName.setDataValue(this.refInfo.getAssociationName());

entryAsName.getValue().add(fCAsName);

changeDescription.getObjectChanges().add(entryAsName);

=

XNy oUW N

Listing 10.2: Excerpt of method body RefactoringProcessor::createChange()

The EWL solution

In EWL, the sample refactoring has been implemented as follows:
First, the type of the selected model element has to be checked to
be a Property of type Class. Furthermore, this property does not
already have to be part of an Association. These preconditions are
checked in the guard section of the EWL program (see Listing 10.3).
Here, variable self refers to the model object which is used to invoke
the refactoring (the attribute in our example). If the guard conditions
fails, the refactoring is canceled automatically.

6 org.eclipse.emf.ecore.change.ChangeDescription

111

=

O 0N ol A~ WON

O Oy Ol A W N KR

HoOoR R R R
S~ W N R O

guard {
if (self.isKindOf(Property)) {
if (self.type.isDefined()) {
if (self.type.isKindOf(Class)) {
return self.association.isUndefined();
} else { return false; }
} else { return false; }
} else { return false; }

}

Listing 10.3: Guard section of the EWL solution

The most important part of the EWL solution is the do section that
specifies the effects of the refactoring (see Listing 10.4). After obtain-
ing the user input (the name of the new association and the name
of the association’s ownedEnd property; not shown in Listing 10.4)
all necessary new objects are created (instances of Association and
Property as owned end) and the proper features are set. Finally, the
new association is added to the owning package.

var upperVal : new Literallnteger;
upperVal.value = 1;

var lowerVal : new Literallnteger;
lowerVal.value = 1;

var ownedEndP : new Property;
ownedEndP.name = srcProperty;
ownedEndP.type = self.class;
ownedEndP.upperValue = upperVal;
ownedEndP. lowerValue lowerVal;
var assoc = new Association;
assoc.name = associationName;
assoc.ownedEnd.add (ownedEndP) ;
assoc.memberEnd.add(self);
self.class.package.packagedElement.add(assoc);

Listing 10.4: Guard section of the EWL solution

The ProRef solution

In ProRef (respectively EMF Tiger) model refactorings are designed
by ordered sets of rules. Each rule describes an if-then statement on
model changes. If the pattern specified in the left-hand side (LHS) ex-
ists, it is transformed into another pattern defined in the right-hand
side (RHS). Additionally, so-called negative application conditions
(NACs) can be specified which represent patterns that prevent the
rule from being applied. Mappings between objects in LHS and RHS
and/or between objects in LHS and NACs are used to express preser-
vation, deletion, and creation of objects.

112

2:Class 5:Package

==
o name = classMame | packagedElement | = qualifiedtame = gualifiedPackageMame

&nwnedﬂttribute
1:Property
TiClass
I name = prophlame | type

Figure 10.5: Left-hand-side (LHS) of the ProRef / EMF Tiger solution

The LHS of the rule that specifies the sample refactoring is shown
in Figure 10.5. This pattern represents the abstract syntax which has
to be found when starting the refactoring from within the context
menu of a Property named propName whose type is a Class. To en-
sure that the selected Property is not already part of an Association
an appropriate NAC is defined, that is similar to the LHS but with an
additional Association instance that references the selected Property
as memberEnd (not shown here).

5:Package

packagedElement

ZiClass I

packagedElement

ownedattribute

memberEnd sAssociation

1:Propertsy

associakion = name = associationMarme

tvpe
| 2 .;:f association
iClass
iLiterallnk
memberEnd Iterallnteger
0 rd _—
o value =1

——
= pperifalue
:Property r”'_'_'_'_‘_._._._._'_.—A—u
-

= name = srcProperky

:Literallnteger

loweryalue o value =1

Figure 10.6: Right-hand-side (RHS) of the ProRef / EMF Tiger solution

Figure 10.6 shows the RHS of the sample refactoring rule. It con-
tains a new Association object with a new opposite association end
(Property). This end is equipped with multiplicity 1 as lower and up-
per bound. The newly created objects are named by additional input
variables associationName and srcProperty.

During rule specification it is possible to check whether the speci-
fied transformation rule is consistent. This means that the EMF model
transformation always leads to models that are consistent with typ-
ing and containment constraints. To do so, you have to check whether
the rules perform restricted changes of containments only. Consistent
EMF model transformations behave like algebraic graph transforma-
tions. Hence, the rich theory of algebraic graph transformation can
be applied to show functional behavior and correctness [16]. The

113

sample refactoring rule is consistent because all new object nodes
(Association, Property, and two LiteralIntegers) are connected im-
mediately to their respective container (see Figure 10.6).

10.3.3 Study observations

In this section we discuss the results of the comparison study. The
solutions presented in the previous section are compared along the
criteria introduced in Section 10.3.1.

Complexity — All three techniques require a good understanding
of relevant parts of the UML meta model [124]. In LTK, seven Java
classes consisting of 711 LoC were implemented. 416 LoC can be gen-
erated and 195 are refactoring specific, in particular methods create-
Change() and checkInitialConditions() of class RefactoringProcessor.
Here, the most challenging task is to properly implement the appro-
priate object of the LTK class ChangeDescription due to its complex
APIL In EWL, one single file with 47 LoC was implemented. Auto-
matically generating generic parts would not lead to a significant re-
duction. Finally, in ProRef the entire refactoring code was generated
from one rule specification only that contains 32 objects (EClasses
and EReferences). Individual parameter settings for code generation
are supported by a convenient wizard.

Correctness — In LTK, an incorrectly specified ChangeDescription
object would lead to an inconsistent model after executing the refac-
toring. There are no known precautions available to avoid this. Since
all model changes in EWL are directly implemented, there is also no
special support to specify refactorings which yield consistent mod-
els only. ProRef however uses EMF Tiger that provides consistency
checks regarding containment and multiplicity issues. This is done
using the underpinning graph transformation concepts. Hence, it is
almost impossible to specify transformations, especially refactorings
leading to inconsistent models.

Testability — A specified refactoring has to be tested by applying it
to various models that represent possible situations. Since every refac-
toring in LTK is a single Eclipse plug-in, it is very time-consuming to
start a new Eclipse instance after each code change. These tasks could
be facilitated by generating test code or using PDEUnit [58], a test
framework for Eclipse plug-ins. Because EWL is an interpreted lan-
guage, testing is not that time-consuming and a straightforward task.
Nevertheless, there is no known way to automate this. For ProRef the
same comments as for LTK hold.

Modularity — Since all model changes in LTK are directly imple-
mented in Java, it seems to be possible to combine several existing
refactorings to more complex ones by passing required parameters,
and adapting conditions, and Change Descriptions. Here, it is nec-
essary to develop an advanced approach to support this features. In

114

EWL, there is no known way to combine refactorings so far, except
for copying and adapting code of existing ones. For ProRef the same
comments as for LTK hold.

Interaction — All approaches provide the selection of refactorings
via the context menu of a Property element in the standard EMF
instance editor. EWL additionally supports graphical GMF-based ed-
itors [53] which can be done by the other approaches as well if they
serve a further extension point. The refactoring wizard page of LTK
provides one input line for each required parameter. Each parameter
has a specified default value. In EWL, the context menu has an en-
try specific to the name of the selected Property. All parameters are
entered in separate dialogs including specified default values. For
ProRef the same comments as for LTK hold.

Features — In LTK, after parameter editing the wizard provides an
optional preview of the model changes made by the refactoring. The
preview is provided by EMF Compare [45]. Undo/Redo functionality
is supported. In EWL, there is no preview available, but Undo/Redo
functionality is supported. After parameter editing in ProRef the wiz-
ard always shows a preview of possible model changes when exe-
cuting the refactoring. Again, this is provided by EMF Compare. Un-
do/Redo functionality is not supported.

Malfunction — If a certain precondition in LTK fails, a message box
including a reasonable error message is shown as specified in method
checkInitialConditions() of class RefactoringProcessor. EWL provides
the refactoring only, if all preconditions specified in the guard section
hold. After parameter input in ProRef, the user is informed when the
refactoring can not be executed because of violated conditions. This
is merely done by the generic message The refactoring changed nothing
at all. Each solution requires non-empty parameters, more precisely
names for the new model elements Association and Property.

Criteria | LTK | EWL | ProRef |
Complexity 0 + +
Correctness - - +
Testability 0 0 0
Modularity 0 - 0
Interaction + + +
Features

Malfunction | + + 0

Table 10.1: Results of the comparison

Table 10.1 summarizes the results of the comparison study. Each
approach has been evaluated and marked as follows:

115

e The approach meets the evaluation criterion: +

e The approach does not meet the evaluation criterion but is still
moderate: o

e The approach does not meet the evaluation criterion at all: -

Each approach has its individual strengths and weaknesses. LTK
provides permanent positive results when executing the model refac-
toring. This is not surprising because LTK was developed to unify
refactoring processes in Eclipse. However, ProRef seems to be more
suitable for specifying EMF model refactorings. This is because of its
graphical nature of defining model transformations and its underly-
ing graph transformation concepts. Last but not least, EWL shows ad-
vantages in both, refactoring specification and refactoring application.
However, in both categories there is another approach that seems to
be more suitable than EWL.

In summary, LTK is the leading approach during model refactoring
application, whereas ProRef seems to be the most promising one in
specifying EMF model refactorings. As a conclusion of the presented
comparison study, it looks worthwhile to check whether LTK and
ProRef can be combined in a way that merges the benefits of both
approaches. Such a combination of LTK with ProRef seems to be a
promising way to go.

The results of this comparison study help with extracting adequate
requirements for developing the model refactoring component of EMF
Refactor [47]. The requirements, design and architecture of this inte-
grated tool environment for model quality assurance in Eclipse are
presented in the following chapter of this thesis.

116

REQUIREMENTS, DESIGN AND ARCHITECTURE

This chapter presents basic topics related to early phases during the
development of an integrated tool environment for model quality as-
surance in Eclipse, called EMF Refactor [47]. The chapter starts with
a high-level overview on the requirements on the tool environment,
subdivided into common requirements and those which are specific
to the application of existing techniques and the specification of new
techniques, respectively. Afterwards we present details on the design
and the architecture of EMF Refactor. Finally, we summarize how the
requirements are met by the design.

11.1 REQUIREMENTS

The definition of the proposed model quality assurance process pre-
sented in Part I of this thesis lead to a set of requirements on our
supporting tool set concerning model metrics, model smells, and
model refactorings. In this section, we summarize these requirements
as high-level abstractions. We elaborated the requirements in an it-
erative process and completed them according to the results of the
explanation on existing model quality assurance tools presented in
the previous chapter.

11.1.1 Common requirements

In this section, we summarize those requirements which are common
to all model quality assurance tools of EMF Refactor.

GENERALITY Each tool should be based on the Eclipse Modeling
Framework (EMF) [44, 144], i.e., the corresponding function-
ality should be provided on any EMF-based model since. We
decided to use EMF as underlying technology (1) since it rep-
resents a widely-used open source technology in model-based
software development, (2) since it comes with a very active com-
munity providing a variety of helpful tools, and (3) due to our
comprehensive knowledge in this domain.

REUSE The tool environment should reuse existing Eclipse and EMF
components as far as possible. Moreover, already implemented

117

quality assurance techniques should be reusable since many of
them recur most likely in several projects even if modeling pur-
poses may differ.

11.1.2 Application requirements

The following requirements are specific for the application of the
model quality assurance tools within EMF Refactor (metrics calcu-
lation, smell detection, and refactoring execution).

CONFIGURABILITY The modeler (respectively the model reviewer)
should be provided with a project-specific configuration of pre-
defined model metrics, smells, and refactorings suites. For smells
which are based on specific metrics it should be possible to con-
figure project-specific thresholds.

INTEGRATED APPLICATION The corresponding functionality should
be triggered from within several editors in Eclipse like the stan-
dard tree-based EMF instance editor, but also graphical and tex-
tual model editors should be supported.

REPORTING Calculated metric values and detected model smell oc-
currences should be reported in specific integrated views. Model
elements being involved in a specific smell occurrence should
be highlighted in the standard tree-based EMF instance editor.
Furthermore, it should be possible to export the results of both,
a metric calculation and a smell search, in various formats such
as HTML, PDF, and XML.

REFACTORING FEATURES The application of refactorings should fol-
low the homogeneous refactoring execution structure in Eclipse
including a preview of the resulting model. This includes a
transactional execution of refactorings. Furthermore, the refac-
toring tool should provide undo and redo functionality as well
as an optional analysis of smell occurrences before and after
refactoring application. Moreover, smells should be related to
refactorings being suitable to erase the smell, and refactorings
should be related to smells potentially occurring after applying
the refactoring.

QUICK-FIX MECHANISM It should be possible to invoke a suitable
refactoring from within the context menu of a concrete smell
occurrence in the smell results view.

11.1.3 Specification requirements

This section summarizes the requirements on the components for the
specification of new model metrics, smells, and refactoring.

118

=

FLEXIBLE SPECIFICATION APPROACHES Itshould be possible to de-
fine custom metrics, smells, and refactorings for arbitrary EMF-
based models. Here, the tools should support various concrete
specification approaches. As default specification language, Java
should be supported since Eclipse, especially EMF, is based on
the Java technology.

coMPOSITION A designer should be provided with tool support for
composing existing techniques. In particular, the tools should
support compositional metrics, metric-based model smells, and
composite model refactorings.

CODE GENERATION The tools should provide a comfortable input
mechanism for specification-related information like the meta
model, the name, and a description of an arbitrary metric, smell,
or refactoring. Afterwards, each tool should generate Java code
that can be used by the application component in order to pro-
vide the corresponding functionality (metrics calculation, smell
detection, and refactoring execution).

11.2 DESIGN AND ARCHITECTURE

This section discusses the architecture of our tool environment for
EMF model quality assurance and summarizes the components used
by it. Each tool is based on the Eclipse Modeling Framework [144, 44],
i.e., each tool can be used for arbitrary models whose meta models
are instances of EMF Ecore, for example domain-specific languages,
common languages like UML2" used by Eclipse Papyrus [59] and the
Java EMF model used by JaMoPP [31] and MoDisco [7, 57], or even
Ecore instance models themselves.

EMF Refactor mainly consists of six components out of two dimen-
sions: With respect to the main functionalities (calculating model met-
rics, detecting smells, and executing refactorings) there is an applica-
tion module for each. Similarly there are three specification modules
for generating metrics, smell, and refactoring plugins containing Java
code that can be used by the corresponding application module. For
simplicity reasons, we refer to these plugins as custom QA plugins
in the remainder of this section. We start with a description of the
specification dimension.

11.2.1 The specification modules

Figure 11.1 shows the architecture of a specification module using
a UML component model. The specification module provides the

In this thesis, we refer to UML2 being the standard EMF-based representation of
UML2, i.e., org.eclipse.emf.uml2.uml.

119

generation of custom QA plugins containing the metric-, smell-, or
refactoring-specific Java code. Using the Eclipse plugin technology,
libraries consisting of model quality assurance techniques can be pro-
vided. So, already implemented techniques can be reused.

g1 |
Specification Module Custom QA Plugin
> g
Specification 8] Ok Code 2] J] COl:l(fret(_i
Wizard Generator Specification
L] =

,f QA ’l‘:‘chnique] | |

L a] O

Java Emitter .

Templates <
Eclipse Modeling Framework 2l

Figure 11.1: Composite structure of a specification module

Actually, the following specification technologies are supported:
e Java [126]; version 6.
e OCL [121] provided by the Eclipse Modeling Project [49].

e Henshin [4, 54], a model transformation engine for the Eclipse
Modeling Framework based on graph transformation concepts.
Henshin uses pattern-based rules that can be structured into
nested transformation units with well-defined operational se-
mantics.

e CoMReL, a model-based language for the combination of EMF
model refactorings (see Chapter 7).

More concretely, the following techniques can be used in a concrete
specification of a new EMF model metric, smell, or refactoring:

1. Model metrics can be concretely specified in Java, as OCL ex-
pressions, by Henshin pattern rules, or as a combination of ex-
isting metrics using a binary operator.

2. Model smells can be concretely specified in Java, as OCL in-
variants, by Henshin pattern rules, or as a combination of an
existing metric and a comparator like greater than (>).

3. The three parts of a model refactoring can be concretely spec-
ified in Java, as OCL invariants (only precondition checks), in
Henshin (pattern rules for precondition checks; transformations
for the proper model change), or as a combination of existing
refactorings using the CoMReL language.

120

The specification module provides wizard-based specification pro-
cesses (component Specification Wizard in Figure 11.1). After inserting
specific information (like the name of the metric, smell, or refactoring,
and the corresponding meta model) the Code Generator component
uses the Java Emitter Templates framework [56] to generate the specific
Java code required by the corresponding extension point (see arrow
in Figure 11.1). Table 11.1 shows the extension point descriptions for
EMF model metrics, smells, and refactorings.

org.eclipse.emf.refactor.metrics

Field name Description

name Name of the EMF model metric.

id Unique identifier of the EMF model metric.
description Description of the EMF model metric (optional).
metamodel Namespace URI of the corresponding meta model.
context Name of the context element type .

calculateclass | Java class that implements IMetricCalculateClass.

org.eclipse.emf.refactor.smells

Field name

Description

name Name of the EMF model smell.

id Unique identifier of the EMF model smell.
description Description of the EMF model smell (optional).
metamodel Namespace URI of the corresponding meta model.
finderclass Java class that implements IModelSmellFinderClass.

rg.eclipse.emf.refactor.refactorings

Field name

Description

name Name of the EMF model refactoring.

id Unique identifier of the EMF model refactoring.
description Description of the EMF model refactoring (optional).
metamodel Namespace URI of the corresponding meta model.
controller Java class that implements IController.

gui Java class that implements IGuiHandler.

Table 11.1: Extension point descriptions for metrics, smells, and refactorings

Besides basic information like the name, id, or the corresponding
meta model of a concrete model quality assurance technique the fol-
lowing interfaces have to be implemented:

121

IMETRICCALCULATECLASS This interface provides the calculation
of the corresponding EMF model metric on a given model el-
ement. Here, two methods have to be implemented: method
void setContext(List<EObject> context) for maintaining the
model element on which the metric should be calculated on,
and method double calculate() for the proper calculation of
the metric value on this element.

IMODELSMELLFINDERCLASS This interface provides the detection
of the corresponding model smell in a given EMF model. It has
one method which must be implemented by the corresponding
Java class: findSmell(EObject root). Here, the model is spec-
ified by parameter root. The method returns a list of detected
smell occurrences where such an occurrence is given by a list of
model elements which are involved in the detected smell.

ICONTROLLER This interface is responsible for executing the corre-
sponding model refactoring. Here, the main method which has
to be implemented is getLtkRefactoringProcessor() that re-
turns an instance of class RefactoringProcessor from the Lan-
guage Toolkit (LTK) API [67]. Within this class, the refactoring
specific preconditions are checked by the two boolean meth-
ods checkInitialConditions () and checkFinalConditions()
whereas the refactoring is executed by method createChange().

IGUIHANDLER This interface checks whether the refactoring can be
executed on the given context elements (method showInMenu
(List<EObject> selection)); the process is started by method
RefactoringWizard show(). As above, RefactoringWizard is a
class of the LTK APL

11.2.2 The application modules

Figure 11.2 shows the architecture of an application module. It uses
the Java code of the custom QA plugins generated by the correspond-
ing specification module (compare right-hand side of Figure 11.1 and
left-hand side of Figure 11.2) and consists of two components. The
Configuration Component maintains project-specific configurations of
metrics, smells, and refactorings. The Runtime Component is respon-
sible for metrics calculation, smell detection, and refactoring execu-
tion. Depending on the concrete specification approach, the runtime
component uses the appropriate components Java, OCL, Henshin, or
the internal CoMReL interpreter. Further languages, especially model
transformation languages like EWL [91], may be integrated by suit-
able adapters [68]. For exporting calculated model metrics, the report-
ing engine BIRT [43] is used. Finally, the Language Toolkit (LTK) [67]
is used for homogeneous refactoring execution and EMF Compare [45],

122

a tool that provides comparison and merge facility for any kind of
EMF models, for refactoring preview.

g1
Custom QA Plugin Application Module

QATechniqueEj ALJI]Configuration 2] CoMRe-LS:|
Com;')_(‘)nent E
Conl:rete d % '} }J g
Specification I—D Runtime Component .(()«[: Java
]
9 Q [ELTI{ i
EMF 2| | Henshin &| | ocL &

Compare

Extansion Paint \%)/.

Eclipse Modeling Framework

Figure 11.2: Composite structure of an application module

For manually defining the relationships between model smells and
model refactorings, our tool environment uses the Eclipse extension
point technology again to provide information about these relation-
ships globally. Therefore, two extension points for the manual defi-
nition of relations between model smells and model refactorings are
provided. Since our tools identify smells and refactorings by distinct
identifiers (see Table 11.1), these extension points require relations
from smell IDs to a list of refactoring IDs (in case of providing suitable
refactorings for a given smell) and relations from refactoring IDs to a
list of smell IDs (in case of possible new smells when applying a given
refactoring). To serve these extension points in a user-friendly way,
we extend the property page of a certain Eclipse plugin project in the
workspace by providing graphical user interfaces for (de-)activating
appropriate relations.

11.3 SUMMARY

In the preceding sections, we presented the requirements on the tool
environment for model quality assurance as well as the design and
the architecture of EMF Refactor. Table 11.2 summarizes how the re-
quirements are met by the design.

The following chapters present how to work with both kinds of
modules. For simplicity reasons and to relate the application of our
tools to the process presented in Part I of this thesis, we first present
how to use the application module and its implemented quality as-
surance techniques. Thereafter, Chapter 13 presents how to specify
new metrics, smells, and refactorings.

123

Common requirements

Requirement Implementation

Generality The entire tool set is based on EMFE.

Reuse EMF Refactor uses JET, BIRT, and EMF Com-
pare. Already implemented techniques can
be installed using the plugin- and extension
point-technology of Eclipse.

Application requirements

Requirement Implementation

Configurability | Provided by the Configuration Component (see
Figure 11.2).

Integrated The functionality is integrated into the stan-

application dard tree-based EMF instance editors, graph-
ical GMF-based editors as used by Papyrus
UML, and textual editors provided by Xtext.
Moreover, we integrated our tool environment
into the widely used EMF-based UML CASE
tool IBM Rational Software Architect.

Reporting EMF Refactor provides specific metrics and
smell analysis views, a highlighting mecha-
nism of model elements, and a result reporting
based on BIRT.

Refactoring EMF Refactor provides a homogeneous refac-

features toring workflow by using LTK, a preview on
refactoring changes, smell analysis facilities
during refactoring, and extension points for
specifying smell-refactoring relations.

Quick-fix Provided by the smell-refactoring relations

mechanism and dynamic analysis.

Specification requirements

Requirement Implementation

Flexible EMF Refactor supports Java, OCL, and the

Specification model transformation language Henshin as

Approaches possible specification approaches.

Composition Metrics can be composed to complex ones,
smells can be based on a metric, and refactor-
ings can be combined by using CoMReL.

Code Provided by the Specification Module (see Fig-

generation ure 11.1).

Table 11.2: Requirements and corresponding implementation

124

EXAMPLE APPLICATIONS

This chapter presents the application of several model quality as-
surance techniques supported by the tools within the EMF Refactor
framework [47]. We demonstrate this application on a UML class
model representing the domain of a vehicle rental company which
is presented in Section 12.1. The subsequent sections show

e how to select and calculate model metrics and how to report the
corresponding results (Section 12.2),

e how to customize and search for model smells and how to re-
port the corresponding findings (Section 12.3),

e and finally how to perform model refactorings in order to im-
prove the structure of the model (Section 12.4).

12.1 EXAMPLE UML CLASS MODEL

Figure 12.1 shows a first UML example model that has been devel-
oped in an early stage during the development of an accounting and
customer management system for a vehicle rental company. This first
version of the domain model of the company is shown as UML class
diagram modeled using the EMF-based UML CASE tool Papyrus [59].
The model consists of altogether four packages:

e Package Commonalities contains general concepts (enumerations,
interfaces, and common classes like Person and Date).

e Package RentalCompany contains the main entities of the com-
pany (represented by class VehicleRental). The company has a
number of employees and customers. Each customer is associ-
ated with a concrete employee (see association end consultant).
Special persons are subcontractors of the company which repre-
sent both, a customer and an employee. The right-hand-side of
this package shows that the company owns several cars, trucks,
and motorbikes which can be rented by some customer.

e Packages Services and Invoicing contain classes for renting a
vehicle by some customer as well as for billing purposes.

125

(23194010 :qWi +)31qJOI0NIUBI +
DP2NUL PN} + PNILIULI +
(48D ued +)iedjual +

[T] =1eQ 01 +
[1] @1eQ :wol) +

EUENERITEN

<4

[T] 8PIyaA BPIYaA +
[T] 4W03sSN) udwoIsSNd +

ESTOEN

()3uat +
3|qejuay
RERLIIEMT)

A

sazj|eal

0wl +

[1] uesjoog :3|gejual +

[1] Buias Ao +
[1] Buis :apodjesod +

¥3SINYD 13701498vD
43ddOHD INISNOIT
adA]axiqi010N adK11eH

«uoljelswnui» uolnesswnui»

[T] |leameNpaYIWIUN HaqWINU +

ssaippe +

[T] Buis 39243s +

SsaIppy

uea|oog :(a1eQ :p +)aJ404ags! +

[T] jeanyeNpaywiun ek +
[T] |eanieNpPOYIWIUAN YIUOW +
[T] leamenpanwiun Aep +

EETEYS

aleqg

AN

—b

(1l

uosiad +

[T°0] Buns ;jlews +
[1] Bulis :dweuIns +
[1] Buis :dweusioy +

uosiad

S92IAIBS

1

_ sa[yjeuofuwod

[1] uesjoog :pred +
[T] 921AI9S|LIUDYD|DIYDA :|eIudI +
[T] |le4n3eNpPaHWIUN JUNOWE +

[T] J8WO}SND JBWOISND +

9210AU]

[1] Bulis dweuyueq +

[1] uosiad uoysodap +

[1] Buis :apodNvl +
Junoddydueg

[1] Buiis :1ainejnuew +
[T] |ednieNpaMWIUN S}eDS +
[1] Buys aquinubas +

[1] 48683u1 uomod +

[1] Buiis aquinubai +

[1] adA1aiqi030\ 2dAy +

[T] jednyeNpaywiun :dedsspuljhd +
[1] Buls :dainpejnuew +

[T] sseuppy @210 +

J103)oeqpuooqns

[1] Bulls uaquinubal +

[1] adA11eD :dAy + [1] 196a3ur 1amod + | 111 Junooaysjueg unodde +
ICs) 31GI0I0N [1] @1eq :@duIs +
eineNpa. :
L] Jes+ L] aigIojoW + [T] [eanmieNpayWIUN P! +
JENTe)
) Jaumo + | [1]
[1] BuL3S usinyoRINURW + i 1BWOISND + [,]] /Nowoisnd +

[1] 49633u] uamod +

b
[T] |eay ybram + J5UMO +

onap

PN+ [,] J2UMO +

[1]

[«] [eIUSYD|DIYSA :S2DIAISS +
[1] ssedppy :siomenbpeay +
[1] Buis :dweu +

AV

[1] Auedwod + jueynsuod + [T]

[T] [eanyeNpaNWIUN P! +

[T] ®1eQ :@ouIs +

>

EUENERITEN

EELCIGE]

[1] 419hoidwa + @akojdws + [4]

Buidioauy

Kuedwo)ejuay

Example UML class model

Figure 12.1

126

12.2 METRICS CALCULATION

For the first overview on a model, a report on project-specific model
metrics might be helpful. In Sections 5.1 and 6.1 of this thesis, several
metrics for UML models being useful for detecting corresponding
smells have been discussed. In the following, we do not calculate this
kind of smell-related metrics only but also other common metrics to
get an overview on interesting model properties.

Metrics configuration L=

Please select EMF metrics from the list below to be supported by the project.

http://www.eclipse.org/umli2/4.0.0/UML | http://www.eclipse.org/emf/2002/Ecore
Package
Selected MName Description
A Quota of abstract classes within the package (Abstractness)
D AVASCP Average number of Associations per Class within the Package
Ca Mumber of incoming class dependencies (Afferent Coupling)
Ce Mumber of outgoing class dependencies (Efferent Coupling)
[Ratio between efferent coupling and total coupling (Instability)
MNACP Mumber of abstract Classes within the Package
] NASP Number of Associations within the Package
D MNATP Mumber of Attributes in Classes within the Package
MNCCP Mumber of concrete Classes within the Package
D NINP Number of Interfaces within the Package
D MMNIACP Mumber of non-inherited abstract classes within the package
D NOPP Number of Operations in Classes and Interfaces within the Package
TC Total Coupling: afferent coupling + efferent coupling
TNCP Total number of Classes within the Package
Model
Selected Mame Description
D ANA Average number of ancestors of all classes in the model
D MaxDIT Maximum of all depths of inheritance trees
O NACM Number of all ancestors of all classes in the model

m

[OK] l Cancel

Figure 12.2: Configuration dialog for model metrics

To calculate relevant metrics only, our tool environment supports a
project-specific configuration for the metrics suite'. Figure 12.2 shows
the project-specific configuration page for our example project. On
this page, all existing model metrics for EMF-based models are listed.
They are structured with respect to the corresponding meta model
(e.g., UML and Ecore) and to the corresponding element type the

1 Please note that the configuration task is done by the project respectively quality
manager according to the project-specific needs (see Section 3.2.2).

127

metrics are calculated on (the context). In Figure 12.2 for example, we
activate model metrics for UML packages concerning abstractness (A,
NACP, NCCP, and TNCP) and coupling issues (Ca, Ce, I, and TC).

The calculation of metrics on a specific model element is started
from its context menu. In our UML show case, this element is selected
from within the graphical GMF-based [53] Papyrus editor. However,
EMF Refactor also supports further editors like the tree-based EMF
instance editor and textual editors generated by Xtext [62]. Figure 12.3
shows the calculated results of the configured UML metrics on pack-
ages Commonalities and RentalCompany (see Figure 12.1).

iz Metric Results View &2 Hxs Y= 08

Context Metric Description Result Time
‘_F_'ﬁ = A [&] Quota of abstract classes within the package... 050 2014/02/06 13:..

Packag = NACP [& Number of abstract Classes within the Packa... 200 2014/02/06 13..
Package Commonalities = NCCP [& Number of concrete Classes within the Packa... 200 2014/02/06 13..
Package Commonalities = TNCP [& Total number of Classes within the Package 400 2014/02/06 13...
Package RentalCompany = Ca [&] Number of incoming class dependencies (Af... 3.00 2014/02/06 13:.
Package RentalCompany = Ce [&] Mumber of outgoing class dependencies (Eff... 7.00 2014/02/06 13:...
Package RentalCompany = 1 [%] Ratio between efferent coupling and total c.. 070 2014/02/06 13....
Package RentalCompany = TC [&] Total Coupling: afferent coupling + efferent ... 10.00 2014/02/06 13:..

Figure 12.3: Results view displaying calculated metrics

The results view shows that package Commonalities contains al-
together four classes (metric TNCP): two concrete and two abstract
classes (metrics NCCP and NACP). Furthermore, metric Ca (afferent cou-
pling: number of classes in other packages depending on classes of
the package) of package RentalCompany is evaluated to 3 whereas its
efferent coupling metric (number of classes within the package de-
pending on classes in other packages - Ce) is evaluated to 7.

Metrics A, TC, and I are calculated using these ‘basic’ metrics. The
abstractness (A) of package Commonalities is 0.5 (ratio between the
number of abstract classes in the package and the total number of
classes in the package). The total coupling (TC: afferent + efferent
coupling) of package RentalCompany is 10 and its instability (I) is 0.7
(ratio between efferent coupling and total coupling).

An evaluation of both packages based on these metric values is a
slightly difficult task (and is not an issue of this section rather of this
thesis). However, according to [108] the following statements hold:

e The less abstract a package is the more likely it is to change and
therefore to have an effect on the packages that use it.

¢ Instable packages are easier to change because few other pack-
ages in the application use them.

EMF Refactor’s metrics tool provides the export of calculated re-
sults for reporting purposes. The following output formats are sup-
ported: XML (default), HTML, PDF, Postscript, MS DOC, MS PPT, MS

128

Element Type: Package
Element: RentalCompany
Evaluation Date: 2014/02/06 13:21:07 TC (10 O

. c o

| UML Metrics

E'Ca
s o\l

Figure 12.4: Excerpt of a generated PDF report concerning calculated met-
rics results using a pie diagram (left) and a tube diagram (right)

XLS, ODP, ODS, and ODT. Furthermore, several output designs are
provided but also custom designs can be imported. Figure 12.4 shows
two PDF exports of our example metrics calculation. On the left-hand
side, metric values for Ca (Afferent Coupling) and Ce (Efferent Cou-
pling) of package RentalCompany are compared using a pie diagram.
The right-hand side of Figure 12.4 shows an exported tube diagram
containing the metric values for Ca, Ce, and TC (Total Coupling).

12.3 MODEL SMELL DETECTION

The discussion of metrics results shows that a manual interpretation
of metric values seems to be unsatisfactory and error-prone. So, an-
other static model analysis technique is required, more precisely an
automatic detection of model smells for UML models like specified
in Sections 5.2 and 6.1, for example. As for model metrics, our tool
environment provides a configuration of specific model smells that
are relevant for the current project . Figure 12.5 shows the configu-
ration dialog listing all system-known model smells with respect to
their meta model. For a metric-based model smell, a corresponding
threshold can be configured.

In Figure 12.5, two metric-based smells are activated. Smell Abstract
Package occurs if the value of metric A (Abstractness: ratio between
the number of abstract classes in the package and the total number
of classes in the package; see previous section) is higher than o0.7. The
second metric-based smell, Large Class, relies on metric NFEAC (num-
ber of owned features of the class) and comparator > (greater than).
We set the limit for smell Large Class to 7.9, i.e., this smell occurs if a
class owns more than seven attributes attributes or operations.

Similar to the calculation process for model metrics, a smell analy-
sis can be triggered either for the entire model or for a concrete model
element. In the latter case, all smells are reported occurring within the

2 See footnote ' on page 127.

129

Smells configuration ooy

Primitive Obsession (Constants) The model contains a class wit.. 1.0
Primitive Obsession (Primitive T.. The model contains a class wit.. 1.0

Please select EMF smells from the list below to be supported by the project.
http://www.eclipse.org/umi2/4.0.0/UML | http://www.eclipse.org/emf/2002/Ecore
Selected MName Description Limit
Abstract Package The model contains a Package.. 0.7
D Attribute Name Overridden The model contains an attribu...
Concrete Superclass There is an abstract Class havi... E
D Data Clumps (Attributes) The model contains classes wi... 1.0
D Data Clumps (Parameters) The model contains operation.. 1.0
Diamond Inheritance A Class inherits from another ...
D Empty Package The model contains a packag...
Equal Attributes in Sibling Classes Each sibling class of the ownin...
Equally Named Classes The model contains two class... —
Large Class The model contains a class ow.. 7.0
D Long Parameter List The model contains an operat.. 1.0
No Specification The model contains an abstra...
]
1
1

Specialization Aggregation The model contains a generali...

Speculative Generality Class The model contains an abstra...

Speculative Generality Interface The model contains an interfa... -
[OK] l Cancel

Figure 12.5: Configuration dialog for model smells

containment hierarchy of the selected model element. Nevertheless, it
has to be considered that there are model smells which might be dis-
tributed along several subtrees (like Multiple Definition of Classes with
equal Names, looking for equally named classes in different packages).
However, EMF Refactor provides smell analysis on subtrees only in
order to narrow the scope of the analysis, for example on large-scale
models.

Analyzing the example UML class model shown in Figure 12.1, the
smell detection analysis discovers the existence of altogether 19 con-
crete smells according to the configuration made in Figure 12.5. The
left-hand side of Figure 12.6 shows the results of this analysis in a
dedicated results view. The report shows that smell Equal Attributes
in Sibling Classes occurs 13 times. Example occurrences are attributes
Motorbike: :power, Car::manufacturer, and Customer: :id. Six kinds
of model smells occur once each, for example smell Speculative Gen-
erality Interface looking for an interface that is realized by one single
class only. Here, the involved elements are interface Rentable and
class Vehicle.

130

55 Smell Results View 2 E® = Y= 08 “)modeldi = =]

4 = 09.02.2014 11:56:06 (19 occurences of smells) VAL vk v “lq

. 2 Equal Attributes in Sibling Classes (13 areas identified) Vehicle
+ rentable: Boolean [1]

> 1= Diamond Inheritance (1 area identified)

> = Equally Named Classes (1 area identified) + rent()

+ =% Large Class (1 area identified)

» & Speculative Generality Class (1 area identified)

4 1= Speculative Generality Interface (1 area identified) v

4 = {\Vehicle, Rentable, realizes} «Interfaces

%] Vehicle Rentable
[l Rentable + rent()

realizes

=1

1

[realizes -
4 1= Unused Class (1 area identified)] 1 »
» = {Invoice} B& Domain Model

Figure 12.6: Results view displaying detected model smells (left) and high-
lighting of involved elements in smell Speculative Generality
within the graphical Papyrus editor (right)

Concerning concrete smell occurrences, the smell detection tool in
EMF Refactor provides a highlighting mechanism for involved model
elements within the standard tree-based EMF instance editor, graphi-
cal GMF editors, and textual Xtext editors. For example, selecting the
occurrence of smell Speculative Generality Interface in the smell view
(see left-hand side of Figure 12.6) highlights interface Rentable, class
Vehicle, and the realization relation between them within the graph-
ical Papyrus editor as shown in the right-hand side of Figure 12.6.

The next step during a model review is to interpret the results of
the smell detection analysis. Potential reactions on detected smells
are (note that not each smell should be eliminated):

e Use refactoring Pull Up Attribute on attributes manufacturer,
power, and regnumber from classes Car, Motorbike, and Truck
to the common parent class Vehicle.

e Smell Speculative Generality Class should be removed by using
refactoring Remove Superclass on class Service since the com-
pany does not offer further services.

e Rename classes RentalCompany: :VehicleRental to VehicleRental-
Company and Services: :VehicleRental to VehicleRentalService.

e Class Invoice is unused up to now. There should be an at-
tribute named invoices in class VehicleRentalCompany with type
Invoice and multiplicity 0. . x.

12.4 REFACTORING APPLICATION
Besides manual changes, model refactoring is the technique of choice

to eliminate occurring smells. In our tool environment for model qual-
ity assurance, this task is provided by the primary functionality of

131

EMF Refactor. Again, this component provides a configuration mech-
anism to select refactorings being relevant for the given modeling
project. The configuration user interface is similar to that of the met-
rics component (see Figure 12.2) and is not shown here. Please note
that the configuration of model smells (see Section 12.3) combined
with the specification of smell-refactoring relations (see Section 13.5)
might influence the selection of model refactorings (and vice versa).
We discuss this topic in Chapter 15.

There are two alternative ways to trigger a model refactoring in
EMF Refactor: First, a refactoring can be invoked from within the con-
text menu of at least one model element in the standard tree-based
EMF instance editor, the graphical GMF-based editor, or the textual
Xtext editor. Depending on the selected element(s), only those refac-
torings are provided in the menu being defined for the corresponding
model element type(s). For example, UML refactoring Extract Super-
class is provided only after selecting at least two classes.

The second way to trigger a model refactoring is to use the quick
fix mechanism of the smell results view as shown on the left-hand
side of Figure 12.6. Starting from this view, our tool environment pro-
vides a suggestion for potential refactorings according to pre-defined
smell-refactoring relations (see Section 13.3) and a dynamic analysis
of applicable model refactorings.

Suggested Refactorings |App|icable Refactoringsl Suggested and Applicable Refactorings|

Context Possible Smells
http://www.eclipse.org/uml2/4.0.0/UML

http://www.eclipse.org/uml2/4.0.0/UML

Refactoring
Hide Attribute

Bull Up Attribute Primitive Obsession (Constants), Equal Attri...

Suggested Refactorings | Applicable Refactorings | Suggested and Applicable Refactorings

Refactoring

Create Associated Class
Create Subclass

Create Superclass
Extract Class

Extract Subclass

Inline Class

Pull Up Attribute
Rename Attribute
Rename Class

Context

http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML
http://www.eclipse.org/umi2/4.0.0/UML

Possible Smells

Equally Named Classes

Equally Named Classes, Speculative Ge..

Concrete Superclass, Equally Named Cl...

Equally Named Classes

Equally Named Classes, Data Clumps (A..
Primitive Obsession (Constants), Equal ...

Primitive Obsession (Constants), Equal ...

Equal Attributes in Sibling Classes, Attri...
Equally Named Classes

Suggested Refactorings | Applicable Refactorings | Suggested and Applicable Refactorings

Context
http://www.eclipse.org/umi2/4.0.0/UML Primitive Obsession (Constants), Equal Attribu...

Refactoring Possible Smells

Pull Up Attribute

Figure 12.7: Quick fix mechanism: manually defined refactorings (top), ac-
tually applicable refactorings (middle), and manually defined
applicable refactorings (bottom)

The suggestion dialog is started from within the context menu of
a smell occurrence (e.g., occurrence {Motorbike, power} of smell Equal

132

Attributes in Sibling Classes) and consists of three tabs. The first
tab (see top of Figure 12.7) suggests all model refactorings that have
been manually defined as being suitable to erase the corresponding
model smell. The second tab (see middle of Figure 12.7) lists all those
model refactorings which have been proven to be applicable on at
least one model element in the selected smell occurrence. Please note
that this does not necessarily mean that each presented refactoring
would improve the model quality by erasing a model smell. It simply
means that the target model structure allows the application of that
refactoring. For example, refactoring Rename Class obviously does
not influence the afore mentioned smell. The third tab (see bottom
of Figure 12.7) combines the manually defined solution and the actu-
ally applicable solutions. Finally, each tab informs about possible new
smells potentially inserted when applying the refactoring (according
to the manual configuration (see Section 13.4).

Name of the superclass to be pulled up to: |

Model smell statistics Model:Commonalities:Vehicle

I Preview = H

Figure 12.8: Parameter input dialog of UML refactoring Pull Up Attribute

After invoking a refactoring, either from within an editor or by the
provided quick fix mechanism, refactoring-specific basic conditions
are checked (initial precondition check). Then, the user has to set all
needed parameters. Figure 12.8 shows the parameter input dialog
for refactoring Pull Up Attribute that is invoked on attribute power of
class Motorbike. Due to multiple inheritance in UML, the superclass
to which the attribute should be moved must be set.

Then, EMF Refactor checks whether the user input does not violate
further conditions (final precondition check). In case of erroneous pa-
rameter input a detailed error message is shown. If the final check
has passed, a preview of model changes to be performed by the refac-
toring is provided using EMF Compare [45].

Besides the model change preview, EMF Refactor provides the op-
portunity to get a quantitative analysis on changes of smell occur-
rences. In contrast to the manual configuration of potential refactoring-
smell-relations (see Section 13.4), this analysis provides the modeler
with the total number of occurrences of model smells before and after
a potential application of a given model refactoring. It thereby helps

133

with the decision whether or not a refactoring application would im-
prove the overall model quality or would it even make worse.

Following model smell occurences are found before
applying refactoring 'Pull Up Attribute” Total 19

Large Class: 1

Equal Attributes in Sibling Classes: 13
Equally Named Classes: 1
Speculative Generality Class: 1
Diamond Inheritance: 1

Unused Class: 1

Speculative Generality Interface: 1

Following model smells are found after
applying refactoring 'Pull Up Attribute”: Total 16

Large Class: 1

Equal Attributes in Sibling Classes: 10
Equally Named Classes: 1
Speculative Generality Class: 1
Diamond Inheritance: 1

Unused Class: 1

Speculative Generality Interface: 1

Following model smell occurrences will change when
applying refactoring 'Pull Up Attribute”:

Equal Attributes in Sibling Classes: -3

Figure 12.9: Smell analysis during the application of UML refactoring Pull
Up Attribute on attribute Motorbike::power

Figure 12.9 shows the information dialog when applying UML
refactoring Pull Up Attribute on attribute Motorbike: :power. Before
the refactoring, UML model smell Equal Attributes in Sibling Classes
occurs 13 times; after the refactoring three occurrences would be
eliminated (since attribute power is pulled up from each subclass of
Vehicle, i.e., classes Motorbike, Car, and Truck). Moreover, no fur-
ther smell would be inserted. However, 10 occurences of smell Equal
Attributes in Sibling Classes as well as the single occurrences of smells
Large Class, Equally Named Classes, Speculative Generality Class, Diamond
Inheritance, Unused Class, and Speculative Generality Interface would re-
main. Finally, all model changes can be committed and the refactoring
is performed.

Figure 12.10 shows the example UML class model after performing
several model changes, being refactorings and manual changes, as
described at the end of Section 12.3. Now, class Vehicle owns the
afore redundant attributes manufacturer, power, and regnumber.

134

(¥/1GI010/ :qU +)oIGIOIONIUBI + st) + mwwwﬁmw (1) Buras 4> +
onapspna + pprupual + | | | s > °l9eusy TR SAGIoTON [1] bus :apodjelsod + | ssaippe +
(deD ued +)iedjual + ! «ddeLPU]» 19 [T] |ednieNpaHWIUN aqWINU +
Cucw_ " «uoljelswnui» _HH_ @C_bm 19915 + H.:
[T] PIYSA BPIYSA + SS91ppY uosiad + [«]
[T] 4oWw03sN) BdWOISNd + X uea|joog :(91eq :p +)o4040gs! +
[1] 21eq 03 + [T] Butns Haquinubal + 1008 21eq P + Ja1ojoas! [T°0] BuULS Jlewd +
(1] 218q Woly + [1] Bus aunydeNUeW + [T] [eanieNpaywiun Jeak + 1370148v> [7] BuLS :swewns +
VR TER TS i [1] 4o633u1 :1omod + [T] |eameNpPa3IWIUN YIuOW + INISNOWI1 [1] BuLs BWeuaio) +
MMSSISIUSHIPIYEA [1] ueajoog :3|qejual + [T] [eamenpanwiun Aep + /P To N EE— .
EBTER 91eq uoljesawnug» yaN
A AN

ERINES

]

_ saiyjeuo{uwiod

[T] @21n19S|LIUSYSDIYSA :[eIuUdI +
[T] |leamieNpPaMIWIIUN JUNOWE +

[1] uesjoog :pied +

[T] 4owo01sN) uswoISNd +

92I0AU]

[T] Buls :dweuueq +
[1] uosiad oysodap +
[1] buLis :2podNVA] +

[T] ssa1ppy @140 +

[T] jeanieNpPayWIUN S1eSS +

[1] adA1ax1qi0301\ 2dAy +

J01oeqpuooqgns

[1] adA1ied :dAy + [1] |eanyeNpaywijun dedtapullhd +
IH) 93101030\
[T] 3uno2oy»ueg :Junodde +
[] 1ed+ [4] ayjigiojow + [T] #1eQ @dUIS +
[T] |eaimeNpaywiun :p! +
1awoisn)
[T] Jaumo + A[T]
L Jawoisnd] []/[Mowiorsno +
(1] ooy aubrom JOUMO + [«] ®210AU] :S9210AU] + 7
Wbiam +

9DINIDS|BIUDYD[DIYIA (SIDIAIDS +

[T] @1eQ :9dUIs +

APl [1] ssa1ppy 'siopenbpeay + [[1]AUEAWOd + yueynsuos + (1] [T] [ean3eNpaHWIUN P! +
HUNo3YyUEY [1] Bulis :dweu +
PN + [, \:m 18UMO + : 9akojdwi3
KuedwoD|euayaIyap [Tl Jofodwa + sakodwa + [,]
(1]
BuloAu] Kuedwo)|ejuay

Example UML class model after several model changes as re-
sult of a first model review

Figure 12.10

135

Class Service has been removed so that VehicleRentalService
(formerly named VehicleRental) is the only offered service left. Fi-
nally, the main class VehicleRentalCompany (also formerly named
VehicleRental) has a new attribute invoices with type Invoice and mul-
tiplicity 0. . x.

From the detected smells seven occurrences are left. However, there
are model parts remaining suspicious with respect to several model
quality aspects. For example, there are associations from class Company
to classes Car, Truck and Motorbike hinting to some kind of redun-
dant modeling. This shows that project-specific model quality assur-
ance techniques need not be completely defined (and implemented)
before a project starts. The quality assurance process should be re-
fined during the model development phase in order to be steadily
improved. For example UML model smell Association Clumps as well
as refactoring Pull Up Association would extend the suite of project-
specific model quality assurance techniques in a meaningful way.
How the specification of new model assurance techniques is sup-
ported by EMF Refactor is shown in the next chapter of this thesis.

136

EXAMPLE SPECIFICATIONS

EMF Refactor, the tool environment for EMF model quality assurance,

provides a wizard-based specification process for each supported qual-
ity assurance technique. This chapter presents several concrete specifi-
cation mechanisms for model quality assurance techniques. The tech-
niques and mechanisms are discussed along a domain-specific mod-
eling language for defining web applications. After introducing the

DSL in Section 13.1, the subsequent sections discuss how to define

new model metrics (Section 13.2), new model smells (Section 13.3),

and new model refactorings (Section 13.4). Finally, Section 13.5 shows

how to manually define relations between model smells and model

refactorings. *

13.1 EXAMPLE DSL SIMPLE WEB MODEL (SWM)

To demonstrate the specification facilities provided by EMF Refactor,
we use a domain-specific modeling language (DSML) called Simple
Web Model (SWM) for defining a specific kind of web applications.
This language has been already used in Section 6.2 to demonstrate
a proof-of-concept implementation of the quality assurance process
defined in Part I of this thesis.

However, for a better understanding we repeat the example sce-
nario (taken from [21]): A software development company is repeat-
edly building simple web applications being mostly used to popu-
late and manage persistent data in a database. Here, a typical three-
layered architecture following the Model-View-Controller (MVC) pat-
tern [68] is used. As implementation technologies, a relational database
for persisting the data as well as plain Java classes for retrieving
and modifying the data are employed for building the model layer.
Apache Tomcat is used as the Web Server, and the view layer, i.e., the
user interface, is implemented as Java Server Pages and the controller
layer is realized as Java Servlets. The company decides to develop its
own DSML called Simple Web Modeling Language (SWM) for defin-
ing their specific kind of web applications in a platform-independent
way. Furthermore, platform-specific models following the MVC pat-

Details on implemented smells and refactorings for UML class models can be found
in Appendices D and F of this thesis.

137

tern should be derived with model transformations from which the
Java-based implementations are finally generated.

0.1 datalayer

H DatalLayer H WebModel hypertextLayer _|H HypertextLaye
= name : EString 0.1
. pages | 0.*
H Reference type entities Bk target 0.1 0
*
= name : EString Tl 0- Lin Page -
- 0.* links = name : EString
0. B Entity 0.1 entity
= name : EString startPage
references <<enumeration>> 0 - 0.1
P DynamicPage
.] = SimpleType s sl StaticPage
H Attribute attributes - Boolean
= name : EString = Email % ZF
= type : SimpleType | 0.* - Integer HIndexPage| |H DataPage
- String

Figure 13.1: SWM meta model defined in Ecore

Figure 13.1 shows the language description of SWM as meta model
modeled in EMF Ecore. A WebModel consists of two parts: a DataLayer
for modeling entities which should be persisted in the database (see
left-hand-side of Figure 13.1), and a HypertextLayer presenting the
web pages of the application (see right-hand-side of Figure 13.1). An
Entity owns several Attributes (each having a SimpleType) and can
be related to several other entities (see meta class Reference). A Page
is either a StaticPage having a static content or a DynamicPage having
a dynamic content depending on the referenced entity. An IndexPage
lists objects of this entity whereas a DataPage shows concrete infor-
mation on a specific entity like its name, attributes, and references.
Pages are connected by Links.

The following sections show how to implement quality assurance
techniques for SWM which have been already introduced in Sec-
tion 6.2. We start with the specification of metrics for the SWM lan-

guage.
13.2 SPECIFICATION OF NEW MODEL METRICS

For the specification of model metrics, EMF Refactor supports four
concrete technologies. As basic approaches, pure Java code using the
modeling language API generated by EMF and OCL expressions can
be used. Another approach is to define a pattern using the abstract
model syntax first and to count its occurrences in a concrete model
thereafter. These patterns are formulated as rules in a language in-
cluded in the EMF model transformation tool Henshin [4, 54]. To
define compositional metrics, the tool environment supports a com-

138

o

AN U~ W N

bination of existing ones. Here, the involved metrics as well as appro-
priate arithmetic operations have to be specified.

New Metric: Basic Data

Project Data

Target project (*): | simplewebmodel.metrics

Metric Data
Name (*): NEM

Metric ID (*): simplewebmodel. metric.nem

Description: Mumber of Entities in the Model

Meta Model and Context Type
Meta model (*): http://www.eclipse.org/simplewebmodel/1.0

Context type (*): WebModel -

Figure 13.2: Wizard dialog for the specification of new model metrics

Figure 13.2 shows an example wizard dialog concerning the spec-
ification of SWM metric NEM (Number of Entities in the Model). Af-
ter inserting metric-specific information like the name or the corre-
sponding meta model and context type information, EMF Refactor
generates metric-specific Java code and extends the list of supported
model metrics using the extension point technology of Eclipse. Now,
the metrics designer has to complete this code by the actual metrics
calculation algorithm. As a result, we obtain a module with all met-
rics features as described in Section 12.2.

WebModel in = (WebModel) context.get(0);
double ret = 0.0;

// begin custom code

ret = in.getDatalayer().getEntities().size();
// end custom code

return ret;

Listing 13.1: Completed Java specification for SWM metric NEM

Listing 13.1 shows the completed Java code snippet specifying SWM
metric NEM. Starting from the contextual WebModel element, the Java
API of SWM generated by EMF is used. According to the SWM meta

139

A W ON R

model in Figure 13.1, a web model owns a DatalLayer for modeling
entities which should be persisted in the database. The custom code
in Listing 13.1 simply navigates to the set of entities within the data
layer and returns its size (see line 4 in Listing 13.1).

Since EMF models can be queried well using the Object Constraints
Language [121], EMF Refactor supports model metrics specifications
formulated as OCL queries. Listing 13.2 shows two alternative OCL
expression being suited to calculate SWM metric NDPM (Number of
Dynamic Pages in the Model). The first expression (lines 1 and 2) nav-
igates from the contextual element (represented by the OCL variable
self of type WebModel) to the set of pages within the hypertext layer of
the model, selects those being of type DynamicPage (since there might
be also static pages), and returns their number. The second alternative
(line 4) uses the alllnstances() operation of the OCL standard library
to get a set consisting of all dynamic pages in the model and also
returns their number.

String oclExpression_vl = "self.hypertextlLayer.pages " +
"-> select(oclIsKindOf(DynamicPage)) -> size()";
String oclExpression_v2 = "DynamicPage.allInstances() -> size()";

Listing 13.2: Two alternative OCL specifications for SWM metric NDPM
(Number of Dynamic Pages in the Model)

To insert the OCL query during the specification process in addi-
tion to the basic data similar to Figure 13.2, the specification wizard
provides a dedicated input page after selecting the OCL specification
mode. Finally, EMF Refactor generates the complete metric-specific
Java code. Here, the contextual element (an instance of WebModel) as
well as the specified expression (represented as String) are passed to
the OCL adapter as presented in Section 11.2.

As discussed in Section 6.2.2, a metric calculating the ratio between
the values of both metrics presented before might be helpful to detect
missing dynamic pages. For defining these kind of metrics, the speci-
fication wizard provides a dedicated page after selecting specification
mode Composite. Here, the metric designer simply selects the involved
existing metrics as well as the appropriate arithmetic operation. Here,
the binary arithmetic operations sum, subtraction, multiplication, and
division are supported.

In our example, for specifying SWM metric DPpE (Dynamic Pages
per Entity), metrics NEM (Number of Entities in the Model) and NDPM
(Number of Dynamic Pages in the Model) are combined using the
binary arithmetic operation division (see Figure 13.3). To be consis-
tent, the dialog page presents only those metrics whose contextual
elements correspond to the contextual element of the new composi-

140

New Metric: Composite Data

First metric

Selected MName Description
AMRWM Average Mumber of References in Entities within the Web Model
NAWM Number of Attributes in Entities within the Web Model
NDPM Number of Dynamic Pages in the Model.
NEM Number of Entities in the Model.

Operation

|Division

Second metric

Selected Name Description
NAWM MNumber of Attributes in Entities within the Web Model
NDPM Mumber of Dynamic Pages in the Model.
MNEM Mumber of Entities in the Model.
NRWM Mumber of References in Entities within the Web Model

Figure 13.3: Compositional specification for SWM model metric DPpE (Dy-
namic Pages per Entity)

tional metric (WebModel in our example). Again, EMF Refactor finally
generates the complete metric-specific Java code and extends the list
of supported model metrics for SWM models.

As a last supported specification mechanism for EMF model met-
rics we present the use of Henshin pattern rules formulated on the
abstract syntax on SWM. Figure 13.4 shows a Henshin pattern rule
specifying SWM metric NDPE (Number of Dynamic Pages referencing
the Entity) using the graphical syntax of Henshin. The left node con-
text of type Entity represents the contextual model element for calcu-
lating metric NDPE whereas the remaining rule elements represent the
pattern that has to be found in the model. The pattern defines a node
referencingPage type DynamicPage that references the contextual entity
by reference entity. It is formulated as positive application condition
(PAC) (see rule elements annotated with ((require#reference))).

To calculate metric NCCP, the Henshin adapter of the metrics tool
uses the Henshin interpreter to find and count matches of this pat-
tern rule on concrete SWM instance models. Please note that this
adapter requires the following guidelines for Henshin pattern rule
specifications to work properly:

e The pattern rule must be named mainRule.

141

= Rule mainRule(context:WebModel)

«preserve» «require#reference» «require#reference»

context:Entity’ i referencingPage:DynamicPage
entity

Figure 13.4: Henshin pattern rule specifying SWM model metric NDPE

e The rule must have a parameter named index.
e The contextual node must be named index.

For defining these metrics specified in Henshin, the specification
wizard provides a dedicated import page for the appropriate Hen-
shin file. As in the cases described before, EMF Refactor finally gen-
erates the complete metric-specific Java code and extends the list of
supported model metrics for SWM models.

The metrics defined in this section may help to analyze the com-
pleteness of SWM models . However, to make suspicious model parts
more explicit, the next section shows how to specify model smells for
SWM models.

13.3 SPECIFICATION OF NEW MODEL SMELLS

EMF Refactor supports four concrete mechanisms for model smell
specification. Again, pure Java code and OCL expressions can be
used as basic approaches. Some smells can be detected well by met-
ric benchmarks. Here, appropriate model metrics are used together
with suitable benchmarks being set by project-specific configurations.
Pattern-based smells (i.e., smells that are detectable by the existence
of specific anti-patterns) can be specified by Henshin rules.

The specification process for model smells is similar to the speci-
fication process for model metrics. For each specification mode, the
dialog page for inserting basic model smell data looks similar to the
page shown in Figure 13.2. The only difference is the missing context
element type definition since a smell does not have such a context.

After inserting smell-specific information like the name or the cor-
responding meta model (given by its nsURI, see Section 10.1), EMF
Refactor generates Java code and extends the list of supported model
smells using the extension point technology of Eclipse. In the case of
selecting the Java specification mode, the corresponding generation
module generates a skeleton implementation that has to be completed
by the model smell designer.

Listing 13.3 shows the core Java specification of SWM smell No
Dynamic Page. According to Section 6.2.2, this smell occurs if the

142

=

e < e -
N U A~ LW N R O

=
o]

N o=
o o

model contains an entity which is not referenced by a dynamic page,
i.e., the entity would not be depicted in the web application. The con-
dition in the if-clause checks whether the given entity is referenced
by a dynamic page (line 9). In this case, the boolean flag is set (line
10). Finally, if no page references the entity, i.e., the boolean flag is not
set, a new SmellOccurrence object is created, the entity is added to it,
and the object is added to the list of found model smells (lines 14 to
16). 2

O O N o1~ WON

LinkedList<SmellOccurrence> results =
new LinkedList<SmellOccurrence>();
// begin custom code
List<Entity> entities = getAllEntities(root);
List<DynamicPage> dynamicPages = getAllDynamicPages(root);
for (Entity entity : entities) {
boolean isReferenced = false;
for (DynamicPage dynamicPage : dynamicPages) {
if (dynamicPage.getEntity() == entity) {
isReferenced = true;
}
}
if (! isReferenced) {
SmellOccurrence result = new SmellOccurrence();
result.addEObject(entity);
results.add(result);
17 b
}
// end custom code
return results;

Listing 13.3: Java specification of SWM model smell No Dynamic Page

The use of OCL is also an adequate approach to specify model
smells. Listing 13.4 shows the OCL specification of SWM smell Empty
Entity. It defines an OCL operation that returns from the set of all
entities in the web model (line 3) those which have neither attributes
nor references (lines 4 and 5).

context WebModel

def: emptyEntity(): Set(Entity) =

Entity.allInstances() -> select (entity]|
entity.attributes -> isEmpty() and
entity.references -> isEmpty())

R

U o~ WN

Listing 13.4: OCL specification of SWM model smell Empty Entity

In this specification mode, the specification wizard provides a ded-
icated input page for the appropriate OCL file. Moreover, the model

2 Please note that the code snippet is not complete since we use auxiliary methods
getAllEntities() and getAllDynamicPages() which are not discussed in detail here.

143

smell designer has to specify the name of the operation to be executed
by the corresponding OCL adapter. Then, EMF Refactor generates the
complete smell-specific Java code and extends the list of supported
model smells for SWM models.

As mentioned at several places throughout this thesis, some model
smells can be detected by matching a corresponding pattern based
on the abstract syntax of the mod