
Q U A L I T Y A S S U R A N C E O F S O F T WA R E M O D E L S

a structured quality assurance process supported by a flexible

tool environment in the eclipse modeling project

a dissertation submitted in partial fulfillment of

the requirements for the degree of

dr . rer . nat.

philipps-university marburg , germany

fb 12 – mathematics and computer science

author :
dipl .-inf . thorsten arendt

born october 13 , 1973 in ziegenhain, germany

marburg an der lahn, 2014

Angefertigt mit Genehmigung des Fachbereichs Mathematik und
Informatik der Philipps-Universität Marburg (Hochschulkennziffer
1180).

Gutachter:

Prof. Dr. Gabriele Taentzer, Philipps-Universität Marburg
Prof. Dr. Harald Störrle, Technical University of Denmark

Prüfungskommission:

Prof. Dr. Manfred Sommer, Philipps-Universität Marburg
Prof. Dr. Gabriele Taentzer, Philipps-Universität Marburg
Prof. Dr. Harald Störrle, Technical University of Denmark
Prof. Dr. Bernhard Seeger, Philipps-Universität Marburg

Einreichungstermin: 11. April 2014.

Prüfungstermin: 12. Juni 2014.

iii

Originaldokument gespeichert auf dem Publikationsserver der
Philipps-Universität Marburg

http://archiv.ub.uni-marburg.de

Dieses Werk bzw. Inhalt steht unter einer
Creative Commons
Namensnennung

Keine kommerzielle Nutzung
Weitergabe unter gleichen Bedingungen

3.0 Deutschland Lizenz.

Die vollständige Lizenz finden Sie unter:
http://creativecommons.org/licenses/by-nc-sa/3.0/de/

v

There are two ways of constructing a
software design: One way is to make it so

simple that there are obviously no
deficiencies and the other way is to make it

so complicated that there are no obvious deficiencies.
The first method is far more difficult.

— C.A.R. Hoare
The 1980 ACM Turing Award Lecture

vii

Für Nele und Swenja
in Liebe

A C K N O W L E D G E M E N T S

I thank all who in one way or another contributed in the completion
of this thesis.

First and foremost I offer my sincerest gratitude to my supervisor,
Prof. Dr. Gabriele Taentzer, who has supported me throughout my
thesis with her patience and knowledge whilst allowing me the room
to work in my own way. Furthermore, I thank Prof. Dr. Harald Störrle
who immediately agreed to co-supervise this thesis and who gave me
a lot of valuable and encouraging comments.

Sincere thanks are given to the following friends and colleagues for
proofreading and their valuable comments: Kristopher Born, Mischa
Dieterle, Stefan Jurack, Timo Kehrer, Florian Mantz, Kyriakos Poyias,
Daniel Strüber, and Steffen Vaupel. Furthermore, I thank Jan Baart,
Matthias Burhenne, Gerrit H. Freise, Florian Mantz, Pawel Stepien,
and Alexander Weber for their fantastic work on the tooling.

Most importantly, none of this would have been possible without
the love and patience of my family. The endless love given by Swenja
and Nele provided my inspiration and was my driving force. Also
thanks to Elke and Horst for their love and never ending support.

Last but not least, I would like to thank Siemens Corporate Tech-
nology for partially funding the research in this thesis.

xi

A B S T R A C T

The paradigm of model-based software development (MBSD) has be-
come more and more popular since it promises an increase in the
efficiency and quality of software development. In this paradigm, soft-
ware models play an increasingly important role and software qual-
ity and quality assurance consequently leads back to the quality and
quality assurance of the involved models.

The fundamental aim of this thesis is the definition of a structured
syntax-oriented process for quality assurance of software models that
can be adapted to project-specific and domain-specific needs. It is
structured into two sub-processes: a process for the specification of
project-specific model quality assurance techniques, and a process for
applying them on concrete software models within a MBSD project.
The approach concentrates on quality aspects to be checked on the
abstract model syntax and is based on quality assurance techniques
model metrics, smells, and refactorings well-known from literature.
So far, these techniques are mostly considered in isolation only and
therefore the proposed process integrates them in order to perform
model quality assurance more systematically. Three example cases
performing the process serve as proof-of-concept implementations
and show its applicability, its flexibility, and hence its usefulness.

Related to several issues concerning model quality assurance minor
contributions of this thesis are (1) the definition of a quality model
for model quality that consists of high-level quality attributes and
low-level characteristics, (2) overviews on metrics, smells, and refac-
torings for UML class models including structured descriptions of
each technique, and (3) an approach for composite model refactoring
that concentrates on the specification of refactoring composition.

Since manually reviewing models is time consuming and error
prone, several tasks of the proposed process should consequently be
automated. As a further main contribution, this thesis presents a flex-
ible tool environment for model quality assurance which is based on
the Eclipse Modeling Framework (EMF), a common open source tech-
nology in model-based software development. The tool set is part of
the Eclipse Modeling Project (EMP) and belongs to the Eclipse incuba-
tion project EMF Refactor which is available under the Eclipse public
license (EPL). The EMF Refactor framework supports both the model
designer and the model reviewer by obtaining metrics reports, by
checking for potential model deficiencies (called model smells) and
by systematically restructuring models using refactorings. The func-
tionality of EMF Refactor is integrated into standard tree-based EMF
instance editors, graphical GMF-based editors as used by Papyrus

xiii

UML, and textual editors provided by Xtext. Several experiments and
studies show the suitability of the tools for supporting the techniques
of the structured syntax-oriented model quality assurance process.

xiv

Z U S A M M E N FA S S U N G

Das Paradigma der modellbasierten Softwareentwicklung (MBSD) er-
freut sich immer zunehmender Beliebtheit, da es eine Steigerung von
Effizienz und Qualität in der Softwareentwicklung verspricht. Folge-
dessen spielen Softwaremodelle eine immer wichtigere Rolle und die
Themen Qualität und Qualitätssicherung von Software werden somit
zurückgeführt auf die Themen Qualität und Qualitätssicherung der
beteiligten Modelle.

Der grundlegende Inhalt dieser Arbeit ist die Definition eines struk-
turierten, syntaxorientierten und an projektspezifische bzw. domä-
nenspezifische Bedürfnisse anpassbaren Prozesses für die Qualitäts-
sicherung von Softwaremodellen. Dieser Prozess besteht aus zwei
Teilprozessen. Im ersten Prozess werden projektspezifische Techniken
für die Qualitätssicherung spezifiziert, die anschließend mit Hilfe
des zweiten Prozesses an konkreten Softwaremodellen während eines
MBSD Projektes angewendet werden können. Der Ansatz konzen-
triert sich dabei auf diejenigen Qualitätsaspekte, die auf der abstrak-
ten Syntax des Modells überprüft werden können und benutzt die
aus der Forschungsliteratur bekannten Qualitätssicherungstechniken
Modellmetriken, Smells und Refactorings, die bis dato jedoch nur se-
parat betrachtet wurden. Der vorgeschlagene Prozess integriert jetzt
diese Techniken auf strukturierte Weise und ermöglicht so eine sys-
tematische Qualitätssicherung von Softwaremodellen. Drei ausgesuch-
te Beispiele mit unterschiedlichen Modellierungssprachen dienen als
Proof-of-Concept Implementierungen des Prozesses und zeigen die
Eignung, die Flexibilität und somit die Zweckmäßigkeit des Ansatzes.

Im Zusammenhang mit der Thematik Qualitätssicherung von Soft-
waremodellen beinhaltet die Arbeit zudem die folgenden zusätzlichen
Beiträge: (1) die Definition eines Qualitätsmodells für Modellqualität,
(2) Übersichten über Metriken, Smells und Refactorings für UML-
Klassenmodelle inklusive strukturierter Beschreibungen dieser Tech-
niken sowie (3) einen konzeptionellen Ansatz für die Spezifikation
von komponierten Modell-Refactorings.

Der hohe Zeitaufwand und die potentielle Fehleranfälligkeit von
manuell durchgeführten Modellanalysen erfordern eine weitgehende
Automatisierung verschiedener Aktivitäten des vorgeschlagenen Qua-
litätssicherungsprozesses. Ein weiterer Hauptbeitrag dieser Arbeit ist
die Entwicklung einer flexiblen Werkzeugumgebung für die Qualitäts-
sicherung von Modellen, die auf dem Eclipse Modeling Framework
(EMF), einer weit verbreiteten open-source Technologie im Bereich
der modellbasierten Softwareentwicklung, basieren. Die Werkzeuge
sind Teil des Eclipse Modeling Project (EMP) und gehören zum of-

xv

fiziellen Inkubations-Projekt EMF Refactor, das unter der Eclipse Pub-
lic License (EPL) zur Verfügung gestellt wird. Das Framework unter-
stützt Modellierer und Analysten bei der Erstellung von Metriken-
berichten, dem Auffinden sogenannter Model Smells sowie der sys-
tematischen Restrukturierung der Modelle durch Refactorings. Die
Funktionalität von EMF Refactor ist dabei in die baumbasierten EMF
Instanzeditoren, in die auf GMF basierenden grafischen Editoren und
in die von Xtext bereitgestellten textuellen Modelleditoren integriert.
Verschiedene Experimente und Studien zeigen die Zweckmäßigkeit
und die Eignung der Werkzeuge für die Unterstützung der Techniken
in dem zuvor beschriebenen syntaxorientierten Qualitätssicherungs-
prozess für Softwaremodelle.

xvi

C O N T E N T S

1 introduction 1

1.1 Motivation and goals 1

1.2 Contributions . 3

1.2.1 Conceptual results 3

1.2.2 Implementation and tooling 5

1.3 Relevant publications by the author 6

1.4 How to read this thesis 8

I a structured quality assurance process for soft-
ware models 9

2 introduction to part i 11

3 a structured model quality assurance process 13

3.1 Model quality assurance 13

3.2 Process definitions . 16

4 model quality and model quality aspects 21

4.1 From software quality to model quality 21

4.2 Model quality aspects 28

4.3 A quality model for model quality 31

5 selected model quality assurance techniques 35

5.1 Metrics for UML class models 36

5.2 Smells for UML class models 41

5.3 Refactorings for UML class models 48

6 example application cases 55

6.1 Quality assurance of UML class models 55

6.2 Quality assurance of textual models for the develop-
ment of simple web applications 67

6.3 Quality assurance of rule-based in-place model
transformation systems 74

7 composite model refactoring 85

7.1 Motivation and examples 85

7.2 Requirements and design decisions 88

7.3 Concepts, example specification, and evaluation . . . 89

7.4 Towards automatic deduction of preconditions 93

7.5 Related Work . 94

8 conclusion and future work 97

xvii

II a flexible tool environment for quality assur-
ance in the eclipse modeling project 99

9 introduction to part ii 101

10 basic technologies and state-of-the-art 103

10.1 The Eclipse Modeling Framework (EMF) 103

10.2 Tool support for model quality assurance 105

10.3 An exploration study on EMF refactoring tools 107

11 requirements , design and architecture 117

11.1 Requirements . 117

11.2 Design and architecture 119

11.3 Summary . 123

12 example applications 125

12.1 Example UML class model 125

12.2 Metrics calculation . 127

12.3 Model smell detection 129

12.4 Refactoring application 131

13 example specifications 137

13.1 Example DSL Simple Web Model (SWM) 137

13.2 Specification of new model metrics 138

13.3 Specification of new model smells 142

13.4 Specification of new model refactorings 145

13.5 Specification of smell-refactoring relations 151

14 tool evaluation 155

14.1 Goals and hypotheses 155

14.2 Evaluation tasks . 156

14.3 Evaluation results . 162

14.4 Threats to validity . 173

15 conclusion and future work 177

16 thesis conclusion 179

16.1 Summary . 179

16.2 Outlook . 180

Appendices 183

a a catalog on uml class model metrics 185

b a catalog on uml class model smells 201

c a catalog on uml class model refactorings 205

d specifications of uml class model smells 209

e specifications of uml class model refactorings 229

f implementations of uml model refactorings 253

g study material experiment ex_app 341

h study material experiment ex_spec 363

xviii

L I S T O F F I G U R E S

Figure 3.1 Process for the application of project-specific
model quality assurance techniques 17

Figure 3.2 Process for the specification of project-specific
model quality assurance techniques 18

Figure 4.1 The ISO/IEC 9126-1 quality model 24

Figure 4.2 A quality model for model quality 33

Figure 4.3 Abstract illustration of mutual dependencies
between 6C goals 34

Figure 5.1 Extracted UML class metrics with respect to
the contextual type 36

Figure 5.2 Extracted basic and complex UML class model
metrics . 37

Figure 5.3 Summary of affected quality attributes when
interpreting complex UML class model metrics 42

Figure 5.4 Example UML class model smell Long Parame-
ter List . 44

Figure 5.5 Example UML model smell Specialization Ag-
gregation . 46

Figure 5.6 Pattern specification of model smell Specializa-
tion Aggregation 46

Figure 5.7 Example UML model refactoring Rename Op-
eration . 49

Figure 5.8 Example UML model refactoring Extract Su-
perlass . 50

Figure 5.9 Example UML model refactoring Introduce Pa-
rameter Object . 51

Figure 6.1 Example UML class model showing the first
version of domain model Vehicle Rental Com-
pany (before model review) 56

Figure 6.2 Improved sample UML class model after model
review . 57

Figure 6.3 Example UML class model after several model
changes during a first model review 66

Figure 6.4 Domain model, rule, and a transformation step
in Henshin . 75

Figure 6.5 Before refactoring Merge Rules Differing in Types
Only . 80

Figure 6.6 After refactoring Merge Rules Differing in Types
Only . 80

Figure 6.7 Before and after refactoring Extract Precondition 81

xix

Figure 6.8 Refactoring of deletion and creation of a fixed
phone . 82

Figure 6.9 Before refactoring Unify Rules with Same Ac-
tions (top) and afterwards (bottom) 84

Figure 7.1 Example UML statechart (a) before and (b) af-
ter refactoring Merge States 87

Figure 7.2 Example UML class model (a) before and (b)
after refactoring Extract Composite 88

Figure 7.3 Meta model of the CoMReL language 90

Figure 7.4 Unit specification of composite model refactor-
ing Merge States 93

Figure 10.1 Subset of the Ecore meta model 104

Figure 10.2 The Ecore meta model 104

Figure 10.3 Example class diagram before refactoring (ex-
cerpt) . 108

Figure 10.4 UML specification for attributes and associa-
tion ends (excerpt) 108

Figure 10.5 Left-hand-side (LHS) of the ProRef / EMF Tiger
solution . 113

Figure 10.6 Right-hand-side (RHS) of the ProRef / EMF
Tiger solution 113

Figure 11.1 Composite structure of a specification module 120

Figure 11.2 Composite structure of an application module 123

Figure 12.1 Example UML class model 126

Figure 12.2 Configuration dialog for model metrics 127

Figure 12.3 Results view displaying calculated metrics . . 128

Figure 12.4 Excerpt of a generated PDF report concerning
calculated metrics results using a pie diagram
(left) and a tube diagram (right) 129

Figure 12.5 Configuration dialog for model smells 130

Figure 12.6 Results view displaying detected model smells
(left) and highlighting of involved elements in
smell Speculative Generality within the graphi-
cal Papyrus editor (right) 131

Figure 12.7 Quick fix mechanism: manually defined refac-
torings (top), actually applicable refactorings
(middle), and manually defined applicable refac-
torings (bottom) 132

Figure 12.8 Parameter input dialog of UML refactoring Pull
Up Attribute . 133

Figure 12.9 Smell analysis during the application of UML
refactoring Pull Up Attribute on attribute Mo-
torbike::power . 134

Figure 12.10 Example UML class model after several model
changes as result of a first model review 135

Figure 13.1 SWM meta model defined in Ecore 138

xx

Figure 13.2 Wizard dialog for the specification of new model
metrics . 139

Figure 13.3 Compositional specification for SWM model met-
ric DPpE (Dynamic Pages per Entity) 141

Figure 13.4 Henshin pattern rule specifying SWM model
metric NDPE . 142

Figure 13.5 Henshin pattern rule specification for SWM model
smell Equally Named Pages 144

Figure 13.6 Specification of SWM model smell Insufficient
Number of Dynamic Pages using metric DPpE
(Dynamic Pages per Entity) 145

Figure 13.7 Wizard dialog for the specification of new model
refactorings . 146

Figure 13.8 Parameter input specification of SWM model
refactoring Rename Page 146

Figure 13.9 Henshin rule specification for the initial pre-
condition check of SWM model refactoring In-
sert Dynamic Pages 148

Figure 13.10 Henshin rule specification for the model change
part of SWM model refactoring Insert Dynamic
Pages . 149

Figure 13.11 Unit specification of composite SWM model
refactoring Create Dynamic Pages for Orphants . 150

Figure 13.12 Manual configuration of refactorings being suit-
able to erase a given model smell 151

Figure 13.13 Manual configuration of potentially inserted
smells after applying a given refactoring 152

Figure 14.1 Personal skills of the participants in experiment
Ex_App . 164

Figure 14.2 Percentages of correct results concerning ex-
periment Ex_App 165

Figure 14.3 Percentages of performed tasks during experi-
ment Ex_App . 165

Figure 14.4 Difficulty scores for the tasks in experiment
Ex_App . 167

Figure 14.5 Personal skills of the participants in experiment
Ex_Spec . 168

Figure 14.6 Evaluation of the helpfulness of the specifica-
tion components of EMF Refactor 170

xxi

L I S T O F TA B L E S

Table 4.1 High-level quality characteristics of the ISO/IEC
9126-1 quality model (taken from [101]) 23

Table 4.2 Relationships of quality characteristics presented
by Fieber et al. [38] to 6C quality goals defined
by Mohagheghi et al. [116] 32

Table 5.1 6C quality aspects affected by UML metrics
(context: Model) 39

Table 5.2 6C quality aspects affected by UML metrics
(context: Package) 40

Table 5.3 6C quality aspects affected by UML metrics
(context: Class) 41

Table 5.4 Possible impacts of class model smells on 6C
quality attributes 47

Table 5.5 Positive impacts of UML refactorings on UML
model smells . 53

Table 5.6 Potential negative impacts of UML refactorings
on UML smells 54

Table 6.1 Possible impacts of UML model smells on 6C
quality attributes 61

Table 6.2 Suitable refactorings to erase specific UML model
smells . 62

Table 6.3 Possible impacts of UML refactorings on UML
model smells . 63

Table 10.1 Results of the comparison 115

Table 11.1 Extension point descriptions for metrics, smells,
and refactorings 121

Table 11.2 Requirements and corresponding implementa-
tion . 124

Table 14.1 Proof-of-concept implementations of metrics,
smells, and refactorings for Ecore, UML2, and
SWM models . 156

Table 14.2 Used specification approaches for UML2 met-
rics, smells, and refactorings 157

Table 14.3 UML2 metrics used for performance and scal-
ability testing 161

Table 14.4 UML2 refactorings used for performance and
scalability testing 163

Table 14.5 Results of the performance tests for metrics
calculation and smell detection 171

xxii

Table 14.6 Results of the performance tests for refactoring
application . 172

xxiii

1
I N T R O D U C T I O N

Achieving high quality is one of today’s challenges in product devel-
opment processes. This is especially true for processes that are con-
cerned with the development of software being intended to make peo-
ple’s lives easier. In modern software development processes, models
become primary artifacts. Consequently, model quality assurance is
of increasing importance for the development of high quality soft-
ware. This leads to a number of general research questions respec-
tively problem statements that should be addressed in this thesis:

• What is model quality? So far, there is no clear notion of model
quality. Existing software quality standards are only partly ap-
plicable.

• How can model quality be assured in a given project? An adaptable
process for performing quality assurance in a structured way is
needed. This also includes the use of adequate tools in a flexible
and integrated manner.

• Which model quality assurance techniques exist and how do they cor-
relate? Correlation means both, relations within the same tech-
nique (such as combinations) and relations between different
techniques (like implications).

In this first chapter, we motivate and discuss the goals of the work.
Then, we summarize the main results as well as the author’s publica-
tions being relevant to this thesis. Finally, we give an overview of the
structure of the thesis and provide recommendations on how to read
its constituent parts.

1.1 motivation and goals

In the paradigm of model-based software development (MBSD), mod-
els play an increasingly important role and become primary artifacts
in the software development process. In particular, this is true for
model-driven software development (MDD) where high code quality
can be reached only if the quality of input models is already high.
As a consequence, software quality and quality assurance frequently

1

leads back to the quality and quality assurance of the involved soft-
ware models.

Models are used for different purposes, e.g., specifying the soft-
ware architecture and design, as input for code implementation or
test case generation, or simply for communication purposes between
several stakeholders within the project. Furthermore, model-based
software projects are often part of the development of safety-critical
embedded systems such as medical systems. In these cases, also safety
aspects have to be addressed. The variety of scenarios demonstrates
that the modeling purpose must be considered when selecting the
corresponding model quality aspects of interest.

In the literature, well-known quality assurance techniques for mod-
els are model metrics and refactorings. They originate from corre-
sponding techniques for software code by lifting them to models. Fur-
thermore, the concept of code smells can be lifted to models, leading
to model smells. However, these techniques are considered in isola-
tion only, i.e., they address specific scenarios only without taking fur-
ther techniques into account in order to provide a more global view
on the quality of the model. Therefore, an integrated approach is
needed in order to perform model quality assurance systematically.

To evaluate the quality of a software product, the use of a well-
defined quality model representing the characteristics of the product
that describe the quality has been established for more than three
decades. However, there is no clear notion of model quality in the lit-
erature and software quality standards like ISO/IEC 9126 and 25010

are only partly applicable. They are intended for complete software
products and systems and not for development artifacts like software
models. Several quality characteristics (e.g., reliability, efficiency, and
security) that have a significant relevance on the quality of software
products can not be considered when reasoning about model quality.
As a consequence, there is still a lack of understanding in terms of
what model quality exactly means.

A widely accepted standard in software modeling is the Unified
Modeling Language (UML). It provides 14 types of diagrams for both,
structural and behavioral models. Here, class diagrams are the mostly
used UML diagram type. Since its adoption in 1997, metrics, smells,
and refactorings for UML models are in the scope of a variety of
researchers. However, except for UML metrics, there are no structured
surveys on these model quality assurance techniques available.

Existing approaches for specifying model refactorings differ heav-
ily in the way refactorings are specified. They mainly focus on smaller
model changes, i.e., larger model refactorings are rarely considered.
However, atomic refactorings are not always performed in isolation.
Often, they are part of a group of refactorings that are all needed to
perform a larger change. Drawing from the experience of code refac-
toring, it was soon clear that refactorings should be distinguished

2

into atomic ones performing primitive changes and composite refac-
torings that are built up from existing ones. Despite the multitude of
model refactoring approaches, the specification of composite model
refactorings is not yet sufficiently supported by existing approaches
in the sense that composite refactorings are consequently built up
from existing ones being developed independently.

Software modeling is mainly performed using CASE tools such as
MagicDraw or IBM Rational Software architect. Moreover, manually
performing quality assurance tasks would be time-consuming and
error-prone. Therefore, it is natural to support model quality assur-
ance as effectively as possible by an appropriate tooling. The tooling
should be integrated into the used CASE tool in a way that all model
quality assurance tasks can be performed directly within this IDE.
This means, that (1) several kinds of editors such as graphical and
textual editors are supported and (2) the user does not have to export
the model and use third-party tools, for example for analyzing it. Fi-
nally, the tooling should be independent from both, the considered
modeling language and the language used for specifying new quality
assurance techniques.

The following section summarizes the main contributions of this
thesis according to the goals and challenges discussed above.

1.2 contributions

The contributions of this thesis can be subdivided into two categories.
On the one hand, the thesis provides several conceptual respectively
theoretical results related to the integration of model metrics, smells,
and refactoring into a well-defined model quality assurance process.
On the other hand, the second category contains results concerning
implementation and tooling issues. The following sections summa-
rize these contributions.

1.2.1 Conceptual results

A major contribution of this thesis is the

definition of an approach for the integration of model

metrics, model smells, and model refactoring into

a structured quality assurance process for software

models that considers project-specific needs.

This syntax-oriented process consists of two sub-processes: First,
dependent on the modeling language and the modeling purpose,
specific quality goals, and hence project- and domain-specific quality
checks and refactorings have to be defined. Quality checks are formu-
lated using model smells which can be specified in terms of model

3

metrics and anti-patterns. Afterwards, the specified quality assurance
process is applied to concrete software models. Based on the outcome
of a static model analysis using the pre-defined model metrics and
smells, appropriate model refactoring steps can be performed. The
techniques should be applied as long as needed in order to obtain a
reasonable model quality. Three scenarios for performing this model
quality assurance process serve as proof-of-concept implementations
and show its applicability, its flexibility, and hence its usefulness.

In our approach, we concentrate on quality aspects to be checked
on the model syntax. These include not only the consistency with the
language syntax definition, but also the conformity with modeling
conventions often defined and adapted to specific software projects.
As a conceptual basis for a Goal-Question-Metrics approach to our
quality assurance process, we refer to six classes of quality goals for
software models identified in a systematic literature review. Based on
these so-called 6C goals we present the

definition of a quality model for model quality

consisting of high-level quality attributes and low-level characteris-
tics. This model represents a further contribution of this thesis.

Since the UML is a widely accepted standard in software model-
ing and subject of a number of research activities, this thesis further
provides an

overview on metrics, smells, and refactorings for UML

class models discussed in the literature, including

structured descriptions of each technique.

Besides the discussion on the various relations to the defined qual-
ity model, we also discuss relationships between selected UML refac-
torings and UML smells. Due to a pragmatic search strategy, we do
not claim the surveys to be complete. However, they are quite com-
prehensive and represent another contribution of this thesis.

As a further contribution of this thesis, we present an

approach for composite model refactoring addressing

the specification of refactoring composition.

The main idea of the approach is to specify composite model refac-
torings by a hierarchy of so-called refactoring units defining some
kind of control structure of a composite and with parameter passing
between different units.

4

1.2.2 Implementation and tooling

A common and widely-used open source technology in model-based
software development is the Eclipse Modeling Framework (EMF). It
extends Eclipse by modeling facilities and allows for defining (meta)
models and modeling languages by means of structured data models.
Furthermore, EMF comes with a very active community providing a
variety of helpful tools. Also due to the comprehensive knowledge in
this domain, another major contribution of this thesis is the

development of a flexible framework for model

quality assurance based on the Eclipse Modeling

Framework (EMF).

The framework has been designed to support a syntax-oriented
model quality assurance process that can be easily adapted to specific
needs in model-based projects (see major conceptual result above).
The entire tool set presented belongs to the Eclipse incubation project
EMF Refactor [47] and is available under the Eclipse public license. We
evaluated the suitability of the tools for supporting the techniques of
the model quality assurance process by performing and analyzing
several experiments and studies.

EMF Refactor supports both the modeler and the reviewer by gen-
erating metrics reports, checking for potential model deficiencies re-
spectively smells, and systematically restructuring models using refac-
torings. Quick fixes such as automatic proposition of refactoring for
occurring smells and information on implications of a selected refac-
toring concerning new model smells widen the provided functional-
ity and support an integrated use of the quality assurance tools.

The main functionality of EMF Refactor is integrated into several
editors. Here, not only standard tree-based EMF instance editors are
supported, but also graphical GMF-based editors as used by Papyrus
UML and textual editors provided by Xtext. Among other function-
alities, each version provides a highlighting of model elements for
smells in the corresponding model view and a preview of upcoming
model changes when performing a refactoring.

Model checks and refactorings can be specified by several speci-
fication mechanisms. The current version of EMF Refactor supports
Java, OCL, and the model transformation language Henshin as pos-
sible specification approaches. Further specification languages can be
inserted using suitable adapters. Finally, metrics can be composed to
more complex metrics and refactorings can be composed by using a
dedicated language named CoMReL (Composite Model Refactoring
Language) based on the fourth conceptual contribution (see above).

5

1.3 relevant publications by the author

The following papers and articles related to this thesis were published
during the doctoral project of the author (in chronological order).

1. Thorsten Arendt, Florian Mantz, Lars Schneider, and Gabriele
Taentzer: Model Refactoring in Eclipse by LTK, EWL, and EMF
Refactor: A Case Study. Proceedings of Model-Driven Software
Evolution, Workshop Models and Evolution (MoDSE-MCCM
2009), co-located with MoDELS 2009, October 4 2009 in Den-
ver, CO, USA.
=⇒ Section 10.3 is an adapted version of this paper.

2. Thorsten Arendt, Pawel Stepien, and Gabriele Taentzer: EMF
Metrics: Specification and Calculation of Model Metrics within the
Eclipse Modeling Framework. Proceedings of 9th BElgian- NEther-
lands software eVOLution seminar (BENEVOL 2010), December
17 2010 in Lille, France.
=⇒ Sections 12.2 and 13.2 are based on this paper.

3. Thorsten Arendt, Matthias Burhenne, and Gabriele Taentzer:
Defining and Checking Model Smells: A Quality Assurance Task for
Models based on the Eclipse Modeling Framework. Proceedings of
9th BElgian-NEtherlands software eVOLution seminar (BENE-
VOL 2010), December 17 2010 in Lille, France.
=⇒ Sections 12.3 and 13.3 are based on this paper.

4. Thorsten Arendt, Florian Mantz, and Gabriele Taentzer: EMF
Refactor: Specification and Application of Model Refactorings within
the Eclipse Modeling Framework. Proceedings of 9th BElgian-NEth-
erlands software eVOLution seminar (BENEVOL 2010), Decem-
ber 17 2010 in Lille, France.
=⇒ Sections 12.4 and 13.4 are based on this paper.

5. Thorsten Arendt, Sieglinde Kranz, Florian Mantz, Nikolaus Reg-
nat, and Gabriele Taentzer: Towards Syntactical Model Quality As-
surance in Industrial Software Development: Process Definition and
Tool Support. Proceedings of Software Engineering 2011, Febru-
ary 21-25 2011 in Karlsruhe, Germany. Volume 183 of LNI, pages
63-74, GI, 2011.
=⇒ Chapters 3 and 12 are adapted versions of this paper.

6. Thorsten Arendt and Gabriele Taentzer: Integration of Smells and
Refactorings within the Eclipse Modeling Framework. Proceedings
of Fifth Workshop on Refactoring Tools (WRT 2012) co-located
with ICSE 2012, June 1 2012 in Rapperswil, Switzerland.
=⇒ Sections 12.4 and 13.5 use parts of this paper.

6

7. Thorsten Arendt and Gabriele Taentzer: Besser modellieren: Qual-
itätssicherung von UML-Modellen. Article in magazine Objektspek-
trum, 06 2012, SIGS DATACOM.
=⇒ Chapters 4 and 12 are elaborated versions of this article.

8. Thorsten Arendt and Gabriele Taentzer: Composite Refactorings
for EMF Models. Technical report, Philipps-Universität Marburg,
FB 12 - Mathematik und Informatik, Marburg, Germany, 2012.
=⇒ Chapter 7 is an adapted versions of this report.

9. Gabriele Taentzer, Thorsten Arendt, Claudia Ermel and Reiko
Heckel: Towards refactoring of rule-based, in-place model transforma-
tion systems. Proceedings of the First Workshop on the Analy-
sis of Model Transformations (AMT) co-located with MoDELS
2012, October 2 2012 in Innsbruck, Austria.
=⇒ Section 6.3 is an adapted version of this paper.

10. Thorsten Arendt and Gabriele Taentzer: A tool environment for
quality assurance based on the Eclipse Modeling Framework. Jour-
nal Automated Software Engineering, Volume 20, Issue 2 (2013),
Page 141-184, Springer, New York.
=⇒ This article is a condensed version of Sections 3.2, 4.2, and
6.1, as well as several sections of Part II.

11. Thorsten Arendt, Gabriele Taentzer and Alexander Weber: Qual-
ity Assurance of Textual Models within Eclipse using OCL and Model
Transformations. Proceedings of 13th International Workshop on
OCL, Model Constraint and Query Languages (OCL) co-located
with MoDELS 2013, September 30 2013 in Miami, CA, USA.
=⇒ Section 6.2 and Chapter 13 are extended versions of this
paper.

Furthermore, the author presented the EMF Refactor at the following
conference events:

1. Thorsten Arendt and Gabriele Taentzer: Improving the Quality of
EMF models using metrics, smells, and refactorings. Tutorial at 8th
European Conference on Modelling Foundations and Applica-
tions (ECMFA 2012), July 2 2012 in Lyngby, Denmark.
=⇒ Section 6.1 and Chapter 12 are extended versions of this
tutorial.

2. Thorsten Arendt: Improve the Quality of your EMF-based Models!
Talk at EclipseCon Europe 2012, October 22 2012 in Ludwigs-
burg, Germany.
=⇒ Chapter 12 is an elaborated version of this talk.

3. Thorsten Arendt, Timo Kehrer and Gabriele Taentzer: Under-
standing Complex Changes and Improving the Quality of UML and
Domain-Specific Models. Tutorial at ACM/IEEE 16th International

7

Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS 2013), September 30 2013 in Miami, CA, USA.
=⇒ Sections 6.1 and 6.2 as well as Chapters 12 and 13 are ex-
tended versions of this tutorial.

Finally, Chapter 5 is a results of three tasks within the project SPES
2020 Software Platform Embedded Systems [2, 88] funded by the German
Federal Ministry of Education and Research from 2009 to 2012.

1.4 how to read this thesis

This thesis is subdivided into two main parts. Part I comprises the
conceptual contributions presented in Section 1.2.1. Here, the struc-
tured process for quality assurance of software models that can be
adapted to project-specific and domain-specific needs is presented.
Moreover, several topics related to this process and corresponding
results are included in this part. Part II presents the second main con-
tribution of this thesis, i.e., the provided tool environment for model
quality assurance in Eclipse (see Section 1.2.2). This part includes top-
ics related to development and evaluation of the tooling as well as
examples for applying and specifying new model quality assurance
techniques. A brief description of each section can be found in the
introductory chapter of the corresponding part. Finally, this thesis
contains several appendices containing comprehensive catalogs with
structured descriptions of metrics, smells, and refactorings for UML
class models as well as study material concerning the evaluation.

Though this thesis can be read in chronological order, different
kinds of readers may read only parts of it without losing the overall
context. However, each reader should start reading Chapter 3 since
the defined process represents the foundation for the subsequent
chapters. Afterwards, the reader may continue as follows:

Project managers respectively quality assurance managers may con-
tinue reading Chapter 4 and (if interested in examples) Chapters 5

and 6. Furthermore, the practical Chapters 12 and 14 may be of inter-
est to this kind of readers.

(Modeling) language designers may continue reading Chapter 4

and the examples in Chapter 5. In particular, the specification Chap-
ters 7 and 13 are of specific interest to this kind of readers.

(UML) modelers may continue reading Chapter 4 and the UML ex-
amples in Chapters 5 and 6. Moreover, the practical Chapters 12, 13,
and 14 may be of interest to this kind of readers.

Finally, Eclipse developers respectively EMF developers may con-
tinue reading the practical chapters of Part II in arbitrary order.

8

Part I

A S T R U C T U R E D Q U A L I T Y A S S U R A N C E
P R O C E S S F O R S O F T WA R E M O D E L S

2
I N T R O D U C T I O N T O PA RT I

The paradigm of model-based software development (MBSD) has be-
come more and more popular since it promises an increase in the ef-
ficiency and quality of software development. In this paradigm, mod-
els play an increasingly important role and become primary artifacts
in the software development process. In particular, this is true for
model-driven software development (MDD) where models are used
directly for automatic code generation. Here, high code quality can
be reached only if the quality of input models is already high. There-
fore, software quality and quality assurance frequently leads back to
the quality and quality assurance of the involved models.

Developers use models for different purposes, e.g., for specifying
the software architecture and design, as input for code implementa-
tion or retrieving information for tests and test case generation. Often
these developers are not on one site, i.e., architects may be located
in Germany and the implementers in India. In these cases, models
are an essential part of developer communication and their quality
influences the quality of the final product to a great extent. In addi-
tion, model-based software projects are often part of the development
of safety critical systems where safety-related aspects need to be ad-
dressed. For example, the safety standard IEC 62304 [39] requires that
for a medical system all intermediate results during the development
process including software models must be of an appropriate quality.

A widely accepted standard in software modeling is the Unified
Modeling Language (UML) [123], a general-purpose language man-
aged by the Object Management Group (OMG). It is a very compre-
hensive and powerful language, but does not cover any particular
method and comes without built-in semantics. On the one hand, this
allows a flexible use. On the other hand, this includes a high risk of
misunderstanding. Without tailoring a project-specific usage of UML
before starting development, practical experience showed that mod-
els can be difficult to understand or even misinterpreted.

In the literature, well-known quality assurance techniques for mod-
els are model metrics and refactorings. They origin from correspond-
ing techniques for software code by lifting them to models. Especially
class models are closely related to class structures in object-oriented
programming languages such as C++ and Java. For behavior models,

11

the relation between models and code is less obvious. Finally, the con-
cept of code smells can be lifted to models, leading to model smells.

However, these techniques are often considered in isolation, i.e.,
they address specific scenarios only without taking further techniques
into account in order to provide a more global view on the qual-
ity of the model. Therefore, an integrated approach is needed in or-
der to perform model quality assurance systematically. To satisfy this
need, this first part of the thesis presents a structured process for

quality assurance of software models that can be adapted to both
project-specific and domain-specific needs. Moreover, we discuss sev-
eral topics related to this process and present corresponding results.

The chapters of Part I contain the following:

Chapter 3 gives an overview on model quality assurance and model
quality assurance techniques and defines two processes for model
quality assurance: a process for the application of project-specific
model quality assurance techniques in ongoing projects and a pro-
cess to specify these project-specific techniques in a structured way.

Chapter 4 defines a quality model for model quality consisting of
high-level quality attributes and low-level characteristics based on a
discussion on quality models for software products in general, their
adaptation to models, and comprehensive definitions of quality as-
pects and characteristics extracted from selected review articles.

Chapter 5 presents an (incomplete but comprehensive) overview
on metrics, smells, and refactorings for UML class models discussed
in literature. For each technique, we cite the main sources, present
structured descriptions of selected examples, and discuss relations to
the quality model discussed in Chapter 4.

Chapter 6 demonstrates three example applications serving as proof-
of-concept evaluation of the quality assurance process defined in Chap-
ter 3. The example cases include UML as general-purpose language,
a domain-specific language for developing simple web applications,
and a DSL for rule-based model transformation systems.

Chapter 7 discusses an approach for the specification of refactoring
composition. It is motivated by the fact that the specification of com-
posite model refactorings is not yet sufficiently supported by existing
approaches, in the sense that composite refactorings are consequently
built up from existing ones being developed independently.

Finally, Chapter 8 concludes and discusses directions for future
work on systematic model quality assurance.

12

3
A S T R U C T U R E D M O D E L Q U A L I T Y A S S U R A N C E
P R O C E S S

Achieving high quality is one of the major challenges on today’s prod-
uct development processes. This is especially true for those processes
that are concerned with the development of software being intended
to make people’s lives easier. According to Sommerville [143], soft-
ware quality management aims at managing the quality of software
and its development process. It can be subdivided into three main
tasks: assuring, planning, and controlling of software quality.

This chapter deals with the definition of a structured model quality
assurance process that concentrates on the syntactical dimension of
model quality. It is structured as follows: first, we give an overview on
model quality assurance and selected model quality assurance tech-
niques in Section 3.1. The following Section 3.2 describes the defined
quality assurance process. Here, Section 3.2.1 presents a process for
the application of project-specific model quality assurance techniques
in ongoing projects. In order to specify these project-specific tech-
niques in a structured way, we define such a process in Section 3.2.2.

3.1 model quality assurance

For defining a structured model quality assurance process we first
give an overview on model quality assurance and selected model
quality assurance techniques.

Quality management can be either product-oriented or process-
oriented. The former perspective means that software artifacts (but
also intermediate results) are checked against predefined quality as-
pects whereas the latter perspective addresses artifacts that are re-
lated to the software development process like methodologies, tools,
guidelines, and standards.

A prominent example for process-oriented quality management
is CMMI (Capability Maturity Model Integration) [25]. CMMI is a
model and de-facto industry standard that consists of best practices
that address the development and maintenance of products and ser-
vices. It covers the life cycle of a product from conception through de-
livery to maintenance and integrates essential bodies of knowledge
for developing products, such as software engineering, systems en-

13

gineering, and acquisition. Furthermore, CMMI is the successor of
the capability maturity model (CMM) for Software that was devel-
oped from 1987 to 1997 at Carnegie Mellon Software Engineering
Institute (SEI) [152]. However, since we consider the quality of soft-
ware models, we do not refer to process-oriented quality management
techniques. Instead, this thesis uses product-oriented model quality
assurance tasks and considers software models as artifacts under ob-
servation.

Since modeling languages often provide at least one graphical view,
model quality can be either considered for this visual representa-
tion(s), i.e., the concrete model syntax, or for the underlying structure,
i.e., the abstract syntax of the model.

Several research papers dealing with the quality of software mod-
els address the concrete syntax level. Here, especially models of the
Unified Modeling Language (UML) [123] are considered since it pro-
vides the concept of views on selected parts of the model, called di-
agrams. In [154] for example, van Elsuwe and Schmedding discuss
three generic metrics being usable to assess information on diagrams
that help on reasoning about their quality. The metrics address the in-
formative content of the diagram, its visual size as well as its complex-
ity. In another work, Störrle reports on the results of three controlled
experiments using compound layouts on requirements analysis mod-
els, i.e., on UML use case, class, and activity diagrams [145]. He ob-
served (1) that the impact of layout quality should be more apparent
in models and diagram types used in earlier life cycle phases and
(2) that good layouts use many different heuristics simultaneously
instead of using them in isolation. Furthermore, Störrle noticed that
novice modelers benefit far more from good layouts than advanced
modelers. However, this thesis concentrates on on the syntactical di-
mension of model quality, i.e., on those quality aspects which can be
checked on the model syntax only.

Quality assurance is the definition of processes and standards that
should lead to high-quality products and the introduction of quality
processes into the manufacturing process [143]. A variety of model
quality assurance techniques exist and are subject of several research
activities. They can be subdivided into two categories. Analytical tech-
niques measure the current quality level of the artifact (in our case the
software model) whereas constructive techniques guarantee for higher
quality when applied during the development of the artifact (in our
case the modeling activity).

In this thesis, we consider the analytical model quality assurance
techniques model metrics and model smells. Metrics can be used to
obtain quantitative information about processes or artifacts like soft-
ware models. Especially for evaluating quality issues metrics are very
helpful. In this context, the use of Goal-Question-Metrics paradigm
(GQM) presented by Basili et al. [9], a mechanism for defining and

14

evaluating a set of quality goals by using measurements (metrics),
has been proven well for the last 20 years. The concept of code smells
has been coined by Kent Beck and Martin Fowler [11, 64] and has
been lifted to models leading to model smells. They represent suspi-
cious model parts that are potential candidates for improvements, i.e.,
they are not synonyms for problems but are worthy of an inspection.

Special kinds of model smells are model clones representing simi-
lar or identical fragments in a model. Again, this concept originates
from the corresponding counterpart on the code side, that is code
respectively software clones. A fair bit of research has been done ad-
dressing several topics on code clones, for example clone prevention,
detection, and deletion. A comprehensive survey of research on soft-
ware clones can be found in [92]. Here, Koschke discusses (among
others) several notions of redundancy and similarity as well as vari-
ous categorizations of clone types. A representative research on the
model side is presented in [146]. Here, Störrle analyzes the concept of
clones in UML domain models, i.e., use case, class, activity, and state
machine models. He establishes a practical definition of model clones
based on a structural analysis of real clones, develops heuristics and
a clone detection algorithm, and presents an implementation of the
approach. However, we do not further follow the concept of model
clones in this thesis in order to narrow its scope to be manageable.

Constructive model quality assurance techniques can be used to
improve the quality of software models. In the following, we discuss
two kinds of constructive techniques, namely modeling guidelines
and model refactoring. A further constructive quality assurance tech-
nique is the structured use of software design patterns [85] for provid-
ing a general reusable solution to a commonly occurring problem in
software design possibly combined with providing syntax-oriented
complex editing operations to increase the convenience of the corre-
sponding model editor [149].

In order to avoid problems with respect to model quality, in partic-
ular model smells, the use of modeling conventions analogue to cod-
ing conventions are appropriate. In [98], Lange et. al. define modeling
conventions as conventions to ensure a uniform manner of modeling
and to prevent for defects. They report on the results of a controlled
experiment to explore the effectiveness of modeling conventions for
UML models with respect to prevention of defects. The results in-
dicate (1) that decreased defect density is attainable at the cost of
increased effort when using modeling conventions, (2) that this trade-
off is stressed if tool support is provided, and (3) that efficient integra-
tion of convention support in the modeling process forms a promis-
ing direction towards preventing defects. Since in this thesis we do
not consider the prevention of inserting model smells, we do not use
this technique in the following. Instead, we consider another construc-

15

tive model quality assurance technique that is usable to correct model
smells in order to improve the model’s quality: model refactoring.

‘Refactoring is the process of changing a software system in such
a way that it does not alter the external behavior of the code yet
improves its internal structure’ [64]. Basically introduced to software
code, refactoring has been successfully lifted to the level of software
models, especially for (UML) class models being closely related to
class structures in object-oriented programming languages such as
C++ and Java. For behavior models, the relation between models and
code, and therefore the adoption of code refactorings to model refac-
torings, is less obvious.

In summary, we use the following model quality assurance tech-
niques in the remainder of this thesis:

• model metrics and model smells as analytical model quality assur-
ance techniques for detecting quality defect, and

• model refactoring as constructive model quality assurance tech-
nique for correcting them.

However, the problem concerning these techniques (respectively
their discussions in literature) is that metrics, smells, and refactor-
ings are used in different kinds of model quality assurance tasks, i.e.,
are considered in isolation. So, the challenge is to combine them to
provide an integrated usage within a structured quality assurance
process for software models. The following section defines such an
integrated process.

3.2 process definitions

The increasing use of model-based or model-driven software devel-
opment processes induces the need for high-quality software models.
Therefore, we propose a model quality assurance process that consists
of two sub-processes: a process for the specification of project-specific
model quality assurance techniques, and a process for applying them
on concrete software models during a model-based software develop-
ment process.

3.2.1 Application process

Figure 3.1 illustrates the process for the application of project-specific
model quality assurance techniques. For a first rough model overview,
a report on model metrics might be helpful. Furthermore, a model
can be checked against the existence (respectively absence) of spec-
ified model smells. Each model smell found has to be interpreted
in order to evaluate whether it should be eliminated by a suitable
model modification (either by a manual model change or a refactor-
ing). However, we have to take into account that also new model

16

smells can be induced by refactorings and care should be taken to
minimize this effect. This check-improve cycle should be performed
as long as needed to get a reasonable model quality.

Calculate

Model Analysis

InterpretationCheck Model

Calculate
Model Metrics

Smells

RefactoringRefactoring Manual ChangeManual Change

Model Modifications

Refactoring Manual Change

Figure 3.1: Process for the application of project-specific model quality as-
surance techniques

The application process can be embedded into several kinds of soft-
ware development process models, for example:

• According to the traditional waterfall model, the application
process can be embedded at several points in time during the
design phase. However, it must be completed before the subse-
quent implementation phase starts.

• In iterative process models such as the spiral model [18], the ap-
plication process should be embedded after each iteration step
in order to analyze and improve the design of the current in-
crement. The same applies to agile methods such as extreme
programming (XP) [10] and Scrum [139].

• In model-driven software development processes, the applica-
tion process should be embedded definitely before the genera-
tion process starts, either the generation of models of the subse-
quent stage, of documentation artifacts, or even code.

Ideally a quality assurance process is fully specified before using
it within model-based software development projects. However, it is
not seldom that the process has to be adapted during the model de-
velopment phase. Our process allows the straight adaptation to new
model checks and refactorings.

17

3.2.2 Specification process

Figure 3.2 shows the process for specifying new model quality assur-
ance techniques. After having identified the intended modeling pur-
pose the most important quality goals are selected. Here, we have to
consider several conditions that influence the selection of significant
quality aspects being the most important ones for modeling in a spe-
cific software project. The first issue to consider is that the selection of
significant quality aspects highly depends on the modeling purpose.
There is a variety of purposes for modeling in software projects. For
example, models can be used for communication purposes between
stakeholders, being customers and requirements engineers or project
managers and software designers. In other projects, software models
may be used for code generation purposes, to generate the applica-
tion code and/or code that is used in tests for implemented software
components. Since modeling purposes are quite different and vary
in several software projects, a quality aspect that is very important
in one software project might be less important in other ones. For
instance, in projects that use software modeling for communication
purposes the comprehensibility of the model might be the most relevant
quality aspect whereas aspects correctness and completeness are more
important for models that are used for the generation of application
or test code, respectively.

Quality
Aspect

Quality
Aspect

Question Question

Metric Metric

Anti Pattern Anti-Pattern

Refactoring Refactoring

Model Smells

Figure 3.2: Process for the specification of project-specific model quality as-
surance techniques

Another factor that influences the significance of a model quality
aspect is the corresponding application domain. This means that soft-
ware models are used in various domains like web applications or
embedded systems having different impacts on the significance of
a certain model quality aspect. For example, for models of safety-
critical embedded systems, correctness is more important than models
of usual web applications.
The preceding discussions show that it is appropriate to set up a

specific model quality assurance process for each software project be-

18

ing dependent on the modeling purpose as well as the corresponding
modeling domain.

In the next step, static syntax checks for these quality aspects are
defined. This is done by formulating questions that should lead to so-
called model smells hinting to model parts that might violate a spe-
cific model quality aspect. Here, we adopt the goal-question-metrics
approach (GQM) that is widely used for defining measurable goals
for quality and has been well established in practice [9]. In our ap-
proach, we consider the syntax of the model in order to give answers
to these questions. Some of these answers can be based on metrics.
Other questions may be better answered by considering specific pat-
terns which can be formulated on the abstract syntax of the model.
However, further static analysis techniques could be incorporated to
find out additional potential model smells. Furthermore, the project-
specific process can (re-)use general metrics and smells as well as spe-
cial metrics and smells specific for the intended modeling purpose.

Refactoring is the technique of choice for fixing a recognized model
smell. A specified smell serves as precondition of at least one model
refactoring that can be used to restructure models in order to improve
model quality aspects but appreciably not influence the semantics of
the model. In this context, it is also recommended to analyze the spec-
ified refactorings whether the application of a certain refactoring may
cause the occurrence of a specific model smell.

Since the process of manual model reviews is very time consuming
and error prone, several tasks of the proposed project-specific model
quality assurance process should be automated as effectively as pos-
sible. The following tasks of the process can be automated:

• Support for the implementation of new model metrics, smells,
and refactorings using several concrete specification languages.

• Calculation of implemented model metrics, detection of imple-
mented model smells, and application of implemented model
refactorings.

• User-friendly support for project-specific configurations of model
metrics, smells, and refactorings.

• Generation of model metrics reports.

• Suggestion of suitable refactorings in case of specific smell oc-
currences.

• Provision of warnings in cases where new model smells come
in by applying a certain refactoring.

Part II of this thesis presents a flexible tool environment for model
metrics reports, smell detection, and refactoring for models that is
based on the Eclipse Modeling Framework (EMF) [144, 44].

19

4
M O D E L Q U A L I T Y A N D M O D E L Q U A L I T Y A S P E C T S

To evaluate the quality of a software product the use of a well-defined
quality model representing the characteristics of the product that de-
scribe the quality has been established for more than three decades.
The objective of this chapter is to define a quality model for model
quality consisting of high-level quality attributes and low-level qual-
ity characteristics which condenses the mainly discussed topics in
research literature. In the following sections, we first discuss quality
models for software products in common and their adaptation to soft-
ware models. Then, we present comprehensive definitions of quality
aspects and characteristics extracted from selected review articles. Fi-
nally, we develop a quality model for model quality based on these
articles which serves as basis for several parts in the remaining chap-
ters of this thesis.

4.1 from software quality to model quality

In this section, we first present several quality models for software
products. Afterwards, we discuss related work on the quality of soft-
ware models, especially models of the Unified Modeling Language
(UML) [123].

4.1.1 Software quality models

The development of high-quality products is a broadly discussed re-
search topic throughout the last 40 years. In the 1970s and 1980s,
several quality models for software products gradually evolved (for
example, McCall Model, Boehm Model, and FURPS/FURPS+ Model)
resulting in the quality model specified in the ISO/IEC 9126 standard
which was first established in 1991. The following paragraphs shortly
describe the core concepts of these quality models and summarize
the explanations taken from [74].

The McCall Model

One of the first quality models for software products representing a
corner stone for today’s quality models was established by Jim Mc-

21

Call et al. in 1977 [112]. It consists of 11 high-level quality factors
(maintainability, flexibility, testability, portability, reusability, interoperabil-
ity, correctness, reliability, efficiency, integrity, and usability) reflecting
both the user’s and the developer’s view which are classified in three
major types (product revision, transition, and operations).

Each quality factor is positively influenced by a set of quality crite-
ria whereby each criterion in turn can influence a number of quality
factors. The quality model defines altogether 23 quality criteria like
modularity and storage efficiency and 32 relations between high-level
quality factors and low-level criteria. Further major contributions of
the McCall Model are the relationships created between quality char-
acteristics and metrics to concretely measure quality criteria.

The Boehm Model

In 1978, Barry Boehm et al. [19] presented a quality model for soft-
ware products that also addresses hardware characteristics. Similar
to the McCall Model this model specifies quality characteristics in a
hierarchical structure. The focus of the Boehm Model is on maintain-
ability being one of the three high-level quality characteristics (as-is
usability 1, maintainability, and portability).

On the intermediate level, the Boehm Model includes seven quality
factors (portability, reliability, efficiency, usability, testability, understand-
ability, and flexibility) which are further sub-divided into 15 primitive
characteristics (for example, device independence and structuredness) to
provide the foundation for defining quality metrics.

The FURPS/FURPS+ Model

Another quality model for software products is the FURPS/FURPS+
Model originally presented by Robert Grady at Hewlett Packard [77,
76]. This model is organized quite differently from either McCall
Model or Boehm Model.

The FURPS/FURPS+ Model provides five general categories being
of two different types according to the user’s requirements: functional
requirements defined by input and expected output (Functionality)
and non-functional requirements (Usability, Reliability, Performance,
and Supportability). Finally, more than 30 quality characteristics (like
aesthetics and modifiability) again form a hierarchy similar to the mod-
els discussed before.

The ISO/IEC 9126-1 (ISO/IEC 25010) Quality Model

To overcome problems and uncertainties with the diversity of the de-
scribed quality models the International Organization for Standard-
ization (ISO) [42] and the International Electrotechnical Commission

1 This is the main focus of the McCall Model.

22

(IEC) [26] developed a standard quality model for software products.
The ISO/IEC 9126-1 standard Software engineering – Product quality
– Part 1: Quality model [41] was first published in 1991 and slightly
enhanced in 2001.

Characteristic Description

Functionality This quality characteristic describes the capabil-
ity of the software product to provide functions
which meet stated and implied needs when the
software is used under specified conditions (what
the software does to fulfill needs).

Reliability This quality characteristic describes the capability
of the software product to maintain its level of
performance under stated conditions for a stated
period of time.

Usability This quality characteristic describes the capa-
bility of the software product to be under-
stood, learned, used and attractive to the user,
when used under specified conditions (the effort
needed for use).

Efficiency This quality characteristic describes the capability
of the software product to provide appropriate
performance, relative to the amount of resources
used, under stated conditions.

Maintainability This quality characteristic describes the capability
of the software product to be modified. Modifica-
tions may include corrections, improvements or
adaptations of the software to changes in the envi-
ronment and in the requirements and functional
specifications (the effort needed to be modified).

Portability This quality characteristic describes the capabil-
ity of the software product to be transferred
from one environment to another. The environ-
ment may include organizational, hardware or
software environment.

Table 4.1: High-level quality characteristics of the ISO/IEC 9126-1 quality
model (taken from [101])

In the ISO/IEC 9126-1 quality model, the totality of software prod-
uct quality attributes are classified in a hierarchical tree structure of
characteristics and sub characteristics. The standard specifies six in-
dependent, not directly measurable high-level quality characteristics
as described in Table 4.1. They are further divided into 21 sub charac-
teristics (respectively quality criteria) as shown in Figure 4.1.

23

Figure 4.1: The ISO/IEC 9126-1 quality model

In 2011, ISO/IEC 9126-1 has been revised by the new ISO/IEC
25010:2011 standard Systems and software engineering – Systems and
software Quality Requirements and Evaluation (SQuaRE) – System and
software quality models [40]. However, the vast majority of research lit-
erate and software economy still focus on the ISO/IEC 9126-1 quality
model since it represents the commonly accepted state-of-the-art of
software product quality specifications.

4.1.2 Software model quality

As demonstrated in the previous section, there has been a great deal
on research on software quality, especially on the quality on software
code. Since in modern software development processes models be-
come the main artifacts, reasoning about software quality often leads
back to reasoning about the quality of the involved software models.
However, there has been relatively little work on model quality ba-
sically caused by the lack of an understanding what model quality
exactly means.

Existing knowledge on software quality as presented in the previ-
ous section can be applied on model quality to a limited extent only.
There are significant differences between source code and software
models, for example different levels of abstraction or a different use
with respect to execution (mostly, models are not intended to be exe-
cutable). Therefore, several quality characteristics having a significant
relevance for the quality of software products can not be considered
when reasoning about model quality (for example, quality character-
istics Reliability, Efficiency, and Security).

24

The following paragraphs give an overview on the related work
on model quality in model-based software development in general
and specifically when modeling with the Unified Modeling Language
(UML) [123].

Model quality in model-based software development

In a systematic literature review (SLR) following the guidelines pre-
sented in [87], Mohegheghi et al. analyzed 40 primary studies focused
on model quality within the domain of model-based and model-driven
software development [116]. The analyzed studies have been pub-
lished between 2000 and 2007; their sources include books, journals,
conference and workshop proceedings, PhD theses, and online publi-
cations. The following listing shows the main results of the SLR:

• The authors identified six main quality goals: Correctness, Com-
pleteness, Consistency, Comprehensibility, Confinement, and Change-
ability. We discuss these so-called 6C Goals in more detail in Sec-
tion 4.2.1.

• Best practices with respect to the development process are:

– Use of a model-based development process with ongoing
model analyses during reviews using mechanisms like met-
rics. The quality assurance process presented in Chapter 3

refers to this recommendation.

– Use of modeling guidelines to avoid syntactical and seman-
tical errors and verification of the proper use, for example
by using checklists.

– Use of a One-Diagram-Strategy when using modeling lan-
guages which provide multiple diagram views like the UML
to avoid misunderstandings, incomprehensibilities, and in-
consistencies.

• Best practices with respect to formal methods and automation are:

– Use of formal models to provide precise modeling, formal
analyses and proofs, execution, and generation.

– Use of domain-specific languages or UML extensions to avoid
incorrect models by encoding domain-specific concepts and
rules.

– Use of generation facilities to generate models from other
ones in order to improve consistency between models and
completeness of the resulting model.

• The most models being discussed in literature are UML models.

The last result leads to another SLR present in the following section.

25

Quality of UML models

A SLR specifically dedicated to the quality of conceptual models writ-
ten in UML is presented by Genero et al. in [73]. In this SLR, the
authors extracted and analyzed altogether 266 peer-reviewed papers
published between 1997 and 2009. The main results of this SLR are:

• There is no clear view of the real state of the field, " . . . although
quality of models . . . is a ’hot topic’ that needs further investiga-
tion [157]."

• More than half of the research concentrates on semantic consis-
tency (113 out of 266 papers). We discuss this result in more
detail later on in this section.

• The application of quality assurance techniques being well es-
tablished for software code (like testing, analysis, and inspec-
tion) in the context of UML models is still in an ’embryonic
phase’. However, more than 75% of the extracted papers deal
with UML quality assurance techniques and the evaluation of
UML model quality.

• The type of UML diagram that has been studied most is the
class diagram (83 out of 163 papers dealing with models of spe-
cific diagram types; being 50.9%).

One research question examined in the SLR addresses the type of
quality which is covered in the corresponding paper(s). However, the
authors do not use a quality model specific to UML. Instead, they
use a mixture of quality characteristics from ISO/IEC 9126 and those
drawn from selected papers (without giving concrete references).

As mentioned above, one result of the SLR is that semantic con-
sistency is the quality characteristic which has been researched most.
An overview on this specific topic can be found in the SLR performed
by Lucas et al. [102]. Here, the authors reviewed 44 papers published
between 2001 and 2007 focusing only on consistency within UML
models. Their conclusion is that UML consistency is a ’highly active
and promising line of research’ but there are still some gaps being
not addressed in literature.

One of the prominent researches in this field is done in the work of
Alexander Egyed [33, 34]. Here, mainly (in)consistencies across two
or more UML diagrams that makes up a complete UML model are
addressed. However, this work differs on the approach presented in
this thesis in several facts. First, the majority of considered inconsis-
tencies represent either violated well-formedness rules respectively
constraints (like a message in a sequence diagram having no corre-
sponding class operation). Second, several considered inconsistencies
should be better addressed by the UML language definition (for ex-
ample, the need for a referenced concrete class when modeling a life-

26

line in a sequence diagram) leading back to violated constraints men-
tioned above instead of representing model smells in the sense of this
thesis. Finally, the author concentrates on an approach for ’quickly ...
deciding what consistency rules to evaluate when a model changes’
while the smell analysis presented in this thesis is neither performed
during modeling nor is it time critical.

The results of the SLR performed by Genero et al. [73] also show
that more than 90% of the addressed quality types correspond to
five of the main model quality characteristics extracted in the SLR
performed by Mohagheghi et al. [116] as presented in the previous
section (the 6C Goals). These are (in the order of significance): Consis-
tency, Comprehensibility, Correctness, Changeability, and Completeness.

As a consequence of using a mixture of model quality characteris-
tics (see above), Genero et al. state that there is no consensus on the
quality characteristics addressed nor on their definitions (even not in
the book by Bhuvan Unhelkar [151]). They extracted only one quality
model for UML model quality that has been proposed in literature
leading us to another related work in the field of model quality.

In the work of Christian F.J. Lange [95, 97], a quality model is de-
fined which is specific for UML modeling. The purpose of this quality
model is to provide guidance in selecting metrics and rules to assess
the quality of UML models. These concepts are closely related to the
concepts used in this thesis, however the work (1) concentrates on the
quality of UML models only and (2) does not use any techniques like
refactorings to eliminate quality defects respectively model smells.

The quality model presented in [97] consists of four levels. The first
two levels represent two Usages (development and maintenance) and
eight Purposes of software models (like communication and code gener-
ation). The third level of the quality model contains 12 inherent quality
characteristics (like complexity, detailedness, and aesthetics) whereas the
fourth level represents metrics and rules to measure these character-
istics. In the resulting quality model, purposes are related to usages,
quality characteristics are related to purposes, and metrics respec-
tively rules are related to quality characteristics. However, the quality
model implies several imprecise facts which are hard to understand
and therefore at least worthy to discuss. First, the relations between
the purpose of modeling and the use of the models form a total func-
tion in a sense that each purpose is related to exactly one use. This is
quite unusual since, for example, models which are used to compre-
hend a system (purpose comprehension) my occur in both the develop-
ment and the maintenance phase. Second, also the relation between
quality characteristics and purposes seems to be incomplete. Here,
the missing relation between characteristic communicativeness and pur-
pose communication is an obvious example. Third, several metrics are
considered concretely (like DIT and NCU) whereas other metrics are
clustered (like ratios and code matching) making a relation between

27

such a cluster and the quality characteristic which can be measured
by it very hard. Similar observations can be made when looking at
the rules considered in the fourth level of the quality model. Here,
concrete defects like Multiple Definitions of Classes with Equal Names
as well as clustered defects like Adherence to Naming Conventions are
addressed. Nevertheless, the work by Christian F.J. Lange give inspi-
rations within several parts of this thesis.

4.2 model quality aspects

This section presents the core concepts of two articles concerning
model quality characteristics in the context of a model-based software
development process. These concepts serve as a basis for the develop-
ment of a quality model for model quality which is presented in the
subsequent section.

4.2.1 6C model quality goals

In [116], Mohegheghi et al. present the results of a systematic litera-
ture review (SLR) discussing model quality in model-based software
development according to the guidelines presented in [87]. Among
others, the purpose of the SLR was to identify what model quality
means, i.e., which quality goals are defined in literature. The review
was performed systematically by searching relevant publication chan-
nels for papers published from 2000 to 2007. From 40 studies covered
in the review, the authors extracted six classes of quality goals in
model-based software development, the so-called 6C goals. They state
that other quality goals discussed in literature, like conformity and
simplicity, can be satisfied if the 6C goals are in place. The remainder
of this section shortly introduces the identified 6C goals.

correctness : A model is correct if it includes the right elements
and correct relations between them and, what is most important,
if it includes correct statements about the domain. Furthermore,
a model must not violate rules and conventions. This definition
includes syntactic correctness relative to the modeling language
as well as semantic correctness related to the understanding of
the domain.

completeness : A model is complete if it has all necessary infor-
mation that is relevant, and if it is detailed enough according to
the purpose of modeling. For example, requirement models are
said to be complete when they specify all the black-box behavior
of the modeled entity, and when they do not include anything
that is not in the real world.

28

consistency : A model is consistent if there are no contradictions
within. This definition covers horizontal consistency concerning
models/diagrams on the same level of abstraction, vertical con-
sistency concerning modeled aspects on different levels of ab-
straction as well as semantic consistency concerning the meaning
of the same element in different models or diagrams.

comprehensibility : A model is comprehensible if it is under-
standable by the intended users, either human users or tools.
In most of the literature, the focus is on comprehensibility by
humans including aspects like aesthetics of a diagram, model
simplicity or complexity, and the use of the correct type of di-
agram for the intended audience. Several authors also call this
goals pragmatic quality.

confinement : A model is confined if it agrees with the modeling
purpose and the type of system. This definition also includes
relevant diagrams on the right abstraction level. Furthermore, a
confined model does not have unnecessary information and is
not more complex or detailed than necessary. Developing the
right model for a system or purpose of a given kind also de-
pends on selecting the right modeling language.

changeability : A model is changeable if it can be evolved rapidly
and continuously. This is important since both the domain and
its understanding as well as requirements of the system evolve
with time. Furthermore, changeability should be supported by
modeling languages and modeling tools as well.

4.2.2 A taxonomy of model quality characteristics

In another article concerning model quality in model-based software
development, Fieber et al. present a taxonomy of model quality as-
pects [38]. For a better differentiation from the 6C goals recalled in
the previous section, the quality aspects presented by Fieber et al.
are referred to as quality characteristics in the following. The following
paragraphs describe selected model characteristics similar to the 6C
goals described above.

presentation : How good is the visual perception and acceptance
by the user? How good is the layout of a diagram? How many
elements are displayed in a diagram?

simplicity : Is a model too complex? Is it possible to simplify model
structures? Is the model complexity necessary? Simplicity ad-
dresses the aspect of how complex something is modeled. A
model should not be more complex than required. Some fea-
tures of a model can be expressed using different kinds of struc-
tures without changing the semantics or precision. In case of

29

behavior models, simplicity can also be understood as the op-
posite of control flow complexity. Another interpretation of this
quality aspect is related to the purpose of the model. Anything
that does not contribute to proper modeling purpose should not
be displayed.

conformity : Are all naming conventions respected? Are any mod-
eling conventions violated? Conformity means the conformance
to modeling standards, e.g., all attributes in a class diagram
have to be named in camel case2.

cohesion/modular design (modularity): Does each model
element have a well-defined responsibility? Are modeled fea-
tures reusable in other projects? Cohesion and modular design
are strongly related to the coupling of model elements. While
cohesion is related to dependent system aspects, the modular
design is related to technical independent aspects or indepen-
dent aspects with regards to content. For example, the fact that
security is modeled in one component is addressed by the cohe-
sion aspect. In contrast, modular design requires that each class
has only one role of responsibility.

redundancy : Is the used redundancy in the model mandatory?
On the one hand, redundancy in models should be reduced,
because redundancy is always error-prone. On the other hand,
some controlled redundancy can be useful, e.g., for test-code
generation. Fieber et al. give an example where they use state
charts as input for the application-code generator and sequence
diagrams as input for the test-code generator.

semantic adequacy : Does the model use a proper modeling lan-
guage? Are adequate elements or diagrams used for modeling a
specific aspect? Some aspects of a model can be modeled using
different kinds of diagrams or modeling languages. If this kind
of diagram fits the modeled aspect, it is a question of semantic
adequacy.

correctness : Is a model semantically and syntactically correct?
For example, if an object model uses an instance of an abstract
class this violates the correctness. If a model element is useless,
that may be a semantical error in the model.

precision : How detailed are the relevant aspects of the system
described? Precision of a model concerns how only relevant
features of the domain or other artifacts are addressed by the
model. In a precise model each omitted feature of the original

2 A naming convention which is common practice in Java. It uses medial capitals, one
example is: WindowAdapter.

30

aspect is in fact irrelevant for the current development phase or
modeling purpose.

completeness wrt. preceding phases Are all requirements com-
pletely covered by the model? Are all information from the pre-
ceding phase in the model chain completely transfered to the
correct phase?

completeness wrt. subsequent phases This model character-
istics means that the model contains all necessary information
to deduce or generate the artifacts of the subsequent phase. In
fact, this is a semantic characteristic related to models of one
level in the model chain.

traceability Traceability is a relationship between models across
multiple stages. Changes in corresponding artifacts can be traced
in order to get statements about effect and effort of necessary
changes. By using traceability statements, the completeness wrt.
preceding phases can be determined, for example.

changeability Is is possible to change respectively evolve the model
in an easy way? Is it possible to reuse the model respectively
parts of the model in other projects? Changeability can fur-
ther be sub-divided in aspects maintainability, extensibility, and
reusability.

4.3 a quality model for model quality

In this section, we develop a quality model for model quality based
on the concepts presented in the previous section. We use this quality
model later on in this thesis, for example in Chapters 5 and 6.

To combine the concepts of the presented articles, we analyzed the
model characteristics presented in [38] with respect to their relation-
ships to the 6C goals defined in [116]. General relation: Our percep-
tion is that model characteristics by Fieber et al. are more specific
than corresponding 6C goals. In more detail, we detected that some
model characteristics represent partial definitions of certain 6C goals
whereas other just influence some of them. Table 4.2 presents the re-
sults of this analysis. An entry D in cell (i,j) denotes that model char-
acteristic j represents a (partial) definition of goal i. An entry I in cell
(i,j) indicates that model characteristic j influences goal i. This matrix
is helpful in matching quality assurance techniques to specific model
quality goals as presented in Chapter 5.

As shown in Table 4.2 there are some characteristics used by Fieber
et al. that are synonyms or partial definitions of corresponding 6C
goals. Conformity in the sense of Fieber et al. can be a synonym for
syntactic correctness. By semantic adequacy Fieber et al. address confine-
ment as goal. Furthermore, there are characteristics which are com-

31

parable to equally called quality goals (correctness, completeness, and
changeability).

Quality Characteristics

6C Goals Pr
es

en
ta

tio
n

Si
m

pl
ic

ity

C
on

fo
rm

ity

C
oh

es
io

n/
M

od
ul

ar
D

es
ig

n
(M

od
ul

ar
ity

)

R
ed

un
da

nc
y

Se
m

an
tic

A
de

qu
ac

y

C
or

re
ct

ne
ss

Pr
ec

is
io

n

C
om

pl
et

en
es

s
w

rt
.p

re
ce

di
ng

ph
as

es

C
om

pl
et

en
es

s
w

rt
.s

ub
se

qu
en

tp
ha

se
s

Tr
ac

ea
bi

lit
y

C
ha

ng
ea

bi
lit

y

Correctness D I I D I

Completeness I D D I

Consistency I I

Comprehens. I I I I I

Confinement I D I

Changeability I I I D

Table 4.2: Relationships of quality characteristics presented by Fieber et
al. [38] to 6C quality goals defined by Mohagheghi et al. [116]

Nevertheless, Fieber et al. define model characteristics which do
not define but just influence 6C goals. First, it is obvious that char-
acteristic presentation only influences goal comprehensibility. Simplicity
however influences comprehensibility since a complex model is hard to
understand, goal confinement since a complex model might be a hint
to a wrong level of abstraction or a wrongly selected modeling lan-
guage, and goal changeability since complex models are hard to evolve.
Fieber’s Cohesion/Modular Design (Modularity) represents a technique
that influences correctness since an incorrect assignment of a model el-
ement to a module might not reflect the real world’s aspect and goal
comprehensibility since an incorrect assignment of a model element to
a module might lead to misunderstandings. Redundant model parts
can be seen as incorrect modeling since they do not reflect the mod-
eled aspect of the real world when single aspects are represented
multiply. They may lead to contradictions in the model and may be
harder to understand and to maintain. An imprecise model might be
neither correct nor complete. Furthermore, this may be a hint to a
disagreement with the modeling purpose or the current level of ab-

32

straction. Last but not least, model parts that can not be traced may
be hints to an incomplete model and may lead to contradictions and
misunderstandings and are harder to maintain.

Figure 4.2: A quality model for model quality

Based on Table 4.2 and the discussion above a corresponding qual-
ity model for model quality can be derived as shown in Figure 4.2.
Here, the 6C goals represent the center of the model while the quality
characteristics on their right and left influence the associated goal(s)
to some extent. For simplicity reasons, synonyms and partial defini-
tions as discussed above are left out.

The relations presented in Table 4.2 and Figure 4.2 show that the
6C goals are not disjoint in nature. For example, redundant model
parts influence both, goal comprehensibility and goal changeability. Fur-
thermore, the 6C goals my influence each other. For example, it is
easy to see that incorrect model parts are also hard to understand.
In this case, a reduced quality with respect to a certain quality goal
(correctness) also influences another one (comprehensibility) in the same
negative way (type A). On the other hand, the more complete a model
is, the more complex it gets. In this case, improving a certain quality
goal (completeness) may influence another one (comprehensibility) in the
opposite direction (type B).

Figure 4.3 illustrates these potential dependencies between 6C goals
from an abstract view. It shows that for dependencies of type A the

33

Correctness

Completeness

Consistency

Comprehensibility

Confinement

Changeability

Figure 4.3: Abstract illustration of mutual dependencies between 6C goals

overall quality of the model is reduced (respectively improved), i.e.,
the inner area is getting smaller (respectively bigger). The influence
of dependencies of type B (one edge is shifted outwards, the other
one is shifted inwards) on the overall model quality can not exactly
be determined. For this reason, it is recommended to prioritize the
quality goals with respect to the modeling purpose and domain as
discussed in Section 3.2.2.

34

5
S E L E C T E D M O D E L Q U A L I T Y A S S U R A N C E
T E C H N I Q U E S

The Unified Modeling Language (UML) [123] is a general-purpose
modeling language in the field of object-oriented software engineer-
ing that is standardized by the Object Management Group (OMG).
Since its adoption in 1997 it has become the mostly used MOF-based
modeling language [140]. The UML provides 14 types of diagrams di-
vided into two categories. Seven diagram types represent structural
information, and the other seven represent general types of behavior,
including four that represent different aspects of interactions.

The structured quality assurance process presented in Chapter 3

uses the quality assurance techniques model metrics and model smells
for analyzing quality aspects, and model refactorings for improving
them while not changing the semantics respectively the meaning of
the model. Metrics, smells, and refactorings for UML models are in
the scope of a variety of researchers during the last 15 years.

In this section, we give an overview on these techniques for UML
class models being developed and discussed in literature from 1997

to 2009. We concentrate on class models for two reasons: first, be-
cause class diagrams are the mostly used UML diagram type [29],
and second, since the literature search has been performed as part of
a collaboration with Siemens Corporate Technology [142] in the con-
text of the SPES 2020 Software Platform Embedded Systems [2, 88] project
funded by the German Federal Ministry of Education and Research
from November 2009 to January 2012. We start with an overview on
metrics, continue with a summary on smells, and finally present a
survey on refactorings for UML class models. Note that since these
research fields are very broad and active, we consequently do not
claim the overviews to be complete.

For each technique, we first present an overview on the total num-
bers and main sources of the corresponding technique. Then, we
present structured descriptions of selected techniques and discuss re-
lations to the quality model discussed in Section 4.3. Comprehensive
catalogs with structured descriptions of all techniques found in liter-
ature can be found in Appendices A to E of this thesis.

35

5.1 metrics for uml class models

The use of metrics to obtain quantitative information about software
development processes and artifact has been proven well for the last
30 years. Especially for evaluating quality issues metrics are very use-
ful which lead to a systematic approach (Goal-Question-Metrics Ap-
proach – GQM) presented by Basili et al. in 1994 [9]. Here, they start
with the following motivation for the use of metrics:

As with any engineering discipline, software development
requires a measurement mechanism for feedback and eval-
uation. Measurement is a mechanism for creating a corpo-
rate memory and an aid in answering a variety of ques-
tions associated with the enactment of any software pro-
cess.

In this section, we give a brief overview on the research on metrics
being discussed in literature for measuring quality issues of UML
class models. We further present some descriptions of selected met-
rics and discuss potential relations to the quality aspects discussed in
Chapter 4 of this thesis.

5.1.1 An overview on UML class model metrics

The evaluation of UML design models using appropriate metrics is a
very active research field in the the 2000s. Here, the majority of UML
metrics are based on the object-oriented design metrics developed
during the 1990s, for example by Chidamber and Kemerer [24] but
also in [100, 109, 23, 110].

Figure 5.1: Extracted UML class metrics with respect to the contextual type

36

In a (non-systematic) literature search we concentrated on metrics
for UML class diagrams and extracted altogether 98 metrics. These
metrics are classified with respect to the contextual type, i.e., the UML
meta model element type the metric is calculated on. As can be seen
in Figure 5.1, the majority of UML class model metrics is defined for
the context type class (49 metrics, respectively 50%).

Figure 5.2: Extracted basic and complex UML class model metrics

Furthermore, we distinguish between basic and complex metrics.
This means that the definition of a complex metric might rely on
one or more basic metrics. Appendix A presents all 46 basic and
52 complex metrics in a comprehensive catalog. Figure 5.2 shows an
overview on the basic and complex UML class model metrics.

One of the main research on UML metrics is done by Marcela Gen-
ero et al. [69, 70, 71, 72]. In this work, more than 60 metrics for UML
class models are discussed. Further main sources concerning UML
class model metrics are [105, 84, 86]. During the literature search we
further identified 6 metrics for UML use case models and 6 metrics
for UML state machines. Here, the main sources are [105] (for use
case models) and [115] (for state machines).

5.1.2 Selected UML class model metrics

In this section, we present a selection of complex model metrics found
in literature. We describe one metric for each context type presented
in Figure 5.1 (model, package, and class) as representative. For each
metric its name, the context type, a short description, the range of val-
ues, and a potential interpretation (including assignments to quality
aspects they can measure) are given. The definition of a complex met-
ric might rely on one or more basic metrics. Detailed descriptions of
the complex metrics as well as a comprehensive list of basic metrics
can be found in the corresponding catalog in Appendix A.

37

UML class model metric AvsC

context : Model

description : Relation between the number of attributes and num-
ber of classes [71]. It is defined as AvsC = (NAM

NAM+NCM)2 where
NAM is the total number of attributes in the model, NCM is the
total number of classes in the model, and (NAM+NCM) > 0.

range : 0 6 AvsC < 1

interpretation : If the value is higher, model classes have more
attributes and the model can be considered to be more com-
plex (affected quality attribute Comprehensibility). It is also pos-
sible that the model contains unnecessary information and does
therefore not correspond to the modeling purpose (Confinement).
On the other hand, a lower value could be a hint for relevant but
missing information (affected quality attribute Completeness).

UML class model metric A

context : Package

description : Ratio between number of abstract classes (and inter-
faces) and total number of classes within the package (abstract-
ness) [84, 109, 110]. It is defined as A = NACP+NIP

NCP+NIP where
NACP is the number of abstract classes within the package, NIP

is the number of interfaces within the package, and NCP is the
number of classes within the package.

range : 0 6 A 6 1

interpretation : A higher value indicates a heavier use of abstract
classes and interfaces making the model harder to understand
(affects quality attribute Comprehensibility). This could be inter-
preted differentially. First, the modeler(s) could use the UML
language feature of abstract classes respectively interfaces too
exhaustively and therefore not in sync with the modeling pur-
pose (affected quality attributes Consistency and Confinement).
Second, classes could be marked as abstract by mistake (Cor-
rectness). Third, a high abstractness value could be a hint for
relevant but missing concrete classes (affected quality attribute
Completeness).

UML model metric CBC

context : Class

description : Number of attributes and associations with class type
(Coupling between classes) [86]. It is defined as CBC = DAC+

NAC where DAC is the number of attributes having another

38

class as type and NAC is the number of associations to other
classes.

range : 0 6 CBC 6 (NATC+NASC) (total number of attributes +
total number of associations)

interpretation : A higher value indicates that the class is stronger
coupled to other classes leading to a more complex part of the
model which is harder to understand than other ones (quality
attribute Comprehensibility). Since such a class bears special re-
sponsibilities it is also harder to maintain (Changeability). How-
ever, a high CBC value could be a hint that these responsibilities
are modeled by mistake (quality attribute Correctness).

5.1.3 Affected quality aspects

The following Tables 5.1 to 5.3 show the assignments of the 52 com-
plex class model metrics to the quality aspects they measure.

6C quality attributes

UML metric; context: Model C
or

re
ct

ne
ss

C
om

pl
et

en
es

s

C
on

si
st

en
cy

C
om

pr
eh

en
si

b.

C
on

fin
em

en
t

C
ha

ng
ea

bi
lit

y

01. AGvsC × ×
02. ANA × × × ×
03. AvsC × × ×
04. AScsC × × × × × ×
05. DEPvsC × × × ×
06. GEvsC × × ×
07. MaxDIT ×
08. MaxHAgg ×
09. MEvsC × × ×
10. MGH × ×
11. MMI × × ×
12. OA3 × ×
13. OA4 × ×
14. OA5 × ×
15. OA6 × ×
16. OA7 × ×

Table 5.1: 6C quality aspects affected by UML metrics (context: Model)

39

6C quality attributes

UML metric; context: Package C
or

re
ct

ne
ss

C
om

pl
et

en
es

s

C
on

si
st

en
cy

C
om

pr
eh

en
si

b.

C
on

fin
em

en
t

C
ha

ng
ea

bi
lit

y

01. A × × × × ×
02. AHF × × ×
03. AIF × × × ×
04. Ca × × × ×
05. Ce × × × ×
06. DN × ×
07. DNH × ×
08. H × × ×
09. I × × × ×
10. MHF × × ×
11. MIF × × × ×
12. NAVCP × × × × × ×
13. PF × × ×
14. PK1 × × × ×
15. PK2 × × × ×
16. PK3 × × × ×

Table 5.2: 6C quality aspects affected by UML metrics (context: Package)

Note that these assignments are not substantiated by solid evi-
dence, for example by performing empirical studies. Such evaluation
is out of scope of this thesis. Here, we refer to the corresponding
sources of the extracted UML class model metrics.

We summarize the assignments of the 52 complex metrics extracted
from literature to quality aspects they can measure in Figure 5.3 on
page 42. The most affected quality aspect is Comprehensibility (46 met-
rics respectively 88.5%). This is due to the fact that the majority of
metrics is concerned with the complexity of the corresponding model
element. The higher the complexity is, the harder is it to understand
the model respectively the modeled part.

40

6C quality attributes

UML metric; context: Class C
or

re
ct

ne
ss

C
om

pl
et

en
es

s

C
on

si
st

en
cy

C
om

pr
eh

en
si

bi
lit

y

C
on

fin
em

en
t

C
ha

ng
ea

bi
lit

y

01. APPM × × × ×
02. CBC × × ×
03. CBO × × × ×
04. CL1 ×
05. CL2 ×
06. DAM × × ×
07. DCC × × × ×
08. DIT ×
09. HAgg ×
10. MAgg ×
11. MFA × × × ×
12. NASC × × × ×
13. NATC2 × × ×
14. NDepIn × × × ×
15. NDepOut × × × ×
16. NP ×
17. NW ×
18. RFC × × ×
19. SIX × × × ×
20. WMC × × ×

Table 5.3: 6C quality aspects affected by UML metrics (context: Class)

5.2 smells for uml class models

Model smells occur in model parts that are potential candidates for
improvements, i.e., they are not synonyms for problems but are wor-
thy of an inspection. The term smell is adopted from the concept of
code smell and lifted to models leading to model smells. The concept

41

Figure 5.3: Summary of affected quality attributes when interpreting com-
plex UML class model metrics

of code smells has been coined by Kent Beck and Martin Fowler [11].
A useful definition is given on the website of Martin Fowler [65]:

... smells don’t always indicate a problem. Some long meth-
ods are just fine. You have to look deeper to see if there
is an underlying problem there - smells aren’t inherently
bad on their own - they are often an indicator of a problem
rather than the problem themselves.

In this section, we concentrate on model smells for class models
being the mostly used UML diagram type [29]. After presenting an
overview on smells found in literature we give structured descrip-
tions of selected ones. Finally, we discuss potential impacts of UML
class model smells on the quality aspects discussed in Chapter 4.

5.2.1 An overview on UML class model smells

We extracted altogether 26 smells for UML class models discussed in
literature. They are mostly adopted from corresponding code smells
presented in [64] and [133]. Further sources are [127] and [97]. A cat-
alog of the identified UML class model smells can be found in Ap-
pendix B of this thesis. In this catalog, each model smell is presented
by its name and a short description.

Besides smells for UML class models we also identified 4 smells
for use case models, 6 smells for sequence diagrams, and 5 smells for
state machines. Here, the main sources are [97] (for sequence diagram
smells) and [3] (for use case diagram and state machine smells).

Searching for UML model smells in literature is not a straight for-
ward task. On the one hand, the term model smell is not commonly

42

used. Synonyms are for example inconsistencies and defects (as used
by Lange [97]). On the other hand, model smells are seldom main
subjects of research. However, since smells are strongly coupled to
refactorings, several smells can be derived from appropriate litera-
ture in this area (like for example from [127]). Therefore, we do not
claim that the catalog Appendix B is complete.

Moreover, we have to filter located smells whether they fit to the
right dimension, i.e., whether they affect the abstract model syntax
being the basis of the quality assurance process defined in Chap-
ter 3. Therefore, the catalog in Appendix B does not include smells
which (1) affect the concrete syntax (like smell Prominent Attribute),
and which (2) affect the semantic of the model (like smell Inverted
Operation Name), both taken from [27], and which (3) do not fit to
the definition of model smell but instead represent inconsistencies,
i.e., violated constraints and well-formedness rules (like Unnamed Use
Case [3] and Message without Method [97] 1).

5.2.2 Selected UML class model smells

In this section we describe selected UML class model smells listed in
Appendix B in a structured way. We recognized that several smells
described in this catalog can be either specified by appropriate met-
rics or by corresponding patterns defined on the abstract syntax of
the UML [124]. Therefore, we describe one model smell for each of
these specification types as representative.

For each model smell a short description is given as well as pos-
sible indicators to detect this smell in a given model. Furthermore,
we present a list of quality characteristics and quality goals affected
by this smell according to the quality model defined in Section 4.3
of this thesis. Lists of refactorings being suitable for eliminating the
smell and an example complete each model smell description. Fur-
ther structured descriptions of UML class model smells can be found
in Section 6.1.2 and Appendix D of this thesis.

Long Parameter List

description An operation has a long list of parameters that makes
it really uncomfortable to use the operation. Long parameter
lists are hard to understand and difficult to use. Furthermore,
using long parameter lists is not intended by the object-oriented
paradigm. An operation should have only as much parame-
ters as needed for solving the corresponding task. It is recom-
mended to pass only those parameters that cannot be obtained
by the owning class itself [11, 131].

1 See constraint [2] in the specification of meta element Message in [124].

43

C
u

st
o

m
er

R
el

at
io

n
sh

ip
M

an
ag

er

+s
en

dC
hr

is
tm

as
P

re
se

nt
(c

us
to

m
er

 :
C

us
to

m
er

, s
ho

pp
in

gL
is

t :
 C

us
to

m
er

S
ho

pp
in

gL
is

t,
w

is
hL

is
t :

 C
us

to
m

er
W

is
hL

is
t,

co
m

pl
ai

nt
Li

st
 :

C
us

to
m

er
C

om
pl

ai
nt

Li
st

, c
om

m
en

tL
is

t :
 C

us
to

m
er

P
ro

du
ct

C
om

m
en

tL
is

t)
 :

bo
ol

ea
n

+s
en

dB
irt

hd
ay

P
re

se
nt

(c
us

to
m

er
 :

C
us

to
m

er
, s

ho
pp

in
gL

is
t :

 C
us

to
m

er
S

ho
pp

in
gL

is
t,

w
is

hL
is

t :
 C

us
to

m
er

W
is

hL
is

t,
co

m
pl

ai
nt

Li
st

 :
C

us
to

m
er

C
om

pl
ai

nt
Li

st
, c

om
m

en
tL

is
t :

 C
us

to
m

er
P

ro
du

ct
C

om
m

en
tL

is
t)

 :
bo

ol
ea

n

C
u

st
o

m
er

P
ro

d
u

ct
C

o
m

m
en

tL
is

t

−c
us

to
m

er
N

o
: i

nt
−c

om
m

en
t :

 S
tri

ng
 [1

..*
]

+a
dd

C
om

m
en

t(
ar

tic
le

 :
A

rti
cl

e,
 c

om
m

en
t :

 C
om

m
en

t)
 :

vo
id

+g
et

C
om

m
en

ts
()

 :
S

tri
ng

 [0
..*

]
+g

et
A

rti
cl

es
()

 :
A

rti
cl

e
[0

..*
]

C
u

st
o

m
er

C
o

m
p

la
in

tL
is

t

−c
us

to
m

er
N

o
: i

nt
−c

om
pl

ai
nt

 :
S

tri
ng

 [0
..*

]

+a
dd

C
om

pl
ai

nt
(c

 :
S

tri
ng

)
: v

oi
d

+g
et

C
om

pl
ai

nt
s(

) :
 S

tri
ng

 [0
..*

]

C
u

st
o

m
er

W
is

h
L

is
t

+a
dd

A
rti

cl
e(

 a
rti

cl
e

: A
rti

cl
e

) :
 v

oi
d

+g
et

A
rti

cl
es

()
 :

A
rti

cl
e

[0
..*

]

−c
us

to
m

er
N

o
: i

nt

C
u

st
o

m
er

S
h

o
p

p
in

g
L

is
t

+a
dd

A
rti

cl
e(

 a
rti

cl
e

: A
rti

cl
e

) :
 v

oi
d

+g
et

A
rti

cl
es

()
 :

A
rti

cl
e

[0
..*

]

−c
us

to
m

er
N

o
: i

nt

C
u

st
o

m
er

−n
o

: i
nt

−n
am

e
: S

tri
ng

+g
et

N
am

e(
) :

 S
tri

ng
+s

et
N

am
e(

 n
am

e
: S

tri
ng

)
: v

oi
d

+g
et

N
o(

) :
 in

t
+s

et
N

o(
 n

o
: i

nt
)

: v
oi

d

A
rt

ic
le

−n
o

: i
nt

−n
am

e
: S

tri
ng

−p
ric

e
: l

on
g

+g
et

N
o(

) :
 in

t
+g

et
N

am
e(

) :
 S

tri
ng

+g
et

P
ric

e(
) :

 lo
ng

+s
et

N
o(

 n
o

: i
nt

)
: v

oi
d

+s
et

N
am

e(
 n

am
e

: S
tri

ng
)

: v
oi

d
+s

et
P

ric
e(

 p
ric

e
: l

on
g

) :
 v

oi
d

−a
rti

cl
es

0.
.*

0.
.*

−a
rti

cl
es

0.
.*

0.
.*

−a
rti

cl
es

0.
.*

0.
.*

Figure 5.4: Example UML class model smell Long Parameter List

44

example Figure 5.4 shows class CustomerRelationshipManager that
owns two operations each having a long parameter list. Here,
this smell can easily be detected by observation.

detection This smell can be simply detected by observing the model
(see above) or by evaluating metric Number of Input Parameters
and evaluating its value with respect to a predefined threshold
value. Metric Number of Input Parameters can be specified by the
OCL expression

self.ownedParameter

-> select(direction = ParameterDirectionKind::_in or

direction = ParameterDirectionKind::inout)

-> size()

that returns the number of owned parameters of a given op-
eration with direction in respectively inout.

usable uml model refactorings Introduce Parameter Object for
extracting information to a new class. Remove Parameter for re-
moving not needed information.

affected quality characteristics and goals Long param-
eter lists may be harder to understand and may contain re-
dundant information. Presentation/Aesthetics, Simplicity, Co-
hesion/Modular Design → Comprehensibility, Changeability,
Correctness

Specialization Aggregation

description The association is a specialization of another associa-
tion. This means, that there is a generalization relation between
the two involved associations. People are often confused by the
semantics of specialized associations. The suggestion is there-
fore to model any restrictions on the parent association using
constraints [119].

example Figure 5.5 shows class Journey that is subclassed by class
AirJourney. Also there is a similar class inheritance hierarchy
including classes Route and AirRoute. Furthermore, there is an
association between both subclasses Journey and Route. This as-
sociation is also specialized by a corresponding association. In
fact, this association hierarchy might be confusing.

detection This smell can be detected by matching a corresponding
(anti-) pattern based on the abstract syntax of UML. Figure 5.6
shows such a specification. It defines two UML Associations

(named assoc_1 and assoc_2) which are related by a correspond-
ing Generalization relationship.

45

Figure 5.5: Example UML model smell Specialization Aggregation

usable uml model refactorings No existing model refactoring
can be used to eliminate this smell. Either a new one has to be
developed, or the smell has to be eliminated directly, for exam-
ple by restructuring the model considering this specific aspect.

Figure 5.6: Pattern specification of model smell Specialization Aggregation

affected quality characteristics and goals Specialized as-
sociations are hard to understand and might represent redun-
dant modeling since involved classes can be already specializa-
tions. Simplicity, Redundancy→ Comprehensibility

5.2.3 Affected quality aspects

Considering a model smell, it is not always clear which quality as-
pects are affected by this smell. Nevertheless, this section presents a
first assignment of selected UML class model smells described in Ap-
pendix D to quality aspects presented in Chapter 4. However, these
assignments need further consideration in future.

Table 5.4 shows a first assignment of selected UML model smells
being suitable in an early stage of a model-based software develop-
ment process to 6C quality attributes presented in Section 4.2. An
entry × in cell (i, j) indicates that UML smell i influences quality

46

attribute j to some extent. The entries in this table result from the cor-
responding discussions in the smell descriptions which can be found
in Appendix D of this thesis but also in the case study presented in
Section 6.1.

6C Quality Attributes

UML Model Smell C
or

re
ct

ne
ss

C
om

pl
et

en
es

s

C
on

si
st

en
cy

C
om

pr
eh

en
si

bi
lit

y

C
on

fin
em

en
t

C
ha

ng
ea

bi
lit

y

01. Concrete Superclass × ×
02. Data Clumps × ×
03. Diamond Inheritance × × ×
04. Equally Named Classes × × × ×
05. Large Class × × × ×
06. Long Parameter List × × ×
07. No Specification × × × × ×
08. Primitive Obsession × × × ×
09. Redefined Attribute × × × ×
10. Specialization Aggregation × ×
11. Speculative Generality × × ×
12. Unnamed Element × × ×
13. Unused Class × × ×

Table 5.4: Possible impacts of class model smells on 6C quality attributes

The most affected quality attributes in this table are Confinement

and Comprehensibility. This is not surprising since (1) modeling
tries to raise the abstraction level in order to be more understandable,
and since (2) the UML offers a variety of language features which
are only of limited suitability for specific purposes like modeling the
problem domain.

Moreover, it seems that an impact on quality attribute Consistency

induces a potential impact on quality attribute Comprehensibility.
This is also not surprising since most smells affecting quality attribute
Consistency address contradictorily modeled facts which are conse-
quently hard to understand.

47

5.3 refactorings for uml class models

One technique for improving the quality of a software artifact is Refac-
toring. Refactoring was introduced by Martin Fowler who gives a fit
and proper definition in [64] probably being the most cited clause in
this field of research:

Refactoring is the process of changing a software system
in such a way that it does not alter the external behavior
of the code yet improves its internal structure.

Basically introduced to software code, refactoring has been success-
fully lifted to the level of software models, especially for (UML) class
models being closely related to programmed class structures in object-
oriented programming languages such as C++ and Java. For behav-
ior models, the relation between models and code, and therefore the
adoption of code refactorings to model refactorings, is less obvious.

It is hard to establish the preserving of the model’s behavior since
modeling languages such as the UML do not have a formal seman-
tic in general. However, if the modeling languages are used for code
generation purposes (e.g., by using the corresponding facilities pro-
vided by the Eclipse Modeling Framework (EMF) [44, 144] or the IBM
Rational Software Architect [82]) the formal semantics of the target
programming language such as Java can be considered instead.

In this section, we first present an overview on refactorings for
UML class models discussed in literature. Then we give structured
descriptions of selected refactorings. Finally, we discuss relationships
between class model refactorings and class model smells presented
in the previous section.

5.3.1 An overview on UML class model refactorings

We extracted altogether 23 UML class model refactorings from re-
search literature. In Appendix C of this thesis, we present a catalog
where each refactoring is presented by its name and a short descrip-
tion. Note that similar to the model smells catalog presented in Ap-
pendix B we do not claim that this catalog is complete.

The most refactorings for UML models are adopted from corre-
sponding code refactorings presented by Fowler [64] but in the last
decade research also concentrated on UML models in particular (for
example, see [30] and [107] for a variety on refactorings for UML
class models). Most of them focus on smaller model changes. How-
ever, 6 out of 23 refactorings are built up from those existing, so-called
atomic refactorings. So, in the catalog presented in Appendix C, we
distinguish between atomic and complex refactorings (with Extract

Superclass being the mostly discussed and therefore the most promi-
nent one). Chapter 7 presents an approach for the specification of

48

refactoring composition. Furthermore, most of the refactorings dis-
cussed in literature come with an inverse refactoring, taking back the
original refactoring effect, for example Pull Up Attribute and Push

Down Attribute. Finally, few refactorings are often discussed using
slightly different descriptions, i.e., they come up with some variants.

Several researchers also discuss refactorings for behavioral UML
models like state machines (18 refactorings) and activity diagrams
(2 refactorings). Here, the main sources are [147, 127] (for state ma-
chines) and [20] (for activity diagrams and also for state machines).

5.3.2 Selected UML class model refactorings

In this section, we describe selected UML class model refactorings
(one atomic and two complex ones). We describe these refactorings
along a structured definition scheme. For each model refactoring a
short description, the contextual meta model element type for apply-
ing the refactoring, and the input parameters of the refactoring are
given. Furthermore, we present preconditions that have to be checked,
either before or after parameter input by the refactoring user, as well
as postconditions that specify the behavior preservation of the refac-
toring. We then specify the transformation that has to be performed
after the precondition checks have passed. Finally, an example com-
pletes each model refactoring description. Further structured descrip-
tions of UML class model refactorings can be found in Appendix E.

Rename Operation

description The current name of an operation does not reflect its
purpose. This refactoring changes this name [30, 107].

example Figure 5.7 shows a class Book owning an operation gettitle.
Since camel case [17] makes it easier to read the operation’s name
is changed to getTitle.

Figure 5.7: Example UML model refactoring Rename Operation

contextual element Operation

initial preconditions check There are no initial preconditions
that have to be checked.

49

refactoring parameters newName - New name of the contextual
operation.

final preconditions check (1) There is no operation with name
newName and with the same parameter list (equal parameter
names and types) as the contextual operation in the class own-
ing the contextual operation. (2) There is no operation named
newName and with the same parameter list (equal parameter
names and types) as the contextual operation in the inheritance
hierarchy of the class owning the contextual operation.

model transformation Change the name of the contextual op-
eration to newName.

postconditions The name of the contextual operation is newName.

Extract Superclass

description There are two or more classes with similar features.
This refactoring creates a new superclass and moves the com-
mon features to the superclass. The refactoring helps to reduce
redundancy by assembling common features spread through-
out different classes [141, 106, 150, 107, 160].

example In Figure 5.8 classes Bike and Car have common attributes
and operations. Extract these common features to a new super-
class Vehicle.

Figure 5.8: Example UML model refactoring Extract Superlass

contextual elements Set of Classes

initial preconditions check The contextual classes have simi-
lar features, i.e., attributes with the same name, type, visibility
and multiplicity, or operations with the same name, visibility
and parameter list. Additionally, the initial preconditions of the
involved refactorings have to be checked properly.

50

refactoring parameters Each parameter of refactoring Create
Superclass. Additionally, a list of attributes and operations which
have to be pushed to the new subclass is taken from one contex-
tual class.

final preconditions check No final preconditions have to be
checked. However, the final preconditions of the involved refac-
torings have to be checked properly.

model transformation (1) Use refactoring Create Superclass on
the contextual classes with the given parameters. (2) Use refac-
toring Pull Up Property on each attribute of the appropriate pa-
rameter list with the corresponding parameter. (3) Use refac-
toring Pull Up Operation on each operation of the appropriate
parameter list with the corresponding parameter.

postconditions In each step the postconditions of the used refac-
torings have to be checked. No additional postconditions are
required.

Introduce Parameter Object

description There is a group of parameters that naturally go to-
gether. This refactoring replaces a list of parameters with one
object. This parameter object is created for that purpose [64, 104,
161].

example In Figure 5.9 a date range is used in several operations.
Use refactoring Introduce Parameter Object to build class Dat-
eRange.

Figure 5.9: Example UML model refactoring Introduce Parameter Object

contextual elements List of Parameters

initial preconditions check All contextual parameters belong
to the same operation.

51

refactoring parameters className - Name of the new param-
eter class.
namespaceName - Name space of the new parameter class given
by a qualified name.

final preconditions check There does not already exist a clas-
sifier named className in the name space named namespaceName.

model transformation (1) Create a new class named className

in the name space named namespaceName with default visibility.
(2) Create for each contextual parameter a private attribute with
getter and setter operations. (3) Replace the parameter list in all
operations of the class owning the operation with the contextual
parameters with a new parameter with type of the parameter
class. Use refactorings Add Parameter and Remove Parameter for
this purpose.

postconditions (1) There is a new class named className in the
name space named namespaceName with default visibility. (2)
For each contextual parameter there is a private attribute with
getter and setter operations. (3) There is a new parameter with
type of the parameter class in all operations of the class owning
the operation with the contextual parameters.

5.3.3 Smell-Refactoring relationships

Since refactoring is the technique of choice for eliminating model
smells, there is a strong coupling between concrete UML smells and
refactorings. But the suitability of a certain model refactoring to fix
a recognized model smell is not the only relation between these two
model quality assurance techniques. Another potential relationship
is motivated by the fact that the application of a certain refactoring
may cause the occurrence of a specific model smell. This section ad-
dresses these relations between UML model refactorings and UML
model smells.

Table 5.5 gives an overview on refactoring alternatives to eliminate
the 13 UML class model smells presented in Table 5.4 on page 47. An
entry × in cell (i, j) indicates that UML refactoring i can be used to
eliminate smell j. The entries in this table are derived from the cor-
responding discussions in the refactoring descriptions which can be
found in Appendix E of this thesis but also in the case study pre-
sented in Section 6.1.

52

UML Model Smells

UML Refactorings C
on

cr
et

e
Su

pe
rc

la
ss

D
at

a
C

lu
m

ps

D
ia

m
on

d
In

he
ri

ta
nc

e

Eq
ua

lly
N

am
ed

C
la

ss
es

La
rg

e
C

la
ss

Lo
ng

Pa
ra

m
et

er
Li

st

N
o

Sp
ec

ifi
ca

tio
n

Pr
im

iti
ve

O
bs

es
si

on

Sp
ec

ul
at

iv
e

G
en

er
al

ity

U
nn

am
ed

El
em

en
t

Create Subclass × ×
Extract Associated
Class

× × ×

Extract Subclass × ×
Extract Superclass × ×
Inline Class ×
Introduce Parameter
Object

× × ×

Move Attribute ×
Move Operation ×
Pull Up Attribute ×
Pull Up Operation ×
Push Down At-
tribute

×

Push Down Opera-
tion

×

Remove Empty As-
sociated Class

×

Remove Empty Sub-
class

× × ×

Remove Empty Su-
perclass

× ×

Remove Parameter × ×
Remove Superclass × ×
Rename Attribute ×
Rename Class × ×
Rename Operation × ×

Table 5.5: Positive impacts of UML refactorings on UML model smells

53

As last topic in this section we discuss ’negative’ relations between
UML refactoring and UML smells, in which the application of a refac-
toring may cause the occurrence of a specific smell. A first assignment
is given in Table 5.6. An entry in cell (i, j) indicates that refactoring
i can cause the occurrence of smell j. Completely new smell occur-
rences are marked with ⊗ whereas smells which already existed be-
fore the refactoring but in another context are marked with ×.

UML Model Smells

UML Refactorings C
on

cr
et

e
Su

pe
rc

la
ss

D
at

a
C

lu
m

ps

D
ia

m
on

d
In

he
ri

ta
nc

e

Eq
ua

lly
N

am
ed

C
la

ss
es

La
rg

e
C

la
ss

Lo
ng

Pa
ra

m
et

er
Li

st

N
o

Sp
ec

ifi
ca

tio
n

Pr
im

iti
ve

O
bs

es
si

on

Sp
ec

ul
at

iv
e

G
en

er
al

ity

Add Parameter ⊗ ⊗
Create Associated
Class

⊗

Create Subclass ⊗
Create Subclass ⊗ ⊗ ⊗
Extract Associated
Class

× ⊗ × × ⊗

Extract Subclass × ⊗ × × ⊗
Extract Superclass ⊗ × ⊗ ⊗ × × ⊗
Inline Class ⊗ ⊗ × ⊗
Introduce Parameter
Object

⊗ ⊗ ⊗ × ⊗

Move Attribute ⊗ ⊗
Move Operation ⊗ ×
Pull Up Attribute ⊗ ⊗
Pull Up Operation ⊗ ×
Push Down Attribute ⊗ ⊗
Push Down Operation ⊗ ×
Remove Empty Sub-
class

⊗ ⊗

Remove Superclass ⊗ ⊗ × ×
Rename Class ⊗

Table 5.6: Potential negative impacts of UML refactorings on UML smells

54

6
E X A M P L E A P P L I C AT I O N C A S E S

In this chapter, we present three example cases performing the model
quality assurance process presented in Chapter 3. The example cases
serve as proof-of-concept implementations of this process and show
its applicability, its flexibility, and hence its effectiveness. The first ex-
ample case, a classical model-based software development scenario,
uses the Unified Modeling Language (UML) [123] for modeling the
problem domain in an early phase of a software development process.
In contrast to the use of a General Purpose Language (GPL) in this
example case, the subsequent example cases show the applicability
of the quality assurance process on models of Domain Specific Lan-
guages (DSLs). The second example case uses a textual DSL whose
models serve as main artifacts in a modern model-driven process for
developing simple web applications. In the third example case, we
specify quality assurance techniques for rule-based, in-place model
transformation systems which are used for refactoring specification,
for example.

6.1 quality assurance of uml class models

In this section, we discuss a simple example of the process presented
in Chapter 3 concerning UML class modeling in early phases of a
model-based software development process. After presenting the sce-
nario, we describe the definition and application of a sample model
quality assurance process in detail.

6.1.1 Scenario description

In our example, we consider a software project for the development of
an accounting system for a vehicle rental company. This company has
a headquarter and owns cars, trucks, and motorbikes which can be
rented by customers via a vehicle rental service. These three kinds of
vehicles have some common and some differing properties. A car has
a manufacturer, a registration number, an engine power, and a num-
ber of seats. A truck has a manufacturer, a registration number, an
engine power, and a weight. Finally, a motorbike has a manufacturer,
a registration number, an engine power, and a cylinder capacity. Each

55

customer has a name and an email address and is related to a consul-
tant being an employee of the company. Furthermore, the company
has some subcontractors being specific employees and customers.

We assume that software models are used in the domain analy-
sis phase in order to get an overview on real world entities in the
problem domain. The modeling of the problem domain is done using
UML class models.

Figure 6.1 shows a first UML example model that has been devel-
oped in an early stage of the problem analysis. Here, the example
model is displayed in concrete syntax using the UML CASE tool IBM
Rational Software Architect (RSA) [82].

Figure 6.1: Example UML class model showing the first version of domain
model Vehicle Rental Company (before model review)

Concerning quality issues, the model contains several suspicious
parts. For example, information on the vehicles (cars, trucks, and mo-
torbikes) is modeled redundantly (such as power). Furthermore, class
RentalPeriod is not associated to any other class at all (which hints
at some incompleteness). During a model review (see Figure 3.1 on
page 17) this initial model is analyzed in terms of project-specific
model metrics and model smells. Several refactorings in combination
with additional model changes are applied subsequently.

Figure 6.2 shows the improved model after this review. The afore
mentioned redundancies have been eliminated and incomplete model
parts have been supplemented with further information. We discuss
the concrete applied techniques, i.e., calculated metrics, detected model
smells, and applied model refactorings, in the following sections.

56

Figure 6.2: Improved sample UML class model after model review

6.1.2 Specification of quality assurance techniques

In this section, we demonstrate how the specification process for the
used model quality assurance techniques (see Figure 3.2 on page 18)
is applied along our example. Please note that this process must not
be applied for each individual project in its full extent. Once these
techniques are defined they can be reused in future projects as well.

Specification of relevant model quality aspects

In our example, we use the quality model described in Section 4.3
which is based on the 6C quality goals presented in Section 4.2.1 and
determine those aspects which are most relevant as follows.

The most important property of a domain analysis model is that it
models the problem domain in the right way, i.e., choosing the right
elements and making correct statements on the domain. So, 6C goal
Correctness is an essential quality aspect that has to be considered
when applying a model quality assurance process. Since an analysis
model is used for communicating with problem domain experts who
are typically inexperienced in software modeling, it is also important
that the model is easily understandable. This implies that the model
must not contain any obvious ambiguity. Furthermore, the analysis
model must not have unnecessary information that make it more
complex as necessary. So, 6C goals Comprehensibility, Consistency, and
Confinement can be seen as essential quality aspects.

Since the modeling purpose in our example is to get an overview
on the problem domain, it is justifiable if less important information

57

is missing. So, 6C goal Completeness is a less important quality aspect
in our example. Furthermore, since the domain to be modeled is very
simple and manageable, model reviewers do not have to prioritize
the quality goal Changeability.

Please note that we are arguing from a selective point of view only
to keep the argumentation compact. However, the selection of the
main quality aspects may vary depending on the intended modeling
purpose. This demonstrates the complexities and challenges of this
basic task.

Formulation of questions leading to static quality checks

After having specified relevant quality aspects we have to think about
how to check the compliance with these aspects during the concrete
modeling activity. This is done by formulating questions that lead to
model smells. These questions have to be formulated in a way that
they can be answered by static model analysis, i.e., they need answers
which can be given by the model syntax only. In the following, we
concentrate on one single quality aspect, namely Confinement, and
present a selection of appropriate questions. Example questions are:

q1 : Are there classes being not used by any other model element? This is a
typical case of unnecessarily modeled information.

q2 : Are there classes inheriting from another class several times? This
would indicate that the modeler uses the inheritance concept
in a too complex way, i.e., the model is more detailed than nec-
essary.

q3 : Are there abstract classes not doing much? Again, this might be an
indicator for unnecessary information within the model.

q4 : Are there at least three similar attributes staying together in more than
one class? This might be a hint that the modeler does not use the
inheritance concept of the UML which might be more suitable
in this case.

q5 : Are there attributes redefining other ones within the inheritance hierar-
chy? Since the purpose of the model is to get an overview about
the problem domain the use of this language construct might
be too complex, i.e., it does not suit to the modeling purpose.

Further questions that consider other quality aspects are:

q6 : Are there equally named classes owned by different packages? Equally
named classes could lead to misunderstandings of the modeled
aspects (aspect Comprehensibility). If they are representing the
same real world entity the modeler uses some kind of controlled
redundancy that in turn can compromise quality aspect Change-
ability.

58

q7 : Are there abstract classes that are subclasses of non-abstract classes?
This would be an example for incorrect modeling, i.e., it com-
promises quality aspect Correctness.

q8 : Are there abstract classes that are not specialized by at least one con-
crete class? This might indicate that there is something missing
in the model, i.e., quality aspect Completeness is violated.

Specification of project-specific UML smells

The questions formulated in the previous section lead to model smells
that hint at model parts possibly violating the quality aspect Confine-
ment. A structured definition of each smell including a name, the cor-
responding question, an informal description, an example, affected
6C quality goals, and ways to detect the smell can be found in Ap-
pendices B and D of this thesis. The derived UML smells are:

unused class (derived from question q1): An unused class
often stands alone in the model without any references to other
classes. This smell is adapted from Riel who analyzed object-
oriented design [133] and can be detected by two different mech-
anisms. First, we can define the absence of child classes, asso-
ciated classes, and attributes with class type as anti-patterns
based on the abstract syntax of UML and check whether they
do not match on a concrete instance class. Second, we can de-
fine a constraint that uses three metrics (Number of direct children,
Number of associated classes, and Number of times the class is exter-
nally used as attribute type) and that checks whether each metric
is evaluated to zero. Nevertheless, the former alternative seems
to be the most appropriate one.

diamond inheritance (question q2): This smell is based on
the multiple inheritance concept of UML. It occurs when the
same predecessor is inherited by a class several times. It is
known in literature as ’diamond’ inheritance problem for object-
oriented techniques using multiple inheritance and was first dis-
cussed by Sakkinen [136]. An adequate mechanism to detect
this smell is to specify a corresponding pattern on the abstract
syntax of UML and to find matches in concrete UML instances.

speculative generality (question q3): If there is an abstract
class inherited by one single class only, this smell is found. It is
based on the corresponding code smell introduced by Fowler [64]
and refined by Zhang et al. [161]. To detect this smell we can
check whether metric Number of direct children evaluates to 1 on
an arbitrary UML class. Of course, the corresponding constraint
must check whether this class is abstract. Furthermore, it is pos-
sible to specify this smell by a corresponding pattern based on

59

the abstract syntax of UML and try to match this pattern on
classes of a concrete UML instance model.

data clumps (question q4): A UML model holds this smell if
interrelated data items often occur as ’clump’. More precisely,
this smell can be defined as follows:

• At least three attributes stay together in more than one
class.

• These attributes should have the same signatures (same
names, same types, and same visibility).

• The order of these attributes may vary.

Again, this smell is also based on the corresponding code smell
introduced by Fowler [64] and refined by Zhang et al. [161].
To detect this smell there must be a mechanism to detect sim-
ilarities in UML models. This is due to the fact that one can
not predict how many attributes are involved in this smell. Fur-
thermore, there might be variants wrt. similar attributes when
using a more general definition of this smell than here (think of
attribute names that need not to be equal but just similar or at-
tributes with different visibilities). Another possibility to detect
this smell is to define a metric for an UML class counting all
equal attributes with other classes. Nevertheless, using a strict
definition with exactly three attributes and equal signatures it
is possible to define this smell as pattern based on the abstract
syntax of UML.

redefined attribute (question q5): UML allows for redefin-
ing attributes owned by ancestor classes. However, using this
language feature could lead to misunderstandings of the mod-
eled aspect and might be confusing for model readers. It can be
checked by matching a corresponding pattern or by evaluating
metric Number of redefined attributes to zero.

Table 6.1 summarizes the impact of the UML smells described
above on 6C quality aspects. An entry × in cell (i, j) indicates that
UML smell i influences quality goal j to some extent. The entries in
this table result from the corresponding discussions in the smell de-
scriptions from above. Furthermore, the table contains three model
smells that can be deduced from questions Q6 to Q8. Here, UML
smells Equally named Classes and Concrete Superclass are based on the
thesis from Christian Lange [97] who calls them defects, whereas
smell No Specification is adapted from the corresponding object-oriented
design smell described by Riel [133].

60

C
orrectness

C
om

pleteness

C
onsistency

C
om

prehensibility

C
onfinem

ent

C
hangeability

Unused Class × × ×
Diamond Inheritance × × ×
Speculative Generality × × ×
Data Clumps × ×
Redefined Attribute × × × ×
Equally Named Classes × × × ×
Concrete Superclass × × ×
No Specification × × × × ×

Table 6.1: Possible impacts of UML model smells on 6C quality attributes

Specification of project-specific UML refactorings

After having specified appropriate model smells as done in the previ-
ous section, suitable refactorings have to be defined in order to sup-
port the handling of ’smelly’ models. Table 6.2 gives an overview on
refactoring alternatives to eliminate the UML smells presented above.
An entry × in cell (i, j) indicates that UML refactoring i can be used
to eliminate smell j.

To eliminate the Unused Class smell no single suitable refactoring
can be deduced since one can not determine automatically whether
this class is either useless or if there are some missing relationships.
So, this smell can either be eliminated by removing the class (i.e.,
by using the simple refactoring Remove Unused Class) or by adding
further information to the model not indicated as refactorings.

Smell Diamond Inheritance can be eliminated by applying refactor-
ings Remove Superclass or Remove Intermediate Superclass. Both refactor-
ings can also be used to eliminate UML smell Speculative Generality.
Here, the unnecessarily modeled abstract class has to be removed by
one of those refactorings, depending on whether this class has a par-
ent class or not. A further applicable refactoring addresses missing
information, more precisely missing subclasses of the abstract class.
This refactoring is called Extract Subclass. It creates a new subclass
and applies refactoring Push Down Attribute to a set of attributes of
the contextual class (which is empty in our case).

61

U
nused

C
lass

D
iam

ond
Inheritance

Speculative
G

enerality

D
ata

C
lum

ps

R
edefined

A
ttribute

Extract Class ×
Extract Superclass ×
Extract Intermediate Superclass ×
Extract Subclass ×
Remove Superclass × ×
Remove Intermediate Superclass × ×
Remove Redefined Attribute ×
Remove Unused Class ×

Table 6.2: Suitable refactorings to erase specific UML model smells

The Data Clumps smell can be removed in two different ways: either
by moving the corresponding attributes to a new associated class or
by moving them to a new class that is a common superclass of the
owning classes. The first option uses UML refactoring Extract Class
that internally uses refactorings Create Associated Class and Move At-
tribute. The second alternative uses either refactoring Extract Super-
class or Extract Intermediate Superclass if the owning classes have a com-
mon superclass already. Besides the creation of an empty (intermedi-
ate) superclass, both refactorings use refactoring Pull Up Attribute to
move equal attributes to this newly created class.

Last but not least, UML smell Redefined Attribute can be eliminated
using refactoring Remove Redefined Attribute that removes the redefi-
nition relationship as well as the contextual attribute if and only if
the redefined attribute is visible to the owning class of the redefining
attribute.

In Appendix E, you find a structured definition of each UML refac-
toring including a name, a short description, an illustrating example,
the contextual meta model element for applying the refactoring, and
the input parameters. Furthermore, we use a three-part specification
scheme reflecting a primary application check for a selected refactor-
ing without input parameters, a second one with parameters, and the
proper refactoring execution steps. Please note that some of the UML

62

refactorings are adapted from corresponding UML refactorings, for
example discussed in [150], [160], and [107].

As last topic in this section we discuss relations between UML refac-
toring and UML model smells. Inter-relations are presented in Table
6.3. An entry in cell (i, j) indicates that UML refactoring i can cause
the occurrence of UML smell j.

U
nused

C
lass

D
iam

ond
Inheritance

Speculative
G

enerality

D
ata

C
lum

ps

R
edefined

A
ttribute

Equally
N

am
ed

C
lasses

C
oncrete

Superclass

N
o

Specification

Extract Class × ⊗
Extract Superclass ⊗ × ⊗ ⊗
Extract Intermediate Supercl × ⊗ ⊗
Extract Subclass ⊗ ⊗ × ⊗
Remove Superclass ⊗
Remove Intermediate Supercl ⊗
Remove Redefined Attribute ⊗
Remove Unused Class

Table 6.3: Possible impacts of UML refactorings on UML model smells

Each Extract ... Class refactoring may cause UML smell Data Clumps
if appropriate attributes are moved to the newly created class. Please
note that this smell already existed before the refactoring but in an-
other context (without the newly inserted class). We mark this kind of
smell with × whereas completely new smell occurrences are marked
with ⊗. Furthermore, smell Data Clumps can also be introduced by
refactorings Remove Superclass and Remove Intermediate Superclass when
moved attributes complete an equivalent set of attributes in some sub-
classes.

The application on refactoring Extract Superclass can introduce smell
Diamond Inheritance to the model if the contextual classes from which
the new superclass shall be extracted have a common subclass al-
ready. Furthermore, it can introduce smell Concrete Superclass if it is
applied on an abstract class. This could be avoided by restricting this
refactoring on concrete classes only. For the same reason, smell Con-
crete Superclass can be introduced by refactoring Extract Intermediate
Superclass as well.

63

Refactoring Extract Subclass can lead to an used class if no attribute
is pushed down to the new class. Furthermore, if this refactoring is
applied on an abstract class that is not inherited so far UML smell
Speculative Generality is introduced.

Except for smell Data Clumps there is no UML smell (in the set
of analyzed smells) that can be introduced by refactorings Remove
Superclass and Remove Intermediate Superclass, respectively. Refactoring
Remove Redefined Attribute can lead to an unused class if the type class
of the removed attribute has been the only use of this class in the
model. Finally, refactoring Remove Unused Class does not cause any
smell from the analyzed list.

6.1.3 Application of quality assurance techniques

In this section, we discuss the application of our quality assurance
process on the UML class model presented in Figure 6.1 in detail.

Metrics calculation and interpretation

For the first overview on a model, a report on project-specific model
metrics might be helpful. In our example, we calculate model met-
rics for UML packages concerning abstractness and inheritance is-
sues. Within the package depicted in Figure 6.1 there are altogether
11 classes (9 concrete and two abstract classes). The concrete classes
own altogether 20 attributes from which 2 are inherited from parent
classes (attributes name and emailAddress of class Subcontractor).

Three metrics are calculated using these ’basic’ metrics. The ab-
stractness (A) of the package is 0.18 (ratio between the number of
abstract classes and the total number of classes in the package), the
attribute inheritance factor (AIF) is 0.10 (ratio between the number of
inherited attributes in all concrete classes in the package and the total
number of attributes in all concrete classes in the package), and the
average number of attributes in concrete classes within the package
(AvNAtP) is 2.22. As a first evaluation of these metrics results, one can
state that the model might not be complete since (1) there are only
11 classes modeled for the vehicle company domain, and (2) these
classes have little more than two attributes on average. Furthermore,
language concepts of abstractness and inheritance are not used too
exhaustively. So the model is less complex and easier to understand.
On the other hand, the low values of A and AIF can be interpreted as a
hint that the modeling purpose is not yet achieved since the modelers
use the provided language features insufficiently only.

Smell detection and interpretation

The discussion of metrics results shows that a manual interpretation
of metric values seems to be unsatisfactory and error-prone. So, an-

64

other static model analysis technique is required, more precisely an
automatic detection of specific smells for UML models.

Some smells can be found when looking for specific patterns de-
fined on the abstract model syntax, other model smells are based
on corresponding metrics. For a metric-based model smell, an ap-
propriate threshold can be configured. In our example, we consider
UML smell Data Clumps as metric-based smell. It relies on metric NEAC

(number of equal attributes with further classes) and comparator >
(greater or equal). We set the limit for smell Data Clumps to 3, i.e.,
this smell occurs if a class owns more than two attributes with same
name, type, and visibility in at least one other class.

Analyzing the example UML model shown in Figure 6.1, the smell
detection analysis discovers the existence of altogether six concrete
smells which affect quality aspect Confinement. Smell Data Clumps oc-
curs three times, more concretely in classes Car, Truck, and Motorbike.
Smell Diamond Inheritance occurs once. Here, the involved elements
are classes Person, Employee, Customer, and Subcontractor. Another
detected smell is Speculative Generality since abstract class Service

has one single child class only. Furthermore, there is the unused class
RentalPeriod.

The next step during a model review is to interpret the results of
the smell detection analysis. Potential reactions on detected smells
are:

• Use refactoring Extract Superclass on classes Car, Truck, and
Motorbike to insert a common parent class Vehicle and pull
up attributes manufacturer, power, and regNo to it.

• The diamond inheritance smell detected on class Subcontractor

should not be eliminated since this seems to be an important
detail that has to be addressed in the domain model.

• Smell Speculative Generality should be removed by using refac-
toring Remove Superclass on class Service since the company
does not offer further services.

• Class RentalPeriod is unused up to now. It should be associated
to class VehicleRental and shall refer a new class Date twice
(named from and to).

Refactoring application and manual model changes

Besides manual changes, model refactoring is the technique of choice
to eliminate occurring smells. Figure 6.3 shows our example UML
model after performing several model changes, being refactorings
and manual changes, as described at the end of the last section. Now,
classes Car, Truck, and Motorbike have a common superclass Vehicle

owning the afore redundant attributes manufacturer, power, and regNo.

65

Class Service has been removed so that VehicleRentalService is the
only offered service left. Finally, class RentalPeriod has been com-
pleted by additional information, i.e., class Date and associations pe-
riod, from, and to.

Figure 6.3: Example UML class model after several model changes during a
first model review

From the detected smell occurrences only one is left (smell Diamond
Inheritance in class hierarchy Subcontractor⇒ Person). Nevertheless,
there are model parts remaining suspicious with respect to several
model quality aspects. For example, there are two elements indicat-
ing incorrect modeling. First, class Vehicle is concrete even though
it should represent a generic term for concrete vehicle kinds, hence
should be abstract. Moreover, the association between classes Company

and VehicleRentalService has a too general name and should be
named vehicleRentalService instead. Furthermore, there are associa-
tions from class Company to classes Car, Truck and Motorbike respec-
tively from class VehicleRentalService to these classes hinting to
some kind of redundant modeling.

The former discussion shows that project-specific model quality as-
surance techniques do not have to be completely defined before a
project starts. In our example, the quality assurance process should be
adapted during the model development phase in order to be steadily
improved. UML smells Concrete Superclass and Association Clumps as
well as UML refactorings Rename Association and Pull Up Association
would extend the suite of project-specific model quality assurance
techniques in a meaningful way.

66

6.2 quality assurance of textual models for the devel-
opment of simple web applications

In this section, we present the design and implementation of an exam-
ple case for quality assurance of textual models. As example language
we take a domain-specific modeling language (DSML) called Simple
Web Model (SWM) for defining a specific kind of web applications
in a platform-independent way1. In this example, we concentrate on
quality aspect Completeness. This means that we analyze SWM mod-
els whether they are ready for code generation and improve model
parts using domain-specific refactorings. After presenting an example
scenario, we describe definition and application of a sample model
quality assurance process for SWM models in detail.

6.2.1 Motivation and scenario description

The use of (often textual) DSMLs is a promising trend in modern soft-
ware development processes to overcome the drawbacks concerned
with the universality and the broad scope of general-purpose lan-
guages like the Unified Modeling Language (UML) [123]. Such a
DSML can help to bridge the gap between a domain experts view and
the implementation. Often, a DSML comes along with a code genera-
tor and/or interpreter to provide functionality that should be hidden
from the domain expert. In the generator case, high code quality can
be reached only if the quality of input models is already high.

In this example case, we assume the following scenario (taken from
[21]): A software development company is repeatedly building sim-
ple web applications being mostly used to populate and manage per-
sistent data in a database. Here, a typical three-layered architecture
following the Model-View-Controller (MVC) pattern [68] is used. As
implementation technologies, a relational database for persisting the
data as well as plain Java classes for retrieving and modifying the data
are employed for building the model layer. Apache Tomcat is used as
Web Server. The view layer, i.e., the user interface, is implemented
based on JavaServer Pages and the controller layer is implemented
based on Java Servlets. The company decided to develop its own tex-
tual DSML called Simple Web Modeling Language (SWM) for defin-
ing their specific kind of web applications in a platform-independent
way. Furthermore, platform-specific models following the MVC pat-
tern should be derived with model transformations from which the
Java-based implementations are finally generated.

The SWM language is defined as follows. A WebModel consists of
two parts: a DataLayer for modeling entities which should be per-
sisted in the database, and a HypertextLayer presenting the web
pages of the application. An Entity owns several Attributes (each

1 Several variations of SWM are used in literature, for example in [21].

67

having a SimpleType) and can be related to several other entities (see
meta class Reference). A Page is either a StaticPage having a static
content or a DynamicPage having a dynamic content depending on the
referenced entity. An IndexPage lists objects of this entity whereas
a DataPage shows concrete information on a specific entity like its
name, attributes, and references. Pages are connected by Links.

1 WebModel := ’webmodel’ Name ’{’

2 DataLayer

3 HypertextLayer

4 ’}’ .

5 DataLayer := ’data {’

6 Entity*
7 ’}’ .

8 Entity := ’entity’ Name ’{’

9 Attribute*
10 Reference*
11 ’}’ .

12 Attribute := ’att’ Name ’:’ SimpleType .

13 Reference := ’ref’ Name ’:’ (Entity) .

14 HypertextLayer := ’hypertext {’

15 Page+

16 ’start page is’ (StaticPage)

17 ’}’ .

18 Page := StaticPage | DynamicPage .

19 StaticPage := ’static page’ Name ’{’

20 Link*
21 ’}’ .

22 DynamicPage := IndexPage | DataPage .

23 IndexPage := ’index page’ Name [’shows entity’ (Entity)] ’{’

24 Link*
25 ’}’ .

26 DataPage := ’data page’ Name [’shows entity’ (Entity)] ’{’

27 Link*
28 ’}’ .

29 Link := ’link to page’ (Page) .

30 Name := Letter+

31 Letter := ’A’ | ... | ’Z’ | ’a’ | ... | ’z’ .

32 SimpleType := ’Boolean’ | ’Email’ | ’Integer’ | ’String’ . �
Listing 6.1: Grammar of the SWM language in EBNF

Listing 6.1 shows the grammar of the SWM language in Extended
Backus-Naur Form (EBNF) [159]. The grammar owns altogether 15

production rules, e.g., for WebModel, Entity, and DynamicPage. Lan-
guage terminals are defined using inverted commas (like ’index page’).
Optional parts are specified in squared brackets whereas round brack-
ets represent cross-references to already existing language constructs
(for example, ’(Entity)’ refers to an already existing instance of an
entity in the model). The logical or is encoded by ’|’ whereas oper-

68

ations ’+’ and ’*’ mean repeat 1 or more times, or 0 or more times,
respectively.

6.2.2 Specification of quality assurance techniques

In this section, we use the specification process for quality assurance
techniques concerning textual models of the SWM language as pre-
sented in Section 3.2.2.

Since in our scenario platform-specific models should be derived
from SWM models and should be used to generate the Java-based
implementations, the major quality aspect to be fulfilled on SWM
models is Completeness. A model is complete if it contains all rele-
vant information, and if it is detailed enough to serve the modeling
purpose [116]. This means for SWM models that (A) on the data layer
each entity must contain all relevant attributes and references to other
entities whereas (B) the hypertext layer must contain a complete set
of (potentially linked) pages which should be part of the web applica-
tion. Potential SWM model smells violating quality aspect Complete-
ness are:

empty entity The entity does not have any attributes or references
to other entities. (This violates completeness issues of type A.)

no dynamic page The entity is not referenced by a dynamic page
to be depicted in the web application. (type B)

missing data page The entity is referenced by an index page but
not by a data page. (type B)

missing index page The entity is referenced by a data page but
not by an index page. (type B)

unused entity The entity is referenced neither by a dynamic page
nor by another entity. (types A and B)

missing link The index page is not linked by the start page of the
web application. (type B)

Further SWM model smells violating quality aspects Correctness
and Confinement because of redundantly modeled parts are:

multiple link definitions The page has multiple links to the
same destination page.

equally named pages There are pages within the hypertext model
having the same name.

In addition to the model smells described above, several metrics
can be used to analyze completeness of SWM models. For example,

69

metrics Number of Entities in the Model (NEM) and Number of Dynamic
Pages in the Model (NDPM) can be used to get a first overview on the
model structure. Here, a ratio between the values of these metrics less
than 1 : 2 might be a hint for missing dynamic pages, i.e., one entity
should be referenced by two dynamic pages - both an index page
and a data page. Similarly, metrics Average number of Attributes (resp.
References) in Entities of the Model (AvNAE resp. AvNRE) are useful to
detect missing information in the data layer.

After having specified appropriate model smells, suitable refactor-
ings have to be defined in order to support the handling of ’smelly’
SWM models. Smells No Dynamic Page and Unused Entity can be
eliminated by a refactoring which inserts both an index page and
a data page referencing the corresponding entity to the hypertext
layer (refactoring Insert Dynamic Pages). A missing index page ref-
erencing the same entity as an existing data page can be inserted by
refactoring Add Index Page to Data Page. Similarly, refactoring Add

Data Page to Index Page inserts a new data page to the hypertext
layer that references the same entity as an existing index page.

To eliminate smell Missing Link an appropriate refactoring Update

Links to Index Pages can be used. This ensures that the start page
owns links to all index pages of the model. However, there is no
adequate refactoring to eliminate smell Empty Entity. Here, manual
model changes should be performed (such as deleting the entity or
adding attributes or references, respectively).

The smells violating quality aspects Correctness and Confinement be-
cause of redundantly modeled parts can be simply eliminated using
refactorings Remove Multiple Links from Page (smell Multiple Link
Definitions) and Rename Page (smell Equally Named Pages).

6.2.3 Application of quality assurance techniques

In this section, we demonstrate how the techniques presented in the
previous section are applied to a concrete SWM instance model. We
now assume that the software company has to develop a web appli-
cation for the rental system of a vehicle rental company. Listing 6.2
shows a first SWM model being developed in an early stage of the de-
velopment process. This model is the object of interest in the model
review described in the remainder of this section.

For a first overview, a report on project-specific model metrics might
be helpful. In our example model, metrics NEM and NDPM (see pre-
vious section) evaluate to 4 and 3, respectively. This means that there
are more entities in the web model than dynamic pages hinting at po-
tentially missing dynamic pages. Moreover, the extremely low values
of metrics AvNAE and AvNRE (1.25 and 0.25, respectively) are hint-
ing at some missing information within the data layer of the model.

70

To make this problems more explicit (and thus more obvious), an
analysis with respect to so-called model smells representing model
parts to be improved can be performed. In our example model shown
in Listing 6.2, there are altogether six concrete smell occurrences
which should be investigated in detail.

1 webmodel VehicleRentalCompany {

2 data {

3 entity Customer {

4 att name : String

5 att email : Email

6 ref address : Address

7 }

8 entity Address {

9 att street : String

10 att city : String

11 }

12 entity Car {

13 att type : String

14 }

15 entity Agency {

16 }

17 }

18 hypertext {

19 index page carindex shows entity Car {

20 link to page cardata

21 }

22 data page cardata shows entity Car {

23 }

24 index page agencyindex shows entity Agency {

25 }

26 static page indexpage {

27 link to page carindex

28 link to page agencyindex

29 link to page carindex

30 }

31 start page is indexpage

32 }

33 } �
Listing 6.2: Example SWM instance showing the first version of model

Vehicle Rental Company (before model review)

Two entities are not referenced by a dynamic page. This leads to
two occurrences of model smell No Dynamic Page on entities Customer

and Address. Moreover, entity Customer is not referenced by another
one leading to smell Unused Entity. Entity Agency is also involved
in two smell occurrences. On the one hand it is referenced by an
index page only (smell Missing Data Page). This seems to be well since
entity Agency does not have any attributes or references to be depicted
within a data page. One the other hand, the absence of any attributes

71

and references lead to smell Empty Entity, of course. Finally, the start
page indexpage owns two links to index page carindex resulting in
smell Multiple Link Definitions.

Besides manually changing the model, refactoring is the technique
of choice to eliminate occurring smells. In our example, we can use
refactoring Insert Dynamic Pages to eliminate smell No Dynamic Page
on entity Customer. Please note that we do not eliminate smell No
Dynamic Page on entity Address since this entity is referenced by entity
Customer, i.e., it is part of this entity. The result of refactoring Insert
Dynamic Pages is shown in Listing 6.3. Two dynamic pages (an index
page and a data page) referencing entity Customer are inserted into
the hypertext layer of the model. Furthermore, the inserted data page
is linked by the index page which is in turn linked by the static page
named indexpage being the starting page of the hypertext layer.

1 webmodel VehicleRentalCompany {

2 ...

3 hypertext {

4 ...

5 static page indexpage {

6 link to page carindex

7 link to page agencyindex

8 link to page customerindex }

9 data page customerdata shows entity Customer { }

10 index page customerindex shows entity Customer {

11 link to page customerdata }

12 ...

13 } } �
Listing 6.3: Inserted and changed model elements after applying refactoring

Insert Dynamic Pages

In order to eliminate smell Empty Entity we add a new attribute
address to entity Agency. Afterwards, the smell Missing Data Page
should also be eliminated using refactoring Add Data Page to Index
Page on index page agencyindex. Here, a new data page referencing
entity Agency is inserted into the hypertext layer and the inserted data
page is linked to the contextual index page agencyindex.

Obviously missing information within the data model (detected
by low AvNAE and AvNRE values) is added to the model: entity
BankAccount with attributes number, bankCode, and bankName, attribute
account to entity Customer, attribute postalcode to entity Address,
and finally attributes manufacturer and power to entity Car.

Last but not least, we use refactoring Remove Multiple Links from
Page to eliminate smell Multiple Link Definitions on the starting page
which is renamed to startingpage since name indexpage could lead
to misunderstandings because of the key words index page within the
SWM grammar. Listing 6.4 shows the improved resulting model after
the model review.

72

1 webmodel VehicleRentalCompany {

2 data {

3 entity Customer {

4 att name : String

5 att email : Email

6 ref address : Address

7 ref account : BankAccount

8 }

9 entity Address {

10 att street : String

11 att postalCode : Integer

12 att city : String

13 }

14 entity BankAccount {

15 att number : Integer

16 att bankCode : String

17 att bankName : String

18 }

19 entity Car {

20 att manufacturer : String

21 att type : String

22 att power : Integer

23 }

24 entity Agency {

25 ref address : Address

26 }

27 }

28 hypertext {

29 index page carindex shows entity Car {

30 link to page cardata

31 }

32 data page cardata shows entity Car { }

33 index page agencyindex shows entity Agency {

34 link to page agencydata

35 }

36 data page agencydata shows entity Agency { }

37 index page customerindex shows entity Customer {

38 link to page customerdata

39 }

40 data page customerdata shows entity Customer { }

41 static page startingpage {

42 link to page agencyindex

43 link to page carindex

44 link to page customerindex

45 }

46 start page is startingpage

47 }

48 } �
Listing 6.4: Example SWM instance of model Vehicle Rental Company (after

model review)

73

6.3 quality assurance of rule-based in-place model

transformation systems

In many model transformation approaches, model transformations
are software models themselves. Consequently, model transformation
is a suitable scenario for adapting the structured process for specify-
ing model quality assurance techniques presented in Section 3.2.2.
Following this process, we identify quality aspects for model trans-
formation systems and introduce suitable smells (potential indicators
of low quality) and refactorings that make existing knowledge ex-
plicit about how to write model transformation systems. As a result,
this section provides a first collection of useful quality assurance tech-
niques, especially refactorings, for rule-based in-place model transfor-
mation systems. To integrate these refactorings into a systematic qual-
ity assurance process, we further discuss quality aspects for model
transformation systems and define a first collection of smells based
on metrics and patterns.

6.3.1 Background and core transformation concepts

Model transformations have been applied to solve various tasks in
model-driven engineering (MDE) such as model refactoring and opti-
mizations, translation into other modeling languages, simulation and
analysis, model migration and code generation [156].

While model translations are typically out-place, i.e., constructing
new result models, endogenous model transformations (sticking to
one language) may also be in-place, i.e., modifying the input model
directly [28]. Model simulation and refactoring as well as other kinds
of model modifications such as further model optimizations and ad-
vanced editing operations are typically realized by in-place transfor-
mations. Note that we consider refactorings of in-place model trans-
formations in this section, since our refactorings do not refer to ei-
ther source or target model elements only. Refactorings of out-place
model-to-model transformations are presented in detail in [158]. Nev-
ertheless, we could also apply our techniques and tool to out-place
(model-to-model) transformations, which can be emulated by con-
sidering an integrated domain model constructed from the source
and target domain, and defining a rule set where only target domain
model elements are generated [37].

The core concepts of rule-based in-place model transformation ap-
proaches form the basis for our catalogs of smells and refactorings. Of
course, taking further concepts into account, the corresponding trans-
formation language is widened and the catalogs shall be extended
accordingly. Transformation languages offering (most of) these core
concepts are, e.g., Henshin [4, 54], ViaTra [61], Groove [78], and ATL
(in-place) [63].

74

An instance model consists of a set of objects having attributes and
references. While attributes are typed over data types, references are
typed over classes. All instance models have to conform to a domain
or type model, also called meta model, supporting class inheritance,
including abstract classes (without instances) and containment relations.
As example, consider the domain model for phones in the upper left-
most screen shot in Figure 6.4. Due to simplification purposes, we do
not discuss multiplicities and further constraints here.

Figure 6.4: Domain model, rule, and a transformation step in Henshin

Transformation rules specify local changes on instance models. Usu-
ally, a rule r contains two model patterns, called left-hand side (LHS)
specifying the precondition and right-hand side (RHS) formulating
the postcondition of the rule. Either the differences between LHS and
RHS show us the modifications induced by the rule (as in Henshin
and ViaTra) or all modifications are defined in the RHS only (as in
ATL). Alternatively, one pattern may be given being an integration
of both rule sides where elements and references to be deleted or cre-
ated are annotated accordingly. In addition, checks and computations
of attribute values can be specified by expression languages such as
JavaScript and OCL [121]. In Henshin, a rule is applicable to some
model if the LHS pattern occurs in the model2 or the guard pattern
is satisfied, including the satisfaction of all attribute value checks. In
that case, all specified rule actions are performed3. Rule elements may
be typed over abstract classes, however, when applied, each rule el-
ement has to be mapped to some model element concretely typed.
Rule elements specifying object creation have to be typed concretely

2 We restrict to injective matching of the LHS.
3 Formally, we follow the DPO graph transformation approach for rule applica-

tion [35].

75

already in the rule. Furthermore, variables for attribute values may be
defined in the scope of a rule to be used for checks and computations.
When a rule is applied, its variables are bound to concrete data type
values.

The application of a rule may be further restricted by conditions be-
ing any kind of propositional expression over the existence of model
patterns. In the following, we restrict our considerations to the most
simple ones being used by graph transformation-based approaches,
i.e., negative application conditions (NACs) and positive application condi-
tions (PACs) which forbid respectively require the existence of certain
model patterns in instance models the rule is applied to.

Figure 6.4 shows an example using Henshin: A simple domain
model for phone systems is shown together with rule liftFixed for
lifting a fixed phone. The only effect of this rule is to unset attribute
isIdle. This rule is applied to a simple instance model shown under-
neath using EMFCompare [45]. Note that the transformed instance
model is shown on the left, while the original one is on the right.

6.3.2 Quality aspects

In this section, we motivate quality aims for model transformation
systems. As for other software artifacts, the correctness of a model
transformation system is defined w.r.t. the transformation language
used and its interpretation in terms of the domain. While language
correctness is considered syntactical, the interpretation forms the model
semantics. Refactorings are supposed to preserve the model semantics.

Conciseness is concerned with the compactness of models which
should present systems on the right abstraction level. It is open how
to measure conciseness effectively. We can consider the size of trans-
formation models, i.e., the size of domain models and the numbers
of rules and rule elements. Sticking to a level of abstraction, we can
say that the smaller these numbers are, the more concise is the model.
A discussion on model transformation metrics can be found in [153].

A model transformation system is changeable, if it can be evolved
rapidly and continuously. Conciseness and moreover, low redundancy
and low coupling of modules, seem to be necessary prerequisites for
the changeability of model transformation systems.

A model transformation system is comprehensible if it is understand-
able by the intended users. Comprehensibility is increased if a system
is simple, concise, and structured enough to grasp its design. More-
over, comprehensibility is also influenced by the quality of the used
concrete syntax (textual or graphical layouts), however, we do not
consider this quality aspect throughout this section.

In summary, in the following catalogs we concentrate on conciseness,
changeability, and comprehensibility of model transformation systems

76

when discussing potential relationships between quality aspects and
smells respectively refactorings.

6.3.3 Selected smells

In this section, we present a small set of selected smells for rule-based
in-place model transformation systems. Smells indicate suspicious
system parts which should be inspected closer. Since we are mainly
interested in the conciseness, comprehensibility, and changeability of
model transformation systems, we investigate size and redundancy
issues. Each smell is described in a structured way including affected
quality aspects and refactorings that can eliminate them (the refactor-
ings are described in detail in Section 6.3.4).

Large Rule

A rule specifies a model pattern and replaces it. It should handle a
single aspect of the behavior. A large rule seems to care about too
many different concerns.

detection : This smell can be easily detected by counting the num-
ber of elements in a given rule. This smell depends very much
on the modeling purpose: First, it has to be decided if objects, re-
lations, preconditions, or actions are counted. Second, the thresh-
old value has to be determined by experimental investigations.

affected quality aspects : Large rules do not represent a good
modular design and can contain redundant information. Con-
ciseness and comprehensibility might be affected.

usable refactorings : Loop Edges to Boolean Attributes, Extract
Precondition

Redundant Attributes and References

Several model element types have equivalent attributes and refer-
ences.

detection : This smell can be detected by comparing the number
of all attributes and references and the number of equivalent
attributes and references.

affected quality aspects : Redundant information blows up the
meta model and potentially also the rule set. It affects the con-
ciseness, comprehensibility, and changeability of model trans-
formation systems.

usable refactorings : Pull Up Attribute, Pull Up Reference

77

Redundant Rules

Several rules with equal pattern structures may differ in model ele-
ment and attribute types used only.

detection : This smell can be detected by comparing the number
of all rule pairs differing in types only.

affected quality aspects : Redundant information blows up the
meta model and the rule set. It affects the conciseness, compre-
hensibility, and changeability of model transformation systems.

usable refactorings : Pull Up Attribute, Pull Up Reference, Ab-
stract Rule

Unused Object Type

There are object types that are not used in rules at all. Here, the pur-
pose of the transformation rule set has to be considered when inter-
preting this smell (e.g., transformation of the entire model vs. local
transformation).

detection : This smell can be detected by counting the rules using
a specific object type.

affected quality aspects : Unused object types may affect the
correctness, the completeness and the conciseness of of transfor-
mation systems, dependent on the reason for this smell. Wrong
types may be used, rules may be missing, or types may not be
needed.

usable refactorings : Eliminate Object Type, Change Object Type

Delete and Create the Same Object

There are rules with objects being first deleted and then created again
with the same attribute values but different contexts, or the same
contexts but different attribute values.

detection : This smell can be detected by applying clone detection
to find corresponding patterns in rules.

affected quality aspects : If objects are deleted and immedi-
ately created again keeping their attribute values or their con-
texts, rules are not as concise and comprehensible as possible
and can be improved.

usable refactorings : Move vs. Delete / Create

78

Rules With Common Subrule

The model transformation system has several rules containing the
same subrule.

detection : This smell has to apply some clone detection to find
common subpatterns in rule parts.

affected quality aspects : If rules have common subrules, they
contain redundant information that may affect the quality as-
pects conciseness, changeability, and comprehensibility.

usable refactorings : Unify Rules with Same Actions

Further smells are the well-known object-oriented smells that may
be checked on the meta model having also effects on the rule set in
general.

6.3.4 Selected refactorings

In this section, we present a collection of refactorings for rule-based
in-place model transformation systems, each described in a system-
atic way. This collection mirrors our experiences in the application of
model transformation to various purposes. It shows a range of refac-
torings serving several quality aims. For example, refactoring Pull

Up Attribute reduces the amount of redundancy with respect to at-
tribute definitions and potentially also reduces the number of rules.
Extract Precondition reduces the number of rule elements and thus
improves the conciseness. Each refactoring is systematically described
including an example and change of identified smells before and af-
ter a refactoring, and an argumentation how semantics is preserved.
For model transformation systems, semantics preservation may refer
to the preservation of model transformation sequences, the preser-
vation of transformed models, or the preservation of the amount of
information in models.

Note that we do not present a refactoring which is probably most
useful, i.e., the renaming of transformation systems, rules, types, etc.,
since its specification is obvious. Furthermore, the well-known refac-
torings of object-oriented models such as Extract Superclass, Pull
Up Attribute, Remove Middle Man, etc. are applicable to domain mod-
els. Changes in domain models can imply changes in rules [36]. It
may happen that rules differing in types only can be merged by us-
ing a superclass as type. Furthermore, most of the refactorings pre-
sented below come with an inverse, taking back the original refac-
toring effect. For instance, the inverse of Pull Up Attribute is Push

Down Attribute which might be useful to prepare a variation of at-
tribute definitions in subtypes. The inverse of refactoring Extract

Precondition, called Inline Precondition, may be helpful for rule
modifications. Inverse refactorings are not presented in detail.

79

Merge Rules Differing in Types Only

If there are rules which differ in object types only and these types
are subclasses of the same superclass, they can be merged to one
rule. This refactoring is often combined with a Pull Up Attribute

refactoring of the domain model.

Input parameter: Names of the rules to be merged.

Example: Phones are refined to fixed and mobile phones. Both sub-
types are attributed by a Boolean attribute isIdle. Two rules de-
scribe the lifting of fixed resp. mobile phones (see Figure 6.5
with domain model in Figure 6.4 on page 75). A refactoring
Pull Up Attribute is performed on the domain model first to
pull attribute isIdle up to class Phone (if class Phone does not
have the isIdle attribute already). Figure 6.6 shows the desired
domain model and contains a lift rule for phones in general be-
ing abstracted from the two original lift rules. This is possible,
since the rules in Figure 6.5 differ in types only and thus, can
be merged to the rule in Figure 6.6.

Figure 6.5: Before refactoring Merge Rules Differing in Types Only

Figure 6.6: After refactoring Merge Rules Differing in Types Only

Precondition: Indicated rules differ in one object type only. The set of
varying object types found contains all subclasses of a common
superclass.

Strategy:

1. Identify all varying object types being classes with a com-
mon superclass.

80

2. Construct a new rule by taking one original rule and re-
placing identified subclasses by identified superclass. Re-
name the modified rule, if necessary.

3. Delete all remaining original rules.

Postcondition: All original rules are replaced by one new rule using
the identified superclass as object type.

Affected smells: Redundant rules

Quality improvement: The number of rules becomes smaller. The model
becomes more concise.

Semantics: The semantics is preserved, since the same transformation
sequences are induced.

Extract Precondition

This refactoring makes preconditions explicit by extracting preserved
parts as positive application conditions.

Input parameter: name of the rule

Example: A new fixed phone is installed. The rule mainly consists
of context, i.e., preserved model elements that are not trans-
formed. We extract the context that is not needed for inserting
new edges into a positive application condition to make it more
explicit (see Figure 6.7). Note that this reduces the size of the
internal rule representation, though this effect is not visible in
our compact notation.

Figure 6.7: Before and after refactoring Extract Precondition

Precondition: none

Strategy:

1. Determine the preserved part of the input rule.

2. Create a new PAC and put those preserved objects into it
that are not needed as targets for newly created references.

81

3. Reduce the rule’s preserved part to the boundary objects
needed for creating new references.

Postcondition: The preserved part of the rule is minimal.

Affected smells: Large Rule, Implicit Precondition

Quality improvement: The rule is more comprehensible, since the pre-
condition is expressed more explicitly.

Semantics: The semantics is preserved, since the same transformation
sequences are induced.

Move Vs. Delete / Create

Rule elements being deleted and created in the original rule, are
moved afterwards.

Input parameter: Name of the rule

Example: Taking up the Phone example again, we consider a rule
that replaces a fixed phone at one location by another one at
another location, i.e., the fixed phone at the original location is
deleted and a new one is created at the new location. After the
refactoring, the rule specifies the movement of a fixed phone
from one location to another one (see Figure 6.8).

Figure 6.8: Refactoring of deletion and creation of a fixed phone

Precondition: There are model objects being first deleted and then cre-
ated again with the same attribute values but different contexts
or same contexts but different attribute values.

Strategy:

1. Identify objects and references being deleted and created
afterwards. If these elements are attributed, they are either
identified if the attribute values of created elements are the
same as of deleted ones or if their adjacent references are
created in the same way as they existed before.

82

2. Preserve identified elements instead of deleting and creat-
ing them.

Postcondition: The rule does not contain any object that is deleted
and created with the same attribute values or the same context.

Affected smells: Delete and Create the Same Object

Quality improvement: The resulting rule is more concise, since unnec-
essary actions are avoided.

Semantics: The semantics is preserved in the sense that the same
models are created, when both rules are applicable; however,
the number of transformation effects when applying the refac-
tored rule is reduced. Note that the original rule is not applica-
ble if the FixedPhone node has more incident edges than speci-
fied by the rule (in the DPO approach), whereas the refactored
rule is applicable also to fixed phones with more connections.

Unify Rules with Same Actions

Given a set of rules which share a subset of actions. This subset is
encapsulated in a new rule to be applied first. The original rules are
reduced to their remaining actions each.

Input parameter: Set of rule names

Example: For registering a new phone, it suffices for mobile phones to
set the person who will own it. For fixed phones, their location
has to be registered in addition. These two cases are specified
in rules registerMobilePhone and registerFixedPhone in the upper
part of Figure 6.9. However, the owner registration is common
to both rules. Thus, we can form a kernel rule for phone reg-
istration handling the owner registration only. While this is all
what has to be done for mobile phone there is a remainder rule
for fixed phones. It specifies the location registration only. We
have to make sure that to fixed phones both rules in the lower
part of Figure 6.9 are applied.

Precondition: None

Strategy:

1. Identify the set of actions being shared by the set of input
rules.

2. Besides the common actions identify also the common pre-
served model part.

3. Create a new rule, called kernel rule containing all identi-
fied actions and the identified preserved part. If common
actions and preserved parts differ only in all subclasses of

83

Figure 6.9: Before refactoring Unify Rules with Same Actions (top) and after-
wards (bottom)

a common super class, this common super class is used as
object type instead.

4. Reduce each of the original rules, called remainder rule, by
the identified set of actions. Reduce the preserved part if it
is common and not needed for the remaining actions, i.e.,
if it forms a precondition.

5. Make sure that the kernel rule is applied before remain-
der rules. This can be done e.g. by an additional control
structure putting both rules into a sequence.

Postcondition: There is a new rule, the kernel rule, that contains all
common actions and the common preserved part. All remainder
rules do not contain common actions or preconditions anymore.
A remainder rule is not applicable without applying the kernel
rule beforehand.

Affected smells: Rules With Common Subrule

Quality improvement: The number of elements in the considered rule
set is reduced, i.e., its conciseness is increased.

Semantics: Each original rule can be constructed by the composition
of the kernel rule and optionally, a remainder rule. There may
be more transformation sequences than before, since the result-
ing transformations allow for more interleaving of rule applica-
tions than before.

84

7
C O M P O S I T E M O D E L R E FA C T O R I N G

In Section 5.1, we discuss several complex metrics which rely on more
basic metrics. Consequently, the question comes up whether the con-
cept of composition can also be applied to other model quality assur-
ance techniques considered in this thesis. In this chapter, we present
an approach for composite model refactorings that concentrates on
the specification of refactoring composition. The main idea of the ap-
proach is to specify composite model refactorings by a hierarchy of
so-called refactoring units with parameter passing between different
units by ports and port mappings.

The chapter is organized as follows: after motivating this work us-
ing selected refactoring examples for the UML, we reflect require-
ments and design decision for our approach. Then, we present the
concepts of the approach and present an example specification in de-
tail. Discussions on the automatic deduction of composite precondi-
tions and related work conclude this chapter.

7.1 motivation and examples

This section motivates our work on composite model refactorings and
gives some selected refactoring examples for UML models.

7.1.1 Motivation and state-of-the-art

In the literature, a variety of model refactorings, especially UML refac-
torings, are presented. See e.g. [147, 107, 130] for class model and stat-
echart refactorings. While mainly focusing on smaller model changes,
larger model refactorings are rarely considered though. Looking at
code refactoring, however, it was soon clear that refactorings should
be distinguished in atomic ones performing primitive changes and
composite refactorings that are built up from existing ones [125, 134].

There is a number of approaches for specifying model refactorings,
for example [129, 107, 114]. They differ heavily in the way refactor-
ings are specified. It is common to all these approaches to use a
preferred model transformation approach for specifying model refac-
torings and to concentrate on the specification of atomic ones. But
atomic refactorings are rarely applied in isolation. Instead, they are

85

part of a group of refactorings that are all needed to perform a larger
change. Despite the multitude of model refactoring approaches, the
specification of composite model refactorings is not yet sufficiently
supported by existing approaches in the sense that composite refac-
torings are consequently built up from existing ones being developed
independently.

7.1.2 Example refactorings

The development of a specification language for composite model
refactorings requires an analysis of model refactorings found in lit-
erature. In this section, we analyze composite statechart refactoring
Merge States [130, 20] in detail that is used as running example through-
out this chapter. Furthermore, we discuss a selection of further com-
posite class model refactorings wrt. their reuse of more basic ones.
The purpose of this analysis is to extract the important information
of model refactoring composition that need to be specified, whereas
we do not consider the specification of atomic checks and changes.

Running example: Merge States

State diagrams are used in software development to describe the be-
havior of systems [80]. They mainly consist of states, transitions be-
tween states, events, conditions, and actions. Refactoring Merge States
is used to form a set of states into a single one [20]1. Figure 7.1 (a)
shows a simple statechart diagram dealing with the verification of
the delivery address of a customer (i.e., it describes the life cycle of
an object of class DeliveryAddress). It is started in state not verified

and after performing the verification process (states requested and
retrieved) it either returns to not verified or moves to verified,
depending on the result of the verification. To further simplify the
model, states requested and retrieved can be merged. This is pos-
sible since (1) the two states are arranged in a simple sequence, (2)
there are only one entry and one exit action and nothing happens in
state retrieved, and (3) the transition from requested to retrieved

does not have a specified effect.
Refactoring Merge States is triggered from a contextual state (State

requested in our example) and has one further parameter specify-
ing the state that should be merged into the contextual state (State
retrieved in our example). In contrast to [20], we treat this refactor-
ing as composition of altogether three simpler ones. First, refactoring
Merge State Features moves all actions from the parameter state to
the contextual state, redirects all external transitions of the parameter
state to the contextual state, and finally removes all inner transitions
in between both states. Then, refactoring Remove Isolated State is ap-

1 For simplicity reasons we restrict this set to consist of only two states here.

86

Figure 7.1: Example UML statechart (a) before and (b) after refactoring
Merge States

plied (on state retrieved). Finally, refactoring Remove Redundant Tran-
sition is applied on each incoming transition of the contextual state
requested. Whereas the application of the former two refactorings is
mandatory, the application of the latter one is optional in order to
execute refactoring Merge States successfully (in our example, it is not
applied).The refactored statechart diagram is depicted in Figure 7.1
(b). Here, states requested and retrieved are merged. In addition,
state requested is renamed to verifying by refactoring Rename State
afterwards.

Extract Superclass

One of the most prominent refactorings for UML class models is Ex-
tract Superclass [64, 107]. It generates a new class as parent of a set
of existing classes and pulls up their common features (attributes
and operations) to the newly created class. Each of these actions can
be considered as atomic refactorings. Refactoring Extract Superclass
is triggered from a set of classes and has one further parameter, the
name of the new class to be inserted. After checking several precondi-
tions, refactorings Create Superclass can be applied on each contextual
class, Pull Up Attribute on each attribute of the first contextual class,
and Pull Up Operation on each operation of the first contextual class.

Extract Composite

This refactoring is motivated by the objective to improve the quality
of a class diagram when introducing well-approved design patterns
as presented in [85]. Figure 7.2 (a) shows a class diagram modeling
the formula concept of the propositional calculus. Here, the informa-
tion that exactly two formulae are combined to another one (either
disjunction or conjunction) is modeled redundantly. Refactoring Ex-
tract Composite removes this redundancy as shown in Figure 7.2 (b).

87

The specification of this composite refactoring is similar to Extract Su-
perclass. First, refactoring Create Abstract Intermediate Class is applied
on classes Conjunction and Disjunction. It has one further param-
eter: the name of the new class (CompositeFormula in our example).
Then, refactoring Pull Up Composite Aggregation is applied on attribute
formulae of both selected classes. Finally, further common features
(attributes and operations) are moved to the new class by (composite)
refactoring Pull Up Features.

Figure 7.2: Example UML class model (a) before and (b) after refactoring
Extract Composite

Further examples for composite model refactorings are Extract Class,
Inline Class, Extract Subclass, Inline Subclass, Remove Superclass, and In-
troduce Parameter Object (compare Appendix E of this thesis).

7.2 requirements and design decisions

This section discusses requirements and design principles for our ap-
proach on composite model refactoring based on the examples pre-
sented in the previous section.

7.2.1 Requirements

The main motivation to develop an approach for composite model
refactoring is to raise the abstraction level as well as the grade of flex-
ibility for specifying composite model refactorings. Doing so, the de-
velopment of high-quality refactorings shall become easier and faster.
This general motivation results in the following list of requirements:

• Standard refactoring structure: Each refactoring consists of
an initial precondition check without taking parameters into ac-
count, a final precondition check using parameters, and a model
change. A composite refactoring has to be a refactoring again.

• Declarative composition: The refactoring designer should be
able to concentrate on the composition of refactorings, while
neglecting technical details.

88

• Simple and clear specification of composite refactorings:

A refactoring-specific and powerful set of specification language
features is needed to support a simple and clear specification of
composite model refactorings.

• Black box composition: The component refactorings are con-
sidered as black boxes, i.e., it does not matter how component
refactorings are specified. The refactoring designer considers
refactoring signatures only and can easily reuse existing refac-
torings (potentially coming from a pre-defined library).

• Composite pattern: Composite refactorings can be used as com-
ponents of other composite refactorings. Their usage does not
differ from that of atomic refactorings.

7.2.2 Design decisions

The requirements lead to the following basic design decisions our
refactoring specification language is based on:

• Refactorings are model transformations with input parameters
only. They are not supposed to return values. This principle is
underlying most refactoring approaches in the literature.

• Model refactorings consist of three parts: an initial precondition
check, a final precondition check, and the actual model change
being a special kind of model transformation.

• Composite model refactoring units are composed from already
existing refactorings using the composite design pattern [68].
The leaves of the applied composite design pattern are given
by so-called atomic units. Each atomic unit represents a call of
an existing model refactoring. Following this design, atomic as
well as composite refactorings can be reused inside a composite
refactoring.

• For parameter passing we use the concept of typed ports and
port mappings.

• To adapt ports to special needs of component refactorings we
use so-called helper units. Each helper unit represents a call of an
existing helper, i.e., helpers can be reused in different contexts.

7.3 concepts , example specification, and evaluation

In this section, we present the main concepts of our approach on
composite model refactoring. The concepts are illustrated by a de-
tailed example specification of the example refactoring Merge States
as presented in Section 7.1.2. Finally, we give a short evaluation.

89

Figure 7.3: Meta model of the CoMReL language

90

7.3.1 Main concepts

We developed a domain-specific language for composite model refac-
toring, called CoMReL (Composite Model Refactoring Language), based
on the requirements and design decisions presented in the previous
section. The approach consists of the following concepts (compare
right-hand-side of the corresponding meta model in Figure 7.3):

Refactoring units. Composite model refactorings are specified by
so-called RefactoringUnits defining their internal control structures
of CompositeRefactorings building up on existing refactorings. Each
composite refactoring is represented by exactly one RefactoringUnit

which is normally composed by further units using the composite
design pattern [68]. So-called AtomicUnits form the leaves of corre-
sponding refactoring unit trees. They represent calls to already de-
fined ModelRefactorings. A composite refactoring is considered again
as ModelRefactoring, thus atomic units need not contain atomic refac-
torings only but also composite refactorings to be reused.

Ports and port mappings. To specify unit parameters, our approach
uses Ports. A port is specified by a name and a type. Furthermore, it
has a value representing an instance object that conforms to the type at-
tribute. To pass port values from parent units to child units and from
helper units to other units, so-called PortMappings are used. Each
PortMapping connects a source port with a target port having identi-
cal types. Refactoring and helper units use different kinds of ports
with respect to their direction: input and output ports. Furthermore,
a port differentiation with respect to the multiplicity of values is use-
ful. To address these two differentiations, we introduce altogether
four abstract port kinds, InputPort, OutputPort, SinglePort, and
MultiPort as well as four concrete port kinds, i.e., SingleInputPort,
SingleOutputPort, MultiInputPort, and MultiOutputPort. Note that
each kind of port mapping has an input port as target. This is due to
the fact that output ports are used by helper units only.

Helper units. It can happen that ports of existing model refactoring
units have types different from expected ones for composite refactor-
ings. To solve this problem, we introduce the concept of HelperUnits
intended to prepare the application of existing refactorings. Similarly
to atomic units and existing model refactorings, a helper unit calls
a corresponding Helper providing the intended functionality. Using
this technique, it is possible to reuse existing helpers as often as
necessary. Our approach provides two main kinds of helper units:
FeatureUnits and FilterUnits. A feature unit extracts a specific fea-
ture of a model element, while filter units are used to extract elements
from collections, for example.

Control constructs. For defining the execution flow of composite
refactoring units, our approach uses three core constructs of iterative

91

programming: sequences, conditions, and loops. A SequentialUnit

consists of at least one child unit. In general, sequential units are
distinguished with respect to the semantics of the execution. If a se-
quential unit is defined to be strict, it is successfully executed if each
child unit is executed successfully. In other words, if at least one child
unit is not executed successfully, the entire sequence does not lead to
any model changes. Vice versa, a non-strict sequential unit is always
executed successfully, even if some of its child units are not executed
successfully. A ConditionalUnit consists of a ConditionCheck being
a specification unit and one or two refactoring units. If the condition
check is executed successfully, the then unit is called, otherwise the
else unit is called, if existing. A looping execution of refactoring units
is defined by a QueuedUnit that consists of exactly one child unit.

7.3.2 Example specification

Figure 7.4 shows a visual representation of the specification model
of refactoring Merge States. As described in Section 7.1.2, refactor-
ing Merge States relies on three atomic model refactorings. The main
refactoring unit Merge States is a strict Sequential Unit consisting
of two AtomicUnit and one SingleQueuedUnit. The first AtomicUnit

moves all actions from the parameter state to the contextual state,
redirects all external transitions from the parameter state to the con-
textual state, and finally removes all inner transitions in between both
states. The second AtomicUnit removes the (now empty) parameter
state and finally the SingleQueuedUnit is applied on each incoming
transition of the contextual state. This execution order of sub-units is
defined by the usual direction of reading (left-to-right). Each refactor-
ing unit is depicted with two compartments for maintaining included
helper units respectively refactoring units.

Each AtomicUnit calls an already existing model refactoring, in our
example Merge State Features, Remove Isolated State, and Remove Re-
dundant Transition. The latter refactoring is applied to each incoming
transition of the contextual state but need not be executed success-
fully on each transition. Hence, this atomic unit is put into a non-
strict SingleQueuedUnit to address the looping execution for each re-
dundant transition. We specify two parameters for refactoring Merge
States, thus the main unit (SequentialUnit Merge States) must have
two input ports. In Figure 7.4, input ports are visualized as rectan-
gles. To distinguish single-valued and multi-valued ports, the latter
ones are shown in red. The ports of each atomic unit are deduced
from its referenced model refactoring. For example, the atomic unit
that references Merge State Features gets two single input ports. Both
ports have type State each whereas the first one represents the se-
lected state and the second port represents the state whose features
should be merged.

92

Figure 7.4: Unit specification of composite model refactoring Merge States

To model parameter passing, appropriate port mappings have to
be created between corresponding ports, shown as dotted arrows in
Figure 7.4. To ensure conformity with respect to typing and multiplic-
ity of included ports, the main refactoring unit Merge States requires
one helper unit: MultiFeatureUnit Get External Transitions takes the
contextual state as input and yields all incoming and outgoing tran-
sitions except for potential reflexive transitions (transitions to itself).
The corresponding output ports are visualized as circles.

7.3.3 Evaluation

As a proof of concept evaluation, our approach has been used to
specify over 15 composite model refactorings such as extract and re-
move superclass, extract associated class, and introduce parameter
object. While most of them combine atomic model refactorings only,
we also considered the composition of composite model refactorings,
e.g., for specifying refactoring Extract Associated Class. Our concepts
have proved to be well suited for the specification of these composite
model refactorings taking existing refactorings as black boxes. All
needed helpers are simple and can be reused often. Concrete im-
plementation details including appropriate CoMReL models can be
found in Appendix F of this thesis.

7.4 towards automatic deduction of preconditions

Composite refactorings are specified by a hierarchy of composite and
atomic refactorings. Although each child refactoring behaves well in

93

the sense that its model changes can be performed once its precondi-
tions are satisfied, the application of the composite refactoring may
be performed partially only. This can happen since preconditions of
child refactorings are not checked as early as possible but immedi-
ately when applying them. This situation can be improved by shifting
preconditions of subunits to the precondition part of their surround-
ing composite refactoring. Such an automatic deduction of compos-
ite preconditions can be performed if the specification language sup-
ports conflict and dependency analyses. Preconditions may be depen-
dent on model changes of preceding refactorings. If a precondition is
purely dependent on preceding model changes, i.e., does not contain
independent parts, it can even be erased since it is ensured by those
corresponding model changes. Moreover, the automatic precondition
deduction can be optimized by erasing equal or included precondi-
tions.

In our approach for the automatic deduction of composite precon-
ditions, we define a refactoring as a quadruple R = (PR, IR, FR,CR)

with PR being a set of parameters, IR and FR being sets of initial and
final preconditions and CR being the actual model change performed
by the refactoring. In case that all refactoring specifications IR, FR
and CR are defined using a model transformation language like Hen-
shin [4], an atomic refactoring can be formalized by algebraic graph
transformation [35]. Assuming the application of composite refactor-
ing R as a simple sequence R = R1;R2, we have to check whether
transformation rules in CR1 are in conflict with rules in IR2 respec-
tively FR2. To deduce composite preconditions, the main idea is to
compute IR and FR by exploiting produce/use- and delete/forbid-
dependencies of rules. The presence of such a dependency means
that the corresponding precondition does not become a composite
precondition, since it is automatically true. However, all further pre-
conditions become preconditions of the composite refactoring R.

7.5 related work

In this section, we compare our approach with related work on core
concepts of composite refactorings.

In [134], Roberts considers dependencies between refactorings in
a systematic way. Especially the computation of preconditions for
composite refactorings from the preconditions of their components
is useful and has been taken up by subsequent approaches such as
the ones in [118, 89, 135]. O’Cinneide and Nixon [118] present com-
position concepts for Java refactorings, but do not mention language
design and tooling for their concepts. Kniesel and Koch [89] present
their language ConTraCT being based on conditional transformations.
It has some similarities to our approach but seems to be simpler,
since it relies on refactoring chains only. Concepts like conditional

94

and queued units as well as helper units are not mentioned. Their
main contribution is a concept for automatic deduction of compos-
ite preconditions from component preconditions. Saadeh [135] intro-
duces fine-grain transformations to specify UML model refactorings
and to analyze their dependencies and conflicts. This work is purely
conceptual, a domain-specific language for refactoring composition
is not considered.

Our formalization of refactorings by graph transformation and the
automatic deduction of composite preconditions is closely related
to that in [89] and [135]. We use graph transformation, since it can
be used as formal foundation of the model transformation language
Henshin coming with a conflict and dependency analysis for model
transformation rules. However, since specification languages can be
chosen flexibly in our approach, other specification approaches and
analyses may be easily integrated.

95

8
C O N C L U S I O N A N D F U T U R E W O R K

Since models are the primary artifacts in model-based software de-
velopment, model quality assurance is of increasing importance for
the development of high quality software. In this part, we inspected
several model quality assurance techniques and integrated the tech-
niques model metrics, model smells, and model refactorings into a
syntax-oriented model quality assurance process that can be easily
adapted to specific needs in model-based projects.

The quality assurance process consists of two sub-processes: First,
dependent on the modeling language and the modeling purpose, spe-
cific quality goals, and hence project- and domain-specific quality
checks and refactorings have to be defined. Quality checks are formu-
lated using model smells which can be specified in terms of model
metrics and anti-patterns. Then, the specified quality assurance pro-
cess is applied to concrete software models. Static model analysis uses
the pre-defined model metrics and smells. Based on the outcome of
the model analysis, appropriate model refactoring steps can be per-
formed. However, it has to be considered that new model smells can
be introduced by refactorings. This check-improve cycle should be
performed as long as needed to get a reasonable model quality.

In future work, further model quality assurance techniques such as
a structured use of design patterns may be considered. In this context,
the use of modeling conventions that have to be proven to be effective
with respect to prevention of defects might be integrated into the qual-
ity assurance process. Here, adequate modeling conventions have to
be developed being usable to prevent for specific model smells. More-
over, there are model smells which are difficult to describe by metrics
or patterns. For example, shotgun surgery is a code smell which oc-
curs when an application-oriented change requires changes in many
different classes. This smell can be formulated also for models, but it
is difficult to detect it by analyzing models. It is up to future work to
develop an adequate technique for this kind of model smells.

In our approach, we concentrate on quality aspects to be checked
on the model syntax. They include not only the consistency with the
language syntax definition, but also the conceptual integrity in using
patterns and principles in similar situations, and the conformity with
modeling conventions often defined and adapted to specific software

97

projects. As a conceptual basis for a Goal-Question-Metrics approach
to our quality assurance process we take six classes of quality goals
for software models identified in a systematic literature review [116].
Here, it is up to future work to identify potential dependencies be-
tween these so-called 6C goals in order to support an appropriate
selection on helpful quality assurance techniques.

Since UML is a widely accepted standard in software modeling and
subject of a number of research activities, we provide an overview on
metrics, smells, and refactorings for UML models discussed in litera-
ture including structured descriptions and relations to the 6C goals.
Here, we concentrate on class models since class diagrams are the
mostly used UML diagram type [29]. However, due to the actually
pragmatic search strategy this overview is rather incomplete (how-
ever quite comprehensive). Conducting systematic literature reviews
may be an adequate mean to overcome these limitations in the future.

Finally, this part also presents an approach for composing refactor-
ings to more complex ones. In this context, it is up to future work to
analyze the preconditions of component refactorings with respect to
their execution order and to deduce a composite precondition there-
from. Here, we think of using concepts from algebraic graph transfor-
mations like critical pair analysis [35]. In a similar way, specifications
of model smells and model refactorings could be analyzed in order
to decide whether the refactoring (1) is usable to erase the smell, or
(2) its application would insert a new one.

To conclude, the author is convinced that performing quality as-
surance processes is an essential task to obtain software of high qual-
ity. It has been shown in three example applications that using the
structured model quality assurance process presented in this part,
model-based and model-driven development can be made more ma-
ture yielding software of higher quality.

98

Part II

A F L E X I B L E T O O L E N V I R O N M E N T F O R
Q U A L I T Y A S S U R A N C E I N T H E E C L I P S E

M O D E L I N G P R O J E C T

9
I N T R O D U C T I O N T O PA RT I I

The increasing use of model-based and model-driven software devel-
opment processes induces the need for high-quality software models.
As presented in Part I of this thesis, the model quality assurance pro-
cess might be structured into two sub-processes: a process for the
specification of project-specific model quality assurance techniques,
and a process for applying them on concrete software models during
a MBSD process. Both parts are based on model analysis techniques,
more specifically on reports on model metrics and on checks against
the existence (respectively absence) of model smells. Finally, refactor-
ing is the technique of choice for fixing a recognized model smell.

Since manually reviewing models is time consuming and error
prone, several tasks of the proposed project-specific model quality
assurance process should consequently be automated. In particular,
the following major functionalities should be provided:

• User-friendly support for project-specific configurations of model
metrics, smells, and refactorings.

• Calculation of model metrics, detection of model smells, and
application of model refactorings.

• Generation of model metrics reports.

• Suggestion of suitable refactorings in case of specific smell oc-
currences.

• Provision of suitable information in cases where new model
smells come in by applying a certain refactoring.

• Support for the implementation of new model metrics, smells,
and refactorings.

This part presents a flexible tool environment that has been de-
velopment to fulfill these requirements and that represents a major
contribution of this thesis. The tool environment is part of the Eclipse
Modeling Project (EMP) [49] and can be found and downloaded as
official Eclipse incubation project named EMF Refactor under the
following URL: http://www.eclipse.org/emf-refactor/. It is open
source and available under the Eclipse public license (EPL).

101

http://www.eclipse.org/emf-refactor/

Besides supporting the afore mentioned functionalities EMF Refac-
tor addresses two main concepts. First, it is highly integrated in two
senses. On the one hand, all model quality assurance tasks can be
performed directly within the Eclipse IDE. This means, that the users
do not have to export the model (using its XMI format) and use third-
party tools, for example for analyzing it. On the other hand, the tool
environment integrates the model quality assurance techniques in
various ways. For example, smells are based on specific metrics and
refactorings are proposed as quick fixes for occurring smells. Second,
EMF Refactor is flexible with respect to the specification mechanisms
of new model quality assurance techniques. New techniques can be
either defined using existing ones (e.g., metrics can be composed to
more complex metrics) or they are specified by one of the supported
languages Java, OCL, and Henshin. Here, further languages can be
integrated by new adapters.

The chapters of Part II contain the following:

Chapter 10 introduces basic technologies related to the develop-
ment of EMF Refactor like the Eclipse Modeling Framework (EMF)
and the Language Toolkit (LTK). Furthermore, it presents an overview
on the state-of-the-art of model quality assurance tooling for UML
and EMF as well as a comparison study on refactoring tools in Eclipse.

Chapter 11 discusses several topics concerning the development
process of EMF Refactor. It gives an overview on the specific require-
ments and presents details on its design and the architecture.

Chapter 12 presents the application of model quality assurance
techniques supported by the tools of the EMF Refactor framework.
It covers the main functionalities metrics calculation and reporting,
smell detection, and refactoring along an example UML class model.

Chapter 13 illustrates concrete specification mechanisms for model
quality assurance techniques with respect to a domain-specific model-
ing language. It shows how to define new metrics, new model smells,
and new refactorings as well as how to manually specify relations
between model smells and model refactorings.

Chapter 14 evaluates EMF Refactor. By performing and analyzing
several studies, the suitability of the tools for supporting the tech-
niques of the model quality assurance process presented in Part I as
well as scalability respectively performance issues are considered.

Finally, Chapter 15 concludes and discusses directions for future
work on EMF Refactor.

102

10
B A S I C T E C H N O L O G I E S A N D S TAT E - O F - T H E - A RT

This chapter addresses some basic technological topics related to the
development of an integrated tool environment for model quality as-
surance. The chapter starts with a brief introduction to the Eclipse
Modeling Framework (EMF). We decided to use EMF as underlying
technology (1) since it represents a widely-used open source technol-
ogy in model-based software development, (2) since it comes with a
very active community providing a variety of helpful tools, and (3)
due to our comprehensive knowledge in this domain. Then, we give
an overview on the state-of-the-art of model quality assurance tool-
ing for both, EMF and UML, the mostly used MOF-based modeling
language [140]. Finally, we present a comparison study on refactoring
tools in Eclipse as a preliminary step for extracting adequate require-
ments for developing the EMF model refactoring component of the
tool set which is called EMF Refactor in the following.

10.1 the eclipse modeling framework (emf)

The Eclipse Modeling Framework Project (EMF) [44, 144] extends
Eclipse by modeling facilities including the generation, editing and
view of models. It allows defining models and modeling languages
by means of so-called structured data models.

The core of EMF contains Ecore, a meta model similar to the super-
structure of UML class diagrams, and a runtime support for models
including change notifications, XMI serialization, and an API for ma-
nipulating EMF objects. Ecore represents an implementation of the
Essential MOF (EMOF) part of the Meta-Object Facility (MOF) stan-
dard [120] defined by the Object Management Group (OMG) [122]. It
serves as general meta model and is typed over itself, i.e., Ecore is an
EMF model itself.

Figure 10.1 shows a subset of Ecore with its most important meta
classes and relations. The classes essentially correspond to common
entities in UML class diagrams, i.e., EPackage, EClass, and EAttribute

correspond to packages, classes, and attributes. Classes may be de-
clared as abstract classes or interfaces by corresponding attributes
of EClass. Meta class EReference corresponds to associations. How-
ever, these kind of references are always directed. Moreover, refer-

103

Figure 10.1: Subset of the Ecore meta model

ences may be explicitly equipped with lower and upper bound and
be declared as derived references which shall rather be calculated in
a certain way. Additional attributes further support the use of these
Ecore elements in different ways, e.g., the attribute nsURI of EPackage
is very important as it assigns a globally unique namespace to a pack-
age to allow for its unambiguous identification.

Figure 10.2: The Ecore meta model

Figure 10.2 gives a more detailed overview of the Ecore compo-
nents and their relations, attributes, and operations (taken from the
javadoc API part of the EMF web site [44]). Abstract meta classes are
indicated by italic letters and are colored by a slightly darker back-
ground.

104

The basic editors in the Eclipse Modeling Framework are the tree-
based editors providing basic CRUD operations 1. EMF also ships a
generic tree-based editor, called Sample Reflective Editor, that allows to
edit arbitrary EMF models, i.e., Ecore models and instance models.
Furthermore, EMF comes with a GMF based diagram editor [53] for
Ecore models as well. EMF instances are by default edited using a
generated tree-based editor or the Sample Reflective Editor. However,
dedicated diagram as well as textual editors can be generated with
some effort using frameworks like GMF, EuGENia [52], Sirius [60],
and Xtext [62].

10.2 tool support for model quality assurance

The existing tool support for model quality assurance is mainly aim-
ing at UML and EMF modeling.

10.2.1 UML modeling

Considering UML modeling, quality assurance tools are integrated
in standard UML CASE tools to a certain extent. In the following,
we give a rough overview on existing UML model quality assurance
tools: In UML CASE tools such as the IBM Rational Software Ar-
chitect (RSA) [82] and MagicDraw (MD) [103], a number of metrics
and validation rules are predefined and can be configured in metrics
and validation suites. MD supports class model metrics (e.g., mea-
suring the number of classes, inheritance tree depth, and coupling),
so-called system metrics such as Halstead [79] and McCabe [111], and
requirements metrics based on function points and use cases. Valida-
tion rules comprise completeness and correctness constraints such as
all essential information fields are filled, properties have types spec-
ified, etc. Further validation rules can be specified using Java or a
restricted form of OCL. RSA also supports predefined metrics. In ad-
dition, models can be checked against validation rules being based on
metrics. A tool dedicated to the calculation of UML metrics is SDMet-
rics [1]. SDMetrics analyzes the structural properties of UML mod-
els and uses object-oriented measures as well as design rule check-
ing to automatically detect design problems in UML models such as
circular dependencies and violation of naming conventions. Measure-
ment data is displayed in different views (e.g., tables, histograms, and
kiviat diagrams) and can be exported in various formats like HTML
and XML. Furthermore, SDMetrics supports custom definitions of
UML metrics and design rules using XML-based configuration files.

As far as we know, no popular commercial UML CASE tool (such
as Sparx Enterprise Architect [75], IBM Rational Software Architect
(RSA) [82], and MagicDraw [103]) supports model refactoring facili-

1 Create, Read, Update, Delete

105

ties exept for renaming model elements. However, some research pro-
totypes for model refactoring are discussed in the literature, e.g., in
[129, 20, 107]. Most of them are no longer maintained. For example,
Porres [129] describes the execution of UML model refactorings as se-
quence of transformation rules and guarded actions. He presents an
execution algorithm for these transformation rules and constructed
an experimental, meta model driven refactoring tool that uses SMW,
a scripting language based on Python, for specifying the UML model
refactorings.

To summarize, UML CASE tools and further model analysis tools
for UML provide model analysis by predefined metrics and valida-
tion rules and support the custom configuration of metrics and val-
idation suites as well as the definition of further custom techniques
but do not offer an integrated, custom configured quality assurance
environment for UML models based on metrics, smells (validations),
and refactorings.

10.2.2 EMF modeling

Since EMF has evolved to a well-known and widely used modeling
technology, it is worthwhile to provide model quality assurance tools
for this technology. To the best of our knowledge, explicit tool sup-
port for metrics calculation on EMF-based models is not yet available.
However, there is the EMF Model Query Framework [46] to construct
and execute query statements that can be used to compute metrics
and to check constraints. These queries have the form of select state-
ments similar to SQL and can also be formulated based on OCL. Spec-
ified queries are triggered from the context menu. The configuration
of queries in suites as well as reports on query results in various
forms are not provided. The EMF Validation Framework [48] sup-
ports the construction and assurance of well-formedness constraints
for EMF models. Two modes are distinguished: batch and live. While
batch validations are explicitly triggered by the client, live validations
listen to change notifications to model objects to immediately check
that the change does not violate any well-formedness constraint.

The Epsilon language family [51] provides the Epsilon Validation
Language (EVL) to validate EMF-based models with respect to con-
straints that are, in their simplest form, quite similar to OCL con-
straints. Moreover, EVL supports dependencies between constraints,
customizable error messages to be displayed to the user and the
specification of fixes to be invoked by the user to repair inconsis-
tencies. For reporting purposes, EVL supports a specific validation
view reporting the identified inconsistencies in a textual way. Suitable
quick fixes are formulated in the Epsilon Object Language (EOL – the
core language of Epsilon) and therefore not specifically dedicated to
model refactoring. Here, Epsilon provides the Epsilon Wizard Lan-

106

guage (EWL) [91], a textual domain-specific language for in-place
transformations of EMF. We compare our first refactoring prototype
with EWL in detail in the next section.

Another approach for EMF model refactoring is presented in [132,
32]. Here, the authors propose the definition of EMF-based refactor-
ing in a generic way, however they do not consider the comprehensive
specification of preconditions. Our experiences in refactoring specifi-
cation show that it is mainly the preconditions that cannot be defined
generically.2 Furthermore, there are no attempts to analyze EMF mod-
els wrt. model smell detection.

Finally, the MoDisco framework [7] provides a model-driven re-
verse engineering process for legacy systems in order to document,
maintain, improve, or migrate them. Here, several specific models
are deduced (for example, Java models are deduced from Java code)
which can be analyzed in order to detect anti-patterns and then be
manually improved, for example by refactorings. Similar to the UML
and EMF tooling discussed so far, MoDisco supports the specification
and computation of custom metrics and queries on models as well as
metrics visualization. The main difference between MoDisco and the
tool environment presented in this thesis is the intended purpose (re-
verse engineering vs. modeling).

In summary, there are various tools to support EMF model analysis
and to improve EMF models by refactoring. However, there is not yet
a comprehensive tool environment for specifying and applying prede-
fined and custom metrics, smells, and refactorings to EMF models in
an integrated way where metrics, smells, and refactorings are tightly
inter-related. This thesis is heading towards such a tool environment
in the following.

10.3 an exploration study on emf refactoring tools

A variety of tools for quality assurance of code exist, in particular for
the refactoring of Java code as provided, e.g., by the Eclipse Java De-
velopment Tools (JDT) [55]. As demonstrated in the previous section,
tool support for model refactoring is limited, particularly for mod-
els based on the Eclipse Modeling Framework (EMF). In this section,
we present the results of a comparison study that examines three ap-
proaches for EMF model refactoring, namely the Language Toolkit
(LTK), the Epsilon Wizard Language (EWL) and a preliminary pro-
totype of EMF Refactor. The aim of this study is to extract adequate
requirements for developing the EMF model refactoring component
of EMF Refactor.

The section is organized as follows. First, we describe the design of
the comparison study and the criteria for analyzing the approaches.

2 For example, see [4] for a more complex refactoring with elaborated precondition
checks.

107

Then, we present basic implementation details for each refactoring
solution. Finally, the differences as well as the benefits and drawbacks
of the solutions are discussed.

10.3.1 Study description

Since UML class models are closely related to class structures in
object-oriented programming languages such as C++ and Java, many
existing code refactorings can be directly adopted to UML. However,
few model refactorings are specific to the model level only. The sam-
ple refactoring used in this comparison study is of the latter category.

Figure 10.3: Example class diagram before refactoring (excerpt)

Figure 10.3 shows an excerpt of an example class diagram. At a
first glance, class Address seems to be isolated from all further model
elements. However, taking a closer look to the model, we identify at-
tribute address in class Customer being of type Address. For a better un-
derstanding of class structures, it would be worthwhile to represent
this relationship more explicitly. This can be achieved by applying
model refactoring Change Attribute to Association End. After refactor-
ing application, attribute address of class Customer will be depicted
as an association end in the same manner as attribute customer of
class Bill. Please note that the result of the refactoring might lead to
misunderstandings, e.g., if there are too many associations such that
the diagram is harder to comprehend 3. Figure 10.4 shows the corre-
sponding part of the UML superstructure specification [124].

Figure 10.4: UML specification for attributes and association ends (excerpt)

We implement this model refactoring by means of the Language
Toolkit (LTK) [67] and the Epsilon Wizard Language (EWL) [91], two
existing solutions to handle refactorings in Eclipse. Furthermore, the
comparison study investigates a preliminary prototype of EMF Refac-
tor [47] that has been presented in the thesis of Lars Schneider [138].

3 This means, that applying refactoring Change Attribute to Association End is not suit-
able to improve the model’s quality in general.

108

We analyze the implemented solution of each approach with re-
spect to seven defined criteria. For each criterion questions are de-
fined which are observed during the specification and execution of
the refactoring solutions.

Concerning the specification step of the example UML refactoring
we considered the following four criteria:

• Complexity – What is the amount of work to implement the
example refactoring? Are there any ways to reduce this effort?
Here, LoC and the number of specified rules are discussed and
compared according to the personal perception of the author.

• Correctness – Is it possible to specify a refactoring resulting in
an inconsistent model when applied? Are there any precautions
to avoid this?

• Testability – Which effort is needed to test the specified refac-
toring in detail? Are there ways to automate these tests?

• Modularity – Is it possible to combine already implemented
refactorings? This might be an important aspect when defining
more complex refactorings by reusing existing ones.

With respect to the application of the example UML refactoring we
analyzed the following three criteria:

• Interaction – How easy is it to apply the refactoring? Are there
any facilities to simplify user inputs? Here, differences consider-
ing UI features have to be discussed from a (indeed subjective)
user’s point of view.

• Features – Does the refactoring provide a preview of its effect?
Does it provide undo and redo functionality?

• Malfunction – What happens if the appropriate refactoring can-
not be executed in the given situation? Are there reasonable er-
ror messages?

10.3.2 Study implementations

Before presenting the interesting parts of the three implementations
using LTK, EWL, and the EMF Refactor prototype 4, these technolo-
gies are introduced first.

Considered tools

The Language Toolkit (LTK) [67] is a language neutral API to spec-
ify and execute refactorings in an Eclipse-based IDE. Therefore, it

4 The prototype is called ProRef in the following.

109

can also be used to handle EMF model refactorings. The API can
be found in the plug-ins org.eclipse.ltk.core.refactoring and
org.eclipse.ltk.ui.refactoring. Their classes provide an exact, pre-
defined procedure for refactorings in Eclipse. Example refactorings
that use LTK are those for Java provided by the JDT [55].

The Epsilon Wizard Language (EWL) [91] is an integral part of Ep-
silon [51], a platform for building consistent and interoperable task-
specific languages for model management tasks. For this purpose,
Epsilon consolidates common facilities in a base language, the Ep-
silon Object Language (EOL) [90], to be extended by new task-specific
languages. EWL is a tool-supported language for specifying and exe-
cuting automated model refactorings 5. These model refactorings are
applied on model elements that have been explicitly selected by the
user. Here, Epsilon provides an Eclipse-based interpreter for execut-
ing EWL programs.

The third tool in this comparison study, ProRef, has been devel-
oped by Lars Schneider in the context of his diploma thesis [138]. It
serves as a preliminary prototype of the refactoring component of
EMF Refactor [47]. In ProRef, the development of new refactorings is
based on EMF Tiger [15, 13], an Eclipse plug-in that performs in-place
EMF model transformations [14, 114]. The model transformation con-
cepts of EMF Tiger are based on algebraic graph transformation con-
cepts. It provides a graphical editor for the design of transformation
rules and a Java code generator which has been extended by ProRef.

The LTK solution

The specification of the example UML refactoring required the im-
plementation of seven Java classes. During the implementation, it be-
came obvious that only four of them are refactoring specific whereas
the remaining three classes can be seen as common for all kind of
EMF model refactorings. The refactoring specific classes are:

• RefactoringInfo - This class manages all required informations
like the selected attribute (object of meta type Property), the
name of the new association and the name of the association’s
ownedEnd property.

• RefactoringInputWizardPage - This class is responsible for UI
tasks like displaying and handling the required input (name
of the new association and name of the association’s ownedEnd
property).

• RefactoringAction - This class is responsible for refactoring ini-
tiation. It sets the selected attribute and initializes instances of
several LTK classes. Moreover, this class serves the extension
point org.eclipse.ui.popupMenus.

5 Kolovos et al. [91] call them update transformations in the small.

110

• RefactoringProcessor - This is the main class for executing the
sample refactoring. Method checkInitialConditions() checks
whether the type of the selected attribute is an instance of Class
and whether it is not already part of an Association (see List-
ing 10.1). Method createChange() creates an instance of class
EMFChange by generating a ChangeDescription6 that describes
all required model changes and is also used for undo and redo
functionality. Listing 10.2 shows an excerpt of this method. Here,
feature name of the newly created Association is set to the ap-
propriate String managed by the RefactoringInfo object.

1 RefactoringStatus result = new RefactoringStatus();

2 Property property = this.refactoringInfo.getProperty();

3 if (property.getType() != null

4 && property.getType() instanceof Class) {

5 if (property.getAssociation() != null) {

6 result.addFatalError("The selected Property is " +

7 "already an association end! ");
8 }

9 } else {

10 result.addFatalError("The type of the selected " +

11 "Property is not a Class ! ");
12 }

13 return result; �
Listing 10.1: Method body RefactoringProcessor::checkInitialConditions()

1 Association as = UMLFactory.eINSTANCE.createAssociation();

2 Map.Entry<EObject, EList<FeatureChange>> entryAsName =

3 createEObjectToChangesMapEntry(as);

4 FeatureChange fCAsName = createFeatureChange();

5 fCAsName.setFeatureName("name");
6 fCAsName.setDataValue(this.refInfo.getAssociationName());

7 entryAsName.getValue().add(fCAsName);

8 changeDescription.getObjectChanges().add(entryAsName); �
Listing 10.2: Excerpt of method body RefactoringProcessor::createChange()

The EWL solution

In EWL, the sample refactoring has been implemented as follows:
First, the type of the selected model element has to be checked to
be a Property of type Class. Furthermore, this property does not
already have to be part of an Association. These preconditions are
checked in the guard section of the EWL program (see Listing 10.3).
Here, variable self refers to the model object which is used to invoke
the refactoring (the attribute in our example). If the guard conditions
fails, the refactoring is canceled automatically.

6 org.eclipse.emf.ecore.change.ChangeDescription

111

1 guard {

2 if (self.isKindOf(Property)) {

3 if (self.type.isDefined()) {

4 if (self.type.isKindOf(Class)) {

5 return self.association.isUndefined();

6 } else { return false; }

7 } else { return false; }

8 } else { return false; }

9 } �
Listing 10.3: Guard section of the EWL solution

The most important part of the EWL solution is the do section that
specifies the effects of the refactoring (see Listing 10.4). After obtain-
ing the user input (the name of the new association and the name
of the association’s ownedEnd property; not shown in Listing 10.4)
all necessary new objects are created (instances of Association and
Property as owned end) and the proper features are set. Finally, the
new association is added to the owning package.

1 var upperVal : new LiteralInteger;

2 upperVal.value = 1;

3 var lowerVal : new LiteralInteger;

4 lowerVal.value = 1;

5 var ownedEndP : new Property;

6 ownedEndP.name = srcProperty;

7 ownedEndP.type = self.class;

8 ownedEndP.upperValue = upperVal;

9 ownedEndP.lowerValue = lowerVal;

10 var assoc = new Association;

11 assoc.name = associationName;

12 assoc.ownedEnd.add(ownedEndP);

13 assoc.memberEnd.add(self);

14 self.class.package.packagedElement.add(assoc); �
Listing 10.4: Guard section of the EWL solution

The ProRef solution

In ProRef (respectively EMF Tiger) model refactorings are designed
by ordered sets of rules. Each rule describes an if-then statement on
model changes. If the pattern specified in the left-hand side (LHS) ex-
ists, it is transformed into another pattern defined in the right-hand
side (RHS). Additionally, so-called negative application conditions
(NACs) can be specified which represent patterns that prevent the
rule from being applied. Mappings between objects in LHS and RHS
and/or between objects in LHS and NACs are used to express preser-
vation, deletion, and creation of objects.

112

Figure 10.5: Left-hand-side (LHS) of the ProRef / EMF Tiger solution

The LHS of the rule that specifies the sample refactoring is shown
in Figure 10.5. This pattern represents the abstract syntax which has
to be found when starting the refactoring from within the context
menu of a Property named propName whose type is a Class. To en-
sure that the selected Property is not already part of an Association

an appropriate NAC is defined, that is similar to the LHS but with an
additional Association instance that references the selected Property

as memberEnd (not shown here).

Figure 10.6: Right-hand-side (RHS) of the ProRef / EMF Tiger solution

Figure 10.6 shows the RHS of the sample refactoring rule. It con-
tains a new Association object with a new opposite association end
(Property). This end is equipped with multiplicity 1 as lower and up-
per bound. The newly created objects are named by additional input
variables associationName and srcProperty.

During rule specification it is possible to check whether the speci-
fied transformation rule is consistent. This means that the EMF model
transformation always leads to models that are consistent with typ-
ing and containment constraints. To do so, you have to check whether
the rules perform restricted changes of containments only. Consistent
EMF model transformations behave like algebraic graph transforma-
tions. Hence, the rich theory of algebraic graph transformation can
be applied to show functional behavior and correctness [16]. The

113

sample refactoring rule is consistent because all new object nodes
(Association, Property, and two LiteralIntegers) are connected im-
mediately to their respective container (see Figure 10.6).

10.3.3 Study observations

In this section we discuss the results of the comparison study. The
solutions presented in the previous section are compared along the
criteria introduced in Section 10.3.1.

Complexity – All three techniques require a good understanding
of relevant parts of the UML meta model [124]. In LTK, seven Java
classes consisting of 711 LoC were implemented. 416 LoC can be gen-
erated and 195 are refactoring specific, in particular methods create-
Change() and checkInitialConditions() of class RefactoringProcessor.
Here, the most challenging task is to properly implement the appro-
priate object of the LTK class ChangeDescription due to its complex
API. In EWL, one single file with 47 LoC was implemented. Auto-
matically generating generic parts would not lead to a significant re-
duction. Finally, in ProRef the entire refactoring code was generated
from one rule specification only that contains 32 objects (EClasses
and EReferences). Individual parameter settings for code generation
are supported by a convenient wizard.

Correctness – In LTK, an incorrectly specified ChangeDescription

object would lead to an inconsistent model after executing the refac-
toring. There are no known precautions available to avoid this. Since
all model changes in EWL are directly implemented, there is also no
special support to specify refactorings which yield consistent mod-
els only. ProRef however uses EMF Tiger that provides consistency
checks regarding containment and multiplicity issues. This is done
using the underpinning graph transformation concepts. Hence, it is
almost impossible to specify transformations, especially refactorings
leading to inconsistent models.

Testability – A specified refactoring has to be tested by applying it
to various models that represent possible situations. Since every refac-
toring in LTK is a single Eclipse plug-in, it is very time-consuming to
start a new Eclipse instance after each code change. These tasks could
be facilitated by generating test code or using PDEUnit [58], a test
framework for Eclipse plug-ins. Because EWL is an interpreted lan-
guage, testing is not that time-consuming and a straightforward task.
Nevertheless, there is no known way to automate this. For ProRef the
same comments as for LTK hold.

Modularity – Since all model changes in LTK are directly imple-
mented in Java, it seems to be possible to combine several existing
refactorings to more complex ones by passing required parameters,
and adapting conditions, and Change Descriptions. Here, it is nec-
essary to develop an advanced approach to support this features. In

114

EWL, there is no known way to combine refactorings so far, except
for copying and adapting code of existing ones. For ProRef the same
comments as for LTK hold.

Interaction – All approaches provide the selection of refactorings
via the context menu of a Property element in the standard EMF
instance editor. EWL additionally supports graphical GMF-based ed-
itors [53] which can be done by the other approaches as well if they
serve a further extension point. The refactoring wizard page of LTK
provides one input line for each required parameter. Each parameter
has a specified default value. In EWL, the context menu has an en-
try specific to the name of the selected Property. All parameters are
entered in separate dialogs including specified default values. For
ProRef the same comments as for LTK hold.

Features – In LTK, after parameter editing the wizard provides an
optional preview of the model changes made by the refactoring. The
preview is provided by EMF Compare [45]. Undo/Redo functionality
is supported. In EWL, there is no preview available, but Undo/Redo
functionality is supported. After parameter editing in ProRef the wiz-
ard always shows a preview of possible model changes when exe-
cuting the refactoring. Again, this is provided by EMF Compare. Un-
do/Redo functionality is not supported.

Malfunction – If a certain precondition in LTK fails, a message box
including a reasonable error message is shown as specified in method
checkInitialConditions() of class RefactoringProcessor. EWL provides
the refactoring only, if all preconditions specified in the guard section
hold. After parameter input in ProRef, the user is informed when the
refactoring can not be executed because of violated conditions. This
is merely done by the generic message The refactoring changed nothing
at all. Each solution requires non-empty parameters, more precisely
names for the new model elements Association and Property.

Criteria LTK EWL ProRef

Complexity o + +

Correctness - - +

Testability o o o

Modularity o - o

Interaction + + +

Features + o o

Malfunction + + o

Table 10.1: Results of the comparison

Table 10.1 summarizes the results of the comparison study. Each
approach has been evaluated and marked as follows:

115

• The approach meets the evaluation criterion: +

• The approach does not meet the evaluation criterion but is still
moderate: o

• The approach does not meet the evaluation criterion at all: -

Each approach has its individual strengths and weaknesses. LTK
provides permanent positive results when executing the model refac-
toring. This is not surprising because LTK was developed to unify
refactoring processes in Eclipse. However, ProRef seems to be more
suitable for specifying EMF model refactorings. This is because of its
graphical nature of defining model transformations and its underly-
ing graph transformation concepts. Last but not least, EWL shows ad-
vantages in both, refactoring specification and refactoring application.
However, in both categories there is another approach that seems to
be more suitable than EWL.

In summary, LTK is the leading approach during model refactoring
application, whereas ProRef seems to be the most promising one in
specifying EMF model refactorings. As a conclusion of the presented
comparison study, it looks worthwhile to check whether LTK and
ProRef can be combined in a way that merges the benefits of both
approaches. Such a combination of LTK with ProRef seems to be a
promising way to go.

The results of this comparison study help with extracting adequate
requirements for developing the model refactoring component of EMF
Refactor [47]. The requirements, design and architecture of this inte-
grated tool environment for model quality assurance in Eclipse are
presented in the following chapter of this thesis.

116

11
R E Q U I R E M E N T S , D E S I G N A N D A R C H I T E C T U R E

This chapter presents basic topics related to early phases during the
development of an integrated tool environment for model quality as-
surance in Eclipse, called EMF Refactor [47]. The chapter starts with
a high-level overview on the requirements on the tool environment,
subdivided into common requirements and those which are specific
to the application of existing techniques and the specification of new
techniques, respectively. Afterwards we present details on the design
and the architecture of EMF Refactor. Finally, we summarize how the
requirements are met by the design.

11.1 requirements

The definition of the proposed model quality assurance process pre-
sented in Part I of this thesis lead to a set of requirements on our
supporting tool set concerning model metrics, model smells, and
model refactorings. In this section, we summarize these requirements
as high-level abstractions. We elaborated the requirements in an it-
erative process and completed them according to the results of the
explanation on existing model quality assurance tools presented in
the previous chapter.

11.1.1 Common requirements

In this section, we summarize those requirements which are common
to all model quality assurance tools of EMF Refactor.

generality Each tool should be based on the Eclipse Modeling
Framework (EMF) [44, 144], i.e., the corresponding function-
ality should be provided on any EMF-based model since. We
decided to use EMF as underlying technology (1) since it rep-
resents a widely-used open source technology in model-based
software development, (2) since it comes with a very active com-
munity providing a variety of helpful tools, and (3) due to our
comprehensive knowledge in this domain.

reuse The tool environment should reuse existing Eclipse and EMF
components as far as possible. Moreover, already implemented

117

quality assurance techniques should be reusable since many of
them recur most likely in several projects even if modeling pur-
poses may differ.

11.1.2 Application requirements

The following requirements are specific for the application of the
model quality assurance tools within EMF Refactor (metrics calcu-
lation, smell detection, and refactoring execution).

configurability The modeler (respectively the model reviewer)
should be provided with a project-specific configuration of pre-
defined model metrics, smells, and refactorings suites. For smells
which are based on specific metrics it should be possible to con-
figure project-specific thresholds.

integrated application The corresponding functionality should
be triggered from within several editors in Eclipse like the stan-
dard tree-based EMF instance editor, but also graphical and tex-
tual model editors should be supported.

reporting Calculated metric values and detected model smell oc-
currences should be reported in specific integrated views. Model
elements being involved in a specific smell occurrence should
be highlighted in the standard tree-based EMF instance editor.
Furthermore, it should be possible to export the results of both,
a metric calculation and a smell search, in various formats such
as HTML, PDF, and XML.

refactoring features The application of refactorings should fol-
low the homogeneous refactoring execution structure in Eclipse
including a preview of the resulting model. This includes a
transactional execution of refactorings. Furthermore, the refac-
toring tool should provide undo and redo functionality as well
as an optional analysis of smell occurrences before and after
refactoring application. Moreover, smells should be related to
refactorings being suitable to erase the smell, and refactorings
should be related to smells potentially occurring after applying
the refactoring.

quick-fix mechanism It should be possible to invoke a suitable
refactoring from within the context menu of a concrete smell
occurrence in the smell results view.

11.1.3 Specification requirements

This section summarizes the requirements on the components for the
specification of new model metrics, smells, and refactoring.

118

flexible specification approaches It should be possible to de-
fine custom metrics, smells, and refactorings for arbitrary EMF-
based models. Here, the tools should support various concrete
specification approaches. As default specification language, Java
should be supported since Eclipse, especially EMF, is based on
the Java technology.

composition A designer should be provided with tool support for
composing existing techniques. In particular, the tools should
support compositional metrics, metric-based model smells, and
composite model refactorings.

code generation The tools should provide a comfortable input
mechanism for specification-related information like the meta
model, the name, and a description of an arbitrary metric, smell,
or refactoring. Afterwards, each tool should generate Java code
that can be used by the application component in order to pro-
vide the corresponding functionality (metrics calculation, smell
detection, and refactoring execution).

11.2 design and architecture

This section discusses the architecture of our tool environment for
EMF model quality assurance and summarizes the components used
by it. Each tool is based on the Eclipse Modeling Framework [144, 44],
i.e., each tool can be used for arbitrary models whose meta models
are instances of EMF Ecore, for example domain-specific languages,
common languages like UML21 used by Eclipse Papyrus [59] and the
Java EMF model used by JaMoPP [31] and MoDisco [7, 57], or even
Ecore instance models themselves.

EMF Refactor mainly consists of six components out of two dimen-
sions: With respect to the main functionalities (calculating model met-
rics, detecting smells, and executing refactorings) there is an applica-
tion module for each. Similarly there are three specification modules
for generating metrics, smell, and refactoring plugins containing Java
code that can be used by the corresponding application module. For
simplicity reasons, we refer to these plugins as custom QA plugins
in the remainder of this section. We start with a description of the
specification dimension.

11.2.1 The specification modules

Figure 11.1 shows the architecture of a specification module using
a UML component model. The specification module provides the

1 In this thesis, we refer to UML2 being the standard EMF-based representation of
UML2, i.e., org.eclipse.emf.uml2.uml.

119

generation of custom QA plugins containing the metric-, smell-, or
refactoring-specific Java code. Using the Eclipse plugin technology,
libraries consisting of model quality assurance techniques can be pro-
vided. So, already implemented techniques can be reused.

Figure 11.1: Composite structure of a specification module

Actually, the following specification technologies are supported:

• Java [126]; version 6.

• OCL [121] provided by the Eclipse Modeling Project [49].

• Henshin [4, 54], a model transformation engine for the Eclipse
Modeling Framework based on graph transformation concepts.
Henshin uses pattern-based rules that can be structured into
nested transformation units with well-defined operational se-
mantics.

• CoMReL, a model-based language for the combination of EMF
model refactorings (see Chapter 7).

More concretely, the following techniques can be used in a concrete
specification of a new EMF model metric, smell, or refactoring:

1. Model metrics can be concretely specified in Java, as OCL ex-
pressions, by Henshin pattern rules, or as a combination of ex-
isting metrics using a binary operator.

2. Model smells can be concretely specified in Java, as OCL in-
variants, by Henshin pattern rules, or as a combination of an
existing metric and a comparator like greater than (>).

3. The three parts of a model refactoring can be concretely spec-
ified in Java, as OCL invariants (only precondition checks), in
Henshin (pattern rules for precondition checks; transformations
for the proper model change), or as a combination of existing
refactorings using the CoMReL language.

120

The specification module provides wizard-based specification pro-
cesses (component Specification Wizard in Figure 11.1). After inserting
specific information (like the name of the metric, smell, or refactoring,
and the corresponding meta model) the Code Generator component
uses the Java Emitter Templates framework [56] to generate the specific
Java code required by the corresponding extension point (see arrow
in Figure 11.1). Table 11.1 shows the extension point descriptions for
EMF model metrics, smells, and refactorings.

org.eclipse.emf.refactor.metrics

Field name Description

name Name of the EMF model metric.

id Unique identifier of the EMF model metric.

description Description of the EMF model metric (optional).

metamodel Namespace URI of the corresponding meta model.

context Name of the context element type .

calculateclass Java class that implements IMetricCalculateClass.

org.eclipse.emf.refactor.smells

Field name Description

name Name of the EMF model smell.

id Unique identifier of the EMF model smell.

description Description of the EMF model smell (optional).

metamodel Namespace URI of the corresponding meta model.

finderclass Java class that implements IModelSmellFinderClass.

org.eclipse.emf.refactor.refactorings

Field name Description

name Name of the EMF model refactoring.

id Unique identifier of the EMF model refactoring.

description Description of the EMF model refactoring (optional).

metamodel Namespace URI of the corresponding meta model.

controller Java class that implements IController.

gui Java class that implements IGuiHandler.

Table 11.1: Extension point descriptions for metrics, smells, and refactorings

Besides basic information like the name, id, or the corresponding
meta model of a concrete model quality assurance technique the fol-
lowing interfaces have to be implemented:

121

imetriccalculateclass This interface provides the calculation
of the corresponding EMF model metric on a given model el-
ement. Here, two methods have to be implemented: method
void setContext(List<EObject> context) for maintaining the
model element on which the metric should be calculated on,
and method double calculate() for the proper calculation of
the metric value on this element.

imodelsmellfinderclass This interface provides the detection
of the corresponding model smell in a given EMF model. It has
one method which must be implemented by the corresponding
Java class: findSmell(EObject root). Here, the model is spec-
ified by parameter root. The method returns a list of detected
smell occurrences where such an occurrence is given by a list of
model elements which are involved in the detected smell.

icontroller This interface is responsible for executing the corre-
sponding model refactoring. Here, the main method which has
to be implemented is getLtkRefactoringProcessor() that re-
turns an instance of class RefactoringProcessor from the Lan-
guage Toolkit (LTK) API [67]. Within this class, the refactoring
specific preconditions are checked by the two boolean meth-
ods checkInitialConditions () and checkFinalConditions()

whereas the refactoring is executed by method createChange().

iguihandler This interface checks whether the refactoring can be
executed on the given context elements (method showInMenu

(List<EObject> selection)); the process is started by method
RefactoringWizard show(). As above, RefactoringWizard is a
class of the LTK API.

11.2.2 The application modules

Figure 11.2 shows the architecture of an application module. It uses
the Java code of the custom QA plugins generated by the correspond-
ing specification module (compare right-hand side of Figure 11.1 and
left-hand side of Figure 11.2) and consists of two components. The
Configuration Component maintains project-specific configurations of
metrics, smells, and refactorings. The Runtime Component is respon-
sible for metrics calculation, smell detection, and refactoring execu-
tion. Depending on the concrete specification approach, the runtime
component uses the appropriate components Java, OCL, Henshin, or
the internal CoMReL interpreter. Further languages, especially model
transformation languages like EWL [91], may be integrated by suit-
able adapters [68]. For exporting calculated model metrics, the report-
ing engine BIRT [43] is used. Finally, the Language Toolkit (LTK) [67]
is used for homogeneous refactoring execution and EMF Compare [45],

122

a tool that provides comparison and merge facility for any kind of
EMF models, for refactoring preview.

Figure 11.2: Composite structure of an application module

For manually defining the relationships between model smells and
model refactorings, our tool environment uses the Eclipse extension
point technology again to provide information about these relation-
ships globally. Therefore, two extension points for the manual defi-
nition of relations between model smells and model refactorings are
provided. Since our tools identify smells and refactorings by distinct
identifiers (see Table 11.1), these extension points require relations
from smell IDs to a list of refactoring IDs (in case of providing suitable
refactorings for a given smell) and relations from refactoring IDs to a
list of smell IDs (in case of possible new smells when applying a given
refactoring). To serve these extension points in a user-friendly way,
we extend the property page of a certain Eclipse plugin project in the
workspace by providing graphical user interfaces for (de-)activating
appropriate relations.

11.3 summary

In the preceding sections, we presented the requirements on the tool
environment for model quality assurance as well as the design and
the architecture of EMF Refactor. Table 11.2 summarizes how the re-
quirements are met by the design.

The following chapters present how to work with both kinds of
modules. For simplicity reasons and to relate the application of our
tools to the process presented in Part I of this thesis, we first present
how to use the application module and its implemented quality as-
surance techniques. Thereafter, Chapter 13 presents how to specify
new metrics, smells, and refactorings.

123

Common requirements

Requirement Implementation

Generality The entire tool set is based on EMF.

Reuse EMF Refactor uses JET, BIRT, and EMF Com-
pare. Already implemented techniques can
be installed using the plugin- and extension
point-technology of Eclipse.

Application requirements

Requirement Implementation

Configurability Provided by the Configuration Component (see
Figure 11.2).

Integrated

application

The functionality is integrated into the stan-
dard tree-based EMF instance editors, graph-
ical GMF-based editors as used by Papyrus
UML, and textual editors provided by Xtext.
Moreover, we integrated our tool environment
into the widely used EMF-based UML CASE
tool IBM Rational Software Architect.

Reporting EMF Refactor provides specific metrics and
smell analysis views, a highlighting mecha-
nism of model elements, and a result reporting
based on BIRT.

Refactoring

features

EMF Refactor provides a homogeneous refac-
toring workflow by using LTK, a preview on
refactoring changes, smell analysis facilities
during refactoring, and extension points for
specifying smell-refactoring relations.

Quick-fix

mechanism

Provided by the smell-refactoring relations
and dynamic analysis.

Specification requirements

Requirement Implementation

Flexible

Specification

Approaches

EMF Refactor supports Java, OCL, and the
model transformation language Henshin as
possible specification approaches.

Composition Metrics can be composed to complex ones,
smells can be based on a metric, and refactor-
ings can be combined by using CoMReL.

Code

generation

Provided by the Specification Module (see Fig-
ure 11.1).

Table 11.2: Requirements and corresponding implementation

124

12
E X A M P L E A P P L I C AT I O N S

This chapter presents the application of several model quality as-
surance techniques supported by the tools within the EMF Refactor
framework [47]. We demonstrate this application on a UML class
model representing the domain of a vehicle rental company which
is presented in Section 12.1. The subsequent sections show

• how to select and calculate model metrics and how to report the
corresponding results (Section 12.2),

• how to customize and search for model smells and how to re-
port the corresponding findings (Section 12.3),

• and finally how to perform model refactorings in order to im-
prove the structure of the model (Section 12.4).

12.1 example uml class model

Figure 12.1 shows a first UML example model that has been devel-
oped in an early stage during the development of an accounting and
customer management system for a vehicle rental company. This first
version of the domain model of the company is shown as UML class
diagram modeled using the EMF-based UML CASE tool Papyrus [59].
The model consists of altogether four packages:

• Package Commonalities contains general concepts (enumerations,
interfaces, and common classes like Person and Date).

• Package RentalCompany contains the main entities of the com-
pany (represented by class VehicleRental). The company has a
number of employees and customers. Each customer is associ-
ated with a concrete employee (see association end consultant).
Special persons are subcontractors of the company which repre-
sent both, a customer and an employee. The right-hand-side of
this package shows that the company owns several cars, trucks,
and motorbikes which can be rented by some customer.

• Packages Services and Invoicing contain classes for renting a
vehicle by some customer as well as for billing purposes.

125

Figure 12.1: Example UML class model

126

12.2 metrics calculation

For the first overview on a model, a report on project-specific model
metrics might be helpful. In Sections 5.1 and 6.1 of this thesis, several
metrics for UML models being useful for detecting corresponding
smells have been discussed. In the following, we do not calculate this
kind of smell-related metrics only but also other common metrics to
get an overview on interesting model properties.

Figure 12.2: Configuration dialog for model metrics

To calculate relevant metrics only, our tool environment supports a
project-specific configuration for the metrics suite1. Figure 12.2 shows
the project-specific configuration page for our example project. On
this page, all existing model metrics for EMF-based models are listed.
They are structured with respect to the corresponding meta model
(e.g., UML and Ecore) and to the corresponding element type the

1 Please note that the configuration task is done by the project respectively quality
manager according to the project-specific needs (see Section 3.2.2).

127

metrics are calculated on (the context). In Figure 12.2 for example, we
activate model metrics for UML packages concerning abstractness (A,
NACP, NCCP, and TNCP) and coupling issues (Ca, Ce, I, and TC).

The calculation of metrics on a specific model element is started
from its context menu. In our UML show case, this element is selected
from within the graphical GMF-based [53] Papyrus editor. However,
EMF Refactor also supports further editors like the tree-based EMF
instance editor and textual editors generated by Xtext [62]. Figure 12.3
shows the calculated results of the configured UML metrics on pack-
ages Commonalities and RentalCompany (see Figure 12.1).

Figure 12.3: Results view displaying calculated metrics

The results view shows that package Commonalities contains al-
together four classes (metric TNCP): two concrete and two abstract
classes (metrics NCCP and NACP). Furthermore, metric Ca (afferent cou-
pling: number of classes in other packages depending on classes of
the package) of package RentalCompany is evaluated to 3 whereas its
efferent coupling metric (number of classes within the package de-
pending on classes in other packages - Ce) is evaluated to 7.

Metrics A, TC, and I are calculated using these ’basic’ metrics. The
abstractness (A) of package Commonalities is 0.5 (ratio between the
number of abstract classes in the package and the total number of
classes in the package). The total coupling (TC: afferent + efferent
coupling) of package RentalCompany is 10 and its instability (I) is 0.7
(ratio between efferent coupling and total coupling).

An evaluation of both packages based on these metric values is a
slightly difficult task (and is not an issue of this section rather of this
thesis). However, according to [108] the following statements hold:

• The less abstract a package is the more likely it is to change and
therefore to have an effect on the packages that use it.

• Instable packages are easier to change because few other pack-
ages in the application use them.

EMF Refactor’s metrics tool provides the export of calculated re-
sults for reporting purposes. The following output formats are sup-
ported: XML (default), HTML, PDF, Postscript, MS DOC, MS PPT, MS

128

Figure 12.4: Excerpt of a generated PDF report concerning calculated met-
rics results using a pie diagram (left) and a tube diagram (right)

XLS, ODP, ODS, and ODT. Furthermore, several output designs are
provided but also custom designs can be imported. Figure 12.4 shows
two PDF exports of our example metrics calculation. On the left-hand
side, metric values for Ca (Afferent Coupling) and Ce (Efferent Cou-
pling) of package RentalCompany are compared using a pie diagram.
The right-hand side of Figure 12.4 shows an exported tube diagram
containing the metric values for Ca, Ce, and TC (Total Coupling).

12.3 model smell detection

The discussion of metrics results shows that a manual interpretation
of metric values seems to be unsatisfactory and error-prone. So, an-
other static model analysis technique is required, more precisely an
automatic detection of model smells for UML models like specified
in Sections 5.2 and 6.1, for example. As for model metrics, our tool
environment provides a configuration of specific model smells that
are relevant for the current project 2. Figure 12.5 shows the configu-
ration dialog listing all system-known model smells with respect to
their meta model. For a metric-based model smell, a corresponding
threshold can be configured.

In Figure 12.5, two metric-based smells are activated. Smell Abstract
Package occurs if the value of metric A (Abstractness: ratio between
the number of abstract classes in the package and the total number
of classes in the package; see previous section) is higher than 0.7. The
second metric-based smell, Large Class, relies on metric NFEAC (num-
ber of owned features of the class) and comparator > (greater than).
We set the limit for smell Large Class to 7.0, i.e., this smell occurs if a
class owns more than seven attributes attributes or operations.

Similar to the calculation process for model metrics, a smell analy-
sis can be triggered either for the entire model or for a concrete model
element. In the latter case, all smells are reported occurring within the

2 See footnote 1 on page 127.

129

Figure 12.5: Configuration dialog for model smells

containment hierarchy of the selected model element. Nevertheless, it
has to be considered that there are model smells which might be dis-
tributed along several subtrees (like Multiple Definition of Classes with
equal Names, looking for equally named classes in different packages).
However, EMF Refactor provides smell analysis on subtrees only in
order to narrow the scope of the analysis, for example on large-scale
models.

Analyzing the example UML class model shown in Figure 12.1, the
smell detection analysis discovers the existence of altogether 19 con-
crete smells according to the configuration made in Figure 12.5. The
left-hand side of Figure 12.6 shows the results of this analysis in a
dedicated results view. The report shows that smell Equal Attributes
in Sibling Classes occurs 13 times. Example occurrences are attributes
Motorbike::power, Car::manufacturer, and Customer::id. Six kinds
of model smells occur once each, for example smell Speculative Gen-
erality Interface looking for an interface that is realized by one single
class only. Here, the involved elements are interface Rentable and
class Vehicle.

130

Figure 12.6: Results view displaying detected model smells (left) and high-
lighting of involved elements in smell Speculative Generality
within the graphical Papyrus editor (right)

Concerning concrete smell occurrences, the smell detection tool in
EMF Refactor provides a highlighting mechanism for involved model
elements within the standard tree-based EMF instance editor, graphi-
cal GMF editors, and textual Xtext editors. For example, selecting the
occurrence of smell Speculative Generality Interface in the smell view
(see left-hand side of Figure 12.6) highlights interface Rentable, class
Vehicle, and the realization relation between them within the graph-
ical Papyrus editor as shown in the right-hand side of Figure 12.6.

The next step during a model review is to interpret the results of
the smell detection analysis. Potential reactions on detected smells
are (note that not each smell should be eliminated):

• Use refactoring Pull Up Attribute on attributes manufacturer,
power, and regnumber from classes Car, Motorbike, and Truck

to the common parent class Vehicle.

• Smell Speculative Generality Class should be removed by using
refactoring Remove Superclass on class Service since the com-
pany does not offer further services.

• Rename classes RentalCompany::VehicleRental to VehicleRental-
Company and Services::VehicleRental to VehicleRentalService.

• Class Invoice is unused up to now. There should be an at-
tribute named invoices in class VehicleRentalCompany with type
Invoice and multiplicity 0..*.

12.4 refactoring application

Besides manual changes, model refactoring is the technique of choice
to eliminate occurring smells. In our tool environment for model qual-
ity assurance, this task is provided by the primary functionality of

131

EMF Refactor. Again, this component provides a configuration mech-
anism to select refactorings being relevant for the given modeling
project. The configuration user interface is similar to that of the met-
rics component (see Figure 12.2) and is not shown here. Please note
that the configuration of model smells (see Section 12.3) combined
with the specification of smell-refactoring relations (see Section 13.5)
might influence the selection of model refactorings (and vice versa).
We discuss this topic in Chapter 15.

There are two alternative ways to trigger a model refactoring in
EMF Refactor: First, a refactoring can be invoked from within the con-
text menu of at least one model element in the standard tree-based
EMF instance editor, the graphical GMF-based editor, or the textual
Xtext editor. Depending on the selected element(s), only those refac-
torings are provided in the menu being defined for the corresponding
model element type(s). For example, UML refactoring Extract Super-
class is provided only after selecting at least two classes.

The second way to trigger a model refactoring is to use the quick
fix mechanism of the smell results view as shown on the left-hand
side of Figure 12.6. Starting from this view, our tool environment pro-
vides a suggestion for potential refactorings according to pre-defined
smell-refactoring relations (see Section 13.3) and a dynamic analysis
of applicable model refactorings.

Figure 12.7: Quick fix mechanism: manually defined refactorings (top), ac-
tually applicable refactorings (middle), and manually defined
applicable refactorings (bottom)

The suggestion dialog is started from within the context menu of
a smell occurrence (e.g., occurrence {Motorbike, power} of smell Equal

132

Attributes in Sibling Classes) and consists of three tabs. The first
tab (see top of Figure 12.7) suggests all model refactorings that have
been manually defined as being suitable to erase the corresponding
model smell. The second tab (see middle of Figure 12.7) lists all those
model refactorings which have been proven to be applicable on at
least one model element in the selected smell occurrence. Please note
that this does not necessarily mean that each presented refactoring
would improve the model quality by erasing a model smell. It simply
means that the target model structure allows the application of that
refactoring. For example, refactoring Rename Class obviously does
not influence the afore mentioned smell. The third tab (see bottom
of Figure 12.7) combines the manually defined solution and the actu-
ally applicable solutions. Finally, each tab informs about possible new
smells potentially inserted when applying the refactoring (according
to the manual configuration (see Section 13.4).

Figure 12.8: Parameter input dialog of UML refactoring Pull Up Attribute

After invoking a refactoring, either from within an editor or by the
provided quick fix mechanism, refactoring-specific basic conditions
are checked (initial precondition check). Then, the user has to set all
needed parameters. Figure 12.8 shows the parameter input dialog
for refactoring Pull Up Attribute that is invoked on attribute power of
class Motorbike. Due to multiple inheritance in UML, the superclass
to which the attribute should be moved must be set.

Then, EMF Refactor checks whether the user input does not violate
further conditions (final precondition check). In case of erroneous pa-
rameter input a detailed error message is shown. If the final check
has passed, a preview of model changes to be performed by the refac-
toring is provided using EMF Compare [45].

Besides the model change preview, EMF Refactor provides the op-
portunity to get a quantitative analysis on changes of smell occur-
rences. In contrast to the manual configuration of potential refactoring-
smell-relations (see Section 13.4), this analysis provides the modeler
with the total number of occurrences of model smells before and after
a potential application of a given model refactoring. It thereby helps

133

with the decision whether or not a refactoring application would im-
prove the overall model quality or would it even make worse.

Figure 12.9: Smell analysis during the application of UML refactoring Pull
Up Attribute on attribute Motorbike::power

Figure 12.9 shows the information dialog when applying UML
refactoring Pull Up Attribute on attribute Motorbike::power. Before
the refactoring, UML model smell Equal Attributes in Sibling Classes
occurs 13 times; after the refactoring three occurrences would be
eliminated (since attribute power is pulled up from each subclass of
Vehicle, i.e., classes Motorbike, Car, and Truck). Moreover, no fur-
ther smell would be inserted. However, 10 occurences of smell Equal
Attributes in Sibling Classes as well as the single occurrences of smells
Large Class, Equally Named Classes, Speculative Generality Class, Diamond
Inheritance, Unused Class, and Speculative Generality Interface would re-
main. Finally, all model changes can be committed and the refactoring
is performed.

Figure 12.10 shows the example UML class model after performing
several model changes, being refactorings and manual changes, as
described at the end of Section 12.3. Now, class Vehicle owns the
afore redundant attributes manufacturer, power, and regnumber.

134

Figure 12.10: Example UML class model after several model changes as re-
sult of a first model review

135

Class Service has been removed so that VehicleRentalService

(formerly named VehicleRental) is the only offered service left. Fi-
nally, the main class VehicleRentalCompany (also formerly named
VehicleRental) has a new attribute invoices with type Invoice and mul-
tiplicity 0..*.

From the detected smells seven occurrences are left. However, there
are model parts remaining suspicious with respect to several model
quality aspects. For example, there are associations from class Company

to classes Car, Truck and Motorbike hinting to some kind of redun-
dant modeling. This shows that project-specific model quality assur-
ance techniques need not be completely defined (and implemented)
before a project starts. The quality assurance process should be re-
fined during the model development phase in order to be steadily
improved. For example UML model smell Association Clumps as well
as refactoring Pull Up Association would extend the suite of project-
specific model quality assurance techniques in a meaningful way.
How the specification of new model assurance techniques is sup-
ported by EMF Refactor is shown in the next chapter of this thesis.

136

13
E X A M P L E S P E C I F I C AT I O N S

EMF Refactor, the tool environment for EMF model quality assurance,
provides a wizard-based specification process for each supported qual-
ity assurance technique. This chapter presents several concrete specifi-
cation mechanisms for model quality assurance techniques. The tech-
niques and mechanisms are discussed along a domain-specific mod-
eling language for defining web applications. After introducing the
DSL in Section 13.1, the subsequent sections discuss how to define
new model metrics (Section 13.2), new model smells (Section 13.3),
and new model refactorings (Section 13.4). Finally, Section 13.5 shows
how to manually define relations between model smells and model
refactorings. 1

13.1 example dsl simple web model (swm)

To demonstrate the specification facilities provided by EMF Refactor,
we use a domain-specific modeling language (DSML) called Simple
Web Model (SWM) for defining a specific kind of web applications.
This language has been already used in Section 6.2 to demonstrate
a proof-of-concept implementation of the quality assurance process
defined in Part I of this thesis.

However, for a better understanding we repeat the example sce-
nario (taken from [21]): A software development company is repeat-
edly building simple web applications being mostly used to popu-
late and manage persistent data in a database. Here, a typical three-
layered architecture following the Model-View-Controller (MVC) pat-
tern [68] is used. As implementation technologies, a relational database
for persisting the data as well as plain Java classes for retrieving
and modifying the data are employed for building the model layer.
Apache Tomcat is used as the Web Server, and the view layer, i.e., the
user interface, is implemented as Java Server Pages and the controller
layer is realized as Java Servlets. The company decides to develop its
own DSML called Simple Web Modeling Language (SWM) for defin-
ing their specific kind of web applications in a platform-independent
way. Furthermore, platform-specific models following the MVC pat-

1 Details on implemented smells and refactorings for UML class models can be found
in Appendices D and F of this thesis.

137

tern should be derived with model transformations from which the
Java-based implementations are finally generated.

Figure 13.1: SWM meta model defined in Ecore

Figure 13.1 shows the language description of SWM as meta model
modeled in EMF Ecore. A WebModel consists of two parts: a DataLayer

for modeling entities which should be persisted in the database (see
left-hand-side of Figure 13.1), and a HypertextLayer presenting the
web pages of the application (see right-hand-side of Figure 13.1). An
Entity owns several Attributes (each having a SimpleType) and can
be related to several other entities (see meta class Reference). A Page

is either a StaticPage having a static content or a DynamicPage having
a dynamic content depending on the referenced entity. An IndexPage

lists objects of this entity whereas a DataPage shows concrete infor-
mation on a specific entity like its name, attributes, and references.
Pages are connected by Links.

The following sections show how to implement quality assurance
techniques for SWM which have been already introduced in Sec-
tion 6.2. We start with the specification of metrics for the SWM lan-
guage.

13.2 specification of new model metrics

For the specification of model metrics, EMF Refactor supports four
concrete technologies. As basic approaches, pure Java code using the
modeling language API generated by EMF and OCL expressions can
be used. Another approach is to define a pattern using the abstract
model syntax first and to count its occurrences in a concrete model
thereafter. These patterns are formulated as rules in a language in-
cluded in the EMF model transformation tool Henshin [4, 54]. To
define compositional metrics, the tool environment supports a com-

138

bination of existing ones. Here, the involved metrics as well as appro-
priate arithmetic operations have to be specified.

Figure 13.2: Wizard dialog for the specification of new model metrics

Figure 13.2 shows an example wizard dialog concerning the spec-
ification of SWM metric NEM (Number of Entities in the Model). Af-
ter inserting metric-specific information like the name or the corre-
sponding meta model and context type information, EMF Refactor
generates metric-specific Java code and extends the list of supported
model metrics using the extension point technology of Eclipse. Now,
the metrics designer has to complete this code by the actual metrics
calculation algorithm. As a result, we obtain a module with all met-
rics features as described in Section 12.2.

1 WebModel in = (WebModel) context.get(0);

2 double ret = 0.0;

3 // begin custom code

4 ret = in.getDataLayer().getEntities().size();

5 // end custom code

6 return ret; �
Listing 13.1: Completed Java specification for SWM metric NEM

Listing 13.1 shows the completed Java code snippet specifying SWM
metric NEM. Starting from the contextual WebModel element, the Java
API of SWM generated by EMF is used. According to the SWM meta

139

model in Figure 13.1, a web model owns a DataLayer for modeling
entities which should be persisted in the database. The custom code
in Listing 13.1 simply navigates to the set of entities within the data
layer and returns its size (see line 4 in Listing 13.1).

Since EMF models can be queried well using the Object Constraints
Language [121], EMF Refactor supports model metrics specifications
formulated as OCL queries. Listing 13.2 shows two alternative OCL
expression being suited to calculate SWM metric NDPM (Number of
Dynamic Pages in the Model). The first expression (lines 1 and 2) nav-
igates from the contextual element (represented by the OCL variable
self of type WebModel) to the set of pages within the hypertext layer of
the model, selects those being of type DynamicPage (since there might
be also static pages), and returns their number. The second alternative
(line 4) uses the allInstances() operation of the OCL standard library
to get a set consisting of all dynamic pages in the model and also
returns their number.

1 String oclExpression_v1 = "self.hypertextLayer.pages " +

2 "-> select(oclIsKindOf(DynamicPage)) -> size()";

3

4 String oclExpression_v2 = "DynamicPage.allInstances() -> size()"; �
Listing 13.2: Two alternative OCL specifications for SWM metric NDPM

(Number of Dynamic Pages in the Model)

To insert the OCL query during the specification process in addi-
tion to the basic data similar to Figure 13.2, the specification wizard
provides a dedicated input page after selecting the OCL specification
mode. Finally, EMF Refactor generates the complete metric-specific
Java code. Here, the contextual element (an instance of WebModel) as
well as the specified expression (represented as String) are passed to
the OCL adapter as presented in Section 11.2.

As discussed in Section 6.2.2, a metric calculating the ratio between
the values of both metrics presented before might be helpful to detect
missing dynamic pages. For defining these kind of metrics, the speci-
fication wizard provides a dedicated page after selecting specification
mode Composite. Here, the metric designer simply selects the involved
existing metrics as well as the appropriate arithmetic operation. Here,
the binary arithmetic operations sum, subtraction, multiplication, and
division are supported.

In our example, for specifying SWM metric DPpE (Dynamic Pages
per Entity), metrics NEM (Number of Entities in the Model) and NDPM

(Number of Dynamic Pages in the Model) are combined using the
binary arithmetic operation division (see Figure 13.3). To be consis-
tent, the dialog page presents only those metrics whose contextual
elements correspond to the contextual element of the new composi-

140

Figure 13.3: Compositional specification for SWM model metric DPpE (Dy-
namic Pages per Entity)

tional metric (WebModel in our example). Again, EMF Refactor finally
generates the complete metric-specific Java code and extends the list
of supported model metrics for SWM models.

As a last supported specification mechanism for EMF model met-
rics we present the use of Henshin pattern rules formulated on the
abstract syntax on SWM. Figure 13.4 shows a Henshin pattern rule
specifying SWM metric NDPE (Number of Dynamic Pages referencing
the Entity) using the graphical syntax of Henshin. The left node con-
text of type Entity represents the contextual model element for calcu-
lating metric NDPE whereas the remaining rule elements represent the
pattern that has to be found in the model. The pattern defines a node
referencingPage type DynamicPage that references the contextual entity
by reference entity. It is formulated as positive application condition
(PAC) (see rule elements annotated with 〈〈require#reference〉〉).

To calculate metric NCCP, the Henshin adapter of the metrics tool
uses the Henshin interpreter to find and count matches of this pat-
tern rule on concrete SWM instance models. Please note that this
adapter requires the following guidelines for Henshin pattern rule
specifications to work properly:

• The pattern rule must be named mainRule.

141

Figure 13.4: Henshin pattern rule specifying SWM model metric NDPE

• The rule must have a parameter named index.

• The contextual node must be named index.

For defining these metrics specified in Henshin, the specification
wizard provides a dedicated import page for the appropriate Hen-
shin file. As in the cases described before, EMF Refactor finally gen-
erates the complete metric-specific Java code and extends the list of
supported model metrics for SWM models.

The metrics defined in this section may help to analyze the com-
pleteness of SWM models . However, to make suspicious model parts
more explicit, the next section shows how to specify model smells for
SWM models.

13.3 specification of new model smells

EMF Refactor supports four concrete mechanisms for model smell
specification. Again, pure Java code and OCL expressions can be
used as basic approaches. Some smells can be detected well by met-
ric benchmarks. Here, appropriate model metrics are used together
with suitable benchmarks being set by project-specific configurations.
Pattern-based smells (i.e., smells that are detectable by the existence
of specific anti-patterns) can be specified by Henshin rules.

The specification process for model smells is similar to the speci-
fication process for model metrics. For each specification mode, the
dialog page for inserting basic model smell data looks similar to the
page shown in Figure 13.2. The only difference is the missing context
element type definition since a smell does not have such a context.

After inserting smell-specific information like the name or the cor-
responding meta model (given by its nsURI, see Section 10.1), EMF
Refactor generates Java code and extends the list of supported model
smells using the extension point technology of Eclipse. In the case of
selecting the Java specification mode, the corresponding generation
module generates a skeleton implementation that has to be completed
by the model smell designer.

Listing 13.3 shows the core Java specification of SWM smell No

Dynamic Page. According to Section 6.2.2, this smell occurs if the

142

model contains an entity which is not referenced by a dynamic page,
i.e., the entity would not be depicted in the web application. The con-
dition in the if-clause checks whether the given entity is referenced
by a dynamic page (line 9). In this case, the boolean flag is set (line
10). Finally, if no page references the entity, i.e., the boolean flag is not
set, a new SmellOccurrence object is created, the entity is added to it,
and the object is added to the list of found model smells (lines 14 to
16). 2

1 LinkedList<SmellOccurrence> results =

2 new LinkedList<SmellOccurrence>();

3 // begin custom code

4 List<Entity> entities = getAllEntities(root);

5 List<DynamicPage> dynamicPages = getAllDynamicPages(root);

6 for (Entity entity : entities) {

7 boolean isReferenced = false;

8 for (DynamicPage dynamicPage : dynamicPages) {

9 if (dynamicPage.getEntity() == entity) {

10 isReferenced = true;

11 }

12 }

13 if (! isReferenced) {

14 SmellOccurrence result = new SmellOccurrence();

15 result.addEObject(entity);

16 results.add(result);

17 }

18 }

19 // end custom code

20 return results; �
Listing 13.3: Java specification of SWM model smell No Dynamic Page

The use of OCL is also an adequate approach to specify model
smells. Listing 13.4 shows the OCL specification of SWM smell Empty
Entity. It defines an OCL operation that returns from the set of all
entities in the web model (line 3) those which have neither attributes
nor references (lines 4 and 5).

1 context WebModel

2 def: emptyEntity(): Set(Entity) =

3 Entity.allInstances() -> select (entity|

4 entity.attributes -> isEmpty() and

5 entity.references -> isEmpty()) �
Listing 13.4: OCL specification of SWM model smell Empty Entity

In this specification mode, the specification wizard provides a ded-
icated input page for the appropriate OCL file. Moreover, the model

2 Please note that the code snippet is not complete since we use auxiliary methods
getAllEntities() and getAllDynamicPages() which are not discussed in detail here.

143

smell designer has to specify the name of the operation to be executed
by the corresponding OCL adapter. Then, EMF Refactor generates the
complete smell-specific Java code and extends the list of supported
model smells for SWM models.

As mentioned at several places throughout this thesis, some model
smells can be detected by matching a corresponding pattern based
on the abstract syntax of the modeling language. A representative of
this kind of smells concerning the SWM language is Equally Named

Pages. This smell detects pages within the hypertext layer having the
same name. Such redundant page names potentially lead to inconsis-
tent code that is generated from the model.

Figure 13.5: Henshin pattern rule specification for SWM model smell Equally
Named Pages

Figure 13.5 shows a Henshin pattern rule defining smell Equally

Named Pages. The pattern specifies two pages that must be found in
the model (tagged by 〈〈preserve〉〉) and the containing hypertext layer
as PAC (tagged by 〈〈require〉〉). Furthermore, the rule owns a parame-
ter named pagename of type EString. It is used for specifying that the
meta attributes name of each page node have the same value, i.e., the
pages have the same name.

The smell detection tool in EMF Refactor uses Henshin’s pattern
matching algorithm to detect rule matches. Please note that the pat-
tern rule must be named mainRule in order to be executed by the
Henshin adapter. Then, the matches found represent the existence of
model smells in the model. If the pattern is matched its preserved
nodes represent those model elements which are involved in this
specific smell occurrence. The specification wizard for pattern-based
smells provides an import page for the appropriate Henshin file and
finally generates the complete smell-specific Java code and extends
the list of supported model smells for SWM models.

As discussed in Sections 6.2.2 and 13.2, metric DPpE (Dynamic Pages
per Entity) might be helpful to detect a SWM model smell. If its value
is less than 2, i.e., an entity is not referenced by at least two dynamic
pages on average, this might be a hint for missing dynamic pages.
This metric-based smell is called Insufficient Number of Dynamic

Pages in the following.

144

Figure 13.6: Specification of SWM model smell Insufficient Number of Dy-
namic Pages using metric DPpE (Dynamic Pages per Entity)

For the specification of metric-based model smells, EMF Refactor
provides a dedicated specification wizard. On a specific page, the
metric designer simply selects the corresponding metric as well as
the appropriate comparator. For specifying e.g. smell Insufficient

Number of Dynamic Pages, metric DPpE is combined with comparator
< as discussed above. Figure 13.6 shows the corresponding wizard
page. Please note that the threshold value is not pre-set. This is done
in the project-specific configuration as described in Section 12.3.

Throughout this thesis, refactoring is the technique of choice for
eliminating model smells. So, after having specified appropriate model
smells, the following section demonstrates how to define suitable
refactorings in order to support the handling of smelly SWM models.

13.4 specification of new model refactorings

Since EMF Refactor uses the LTK technology [67] as described in
Section 11.2, a concrete refactoring specification requires up to three
parts (i.e., specifications for initial checks, final checks, and the proper
model changes). EMF Refactor supports three concrete mechanisms
for EMF model refactoring specification. As for metrics and smells,
refactorings can be specified using Java and the language API gener-
ated by EMF. A way to specify a model refactoring straight forwardly
is to use Henshin. Finally, existing refactorings can be combined to
more complex ones by using a domain-specific language, called CoM-

145

ReL (Composite Model Refactoring Language), as presented in Sec-
tion 7 of this thesis.

The dialog for the specification of a new model refactoring starts
with a page for inserting basic data like the name of the refactoring
or the corresponding meta model and context type information.

Figure 13.7: Wizard dialog for the specification of new model refactorings

A standard refactoring that should be provided for a DSML is the
renaming of model elements. For example, refactoring Rename Page

can be used to eliminate SWM model smell Equally Named Pages as
discussed in the previous section. Figure 13.7 shows the dialog page
for inserting basic information. After inserting these data, potential
refactoring-specific parameters are defined using the second page of
the specification wizard.

Figure 13.8: Parameter input specification of SWM model refactoring Re-
name Page

Besides the contextual element of type Page, refactoring Rename

Page has one more parameter: the new name of the page. It is speci-

146

fied as shown in Figure 13.8. In addition to the name of the parame-
ter, newpagename, a parameter description can be defined that will be
used later on in the parameter input dialog during the refactoring.

If specification mode Java is selected, the generated refactoring-
specific code contains three passages indicating those parts of the
refactoring specification that have to be completed (i.e., specifications
for initial checks, final checks, and the proper model changes).

1 RefactoringStatus result = new RefactoringStatus();

2 Page selectedEObject = (Page) getValue("selectedEObject");
3 String newpagename = (String) getValue("newpagename");
4 // begin custom code

5 List<Page> pages = getAllPages(root);

6 for (Page page : pages) {

7 if (page != selectedEObject &&

8 page.getName().equals(newpagename)) {

9 result.addFatalError("There is already a page" +

10 " named ’ " + newpagename + " ’ ! ");
11 }

12 }

13 // end custom code

14 return result; �
Listing 13.5: Final precondition check of SWM model refactoring Rename

Page

Refactoring Rename Page does not require any initial precondition
checks. However, after inserting the new name of the page, a final
check has to ensure that there is no page already having this name.
Listing 13.5 shows the core Java specification of this check. Here, the
name of each page (except for the contextual one) is compared to the
specified name given by the parameter input (lines 7 and 8). If there is
already a page with this name, an individual error message is added
to the refactoring observer (object of LTK class RefactoringStatus;
see lines 9 and 10 in Listing 13.5).

1 Page selectedEObject = (Page) getValue("selectedEObject");
2 String newpagename = (String) getValue("newpagename");
3 // begin custom code

4 selectedEObject.setName(newpagename);

5 // end custom code

6 return result; �
Listing 13.6: Model change specification of SWM model refactoring Rename

Page

Listing 13.6 shows the model change specification of refactoring
Rename Page. Here, the custom code simply changes the name of the

147

contextual page object (selectedEObject) to the inserted one (line 5).3

A prominent way to specify EMF model refactorings is to use the
model transformation language Henshin since refactorings can be
seen as a specific kind of in-place model transformations. Here, EMF
Refactor uses Henshin’s model transformation engine for executing
the refactoring as well as Henshin’s pattern matching algorithm to
detect violated preconditions.

In the previous section, SWM model smell No Dynamic Page indi-
cating an entity which is not referenced by a dynamic page has been
discussed. According to Section 6.2.2, this smell can be eliminated by
a refactoring which inserts both an index page and a data page refer-
encing the corresponding entity to the hypertext layer. This refactor-
ing, called Insert Dynamic Pages, is called from an entity (the contex-
tual element) and can be applied only if this entity is not referenced
by a dynamic page already (initial precondition check). The names
of both new pages can be derived from the name of the entity by
appending Index and Data, respectively. So, the refactoring does not
have any further parameters. Therefore, there are no final precondi-
tions to be checked.

In EMF Refactor, the specification of precondition checks using
Henshin rules is done in a similar way as for specifying model smells
(see previous section). Each scenario that violates the correspond-
ing precondition is specified in a separate Henshin rule in order to
present reasonable error messages to the user. Here, such messages
are encoded as descriptions of the corresponding rule. If the rule
matches, i.e., the precondition is violated, the Henshin adapter passes
the message to the RefactoringStatus object.

Figure 13.9: Henshin rule specification for the initial precondition check of
SWM model refactoring Insert Dynamic Pages

Figure 13.9 shows two Henshin rules defining potential precondi-
tion violations of refactoring Insert Dynamic Pages. In both rules,
node selectedEObject of type Entity represents the contextual model
element. The rule on the left-hand side specifies that the contextual

3 Though renaming is a simple but common refactoring, the implementation of Rename
Page in Listings 13.5 and 13.6 show that it is hard to define EMF-based refactoring
in a generic way due to the diversity of precondition checking with respect to the
given DSML (compare [132, 32]).

148

entity is referenced by a data page whereas the rule on the right-
hand side specifies that it is referenced by an index page. Please note
that both rules can be combined to one single rule using a node of
type DynamicPage instead of two nodes of type DataPage respectively
IndexPage. However, when using two rules the corresponding error
messages are more meaningful (There is already a data/index page refer-
encing this entity! compared to There is already a dynamic page referencing
this entity!).

Figure 13.10: Henshin rule specification for the model change part of SWM
model refactoring Insert Dynamic Pages

Figure 13.10 shows the Henshin rule specifying the model change
part of SWM refactoring Insert Dynamic Pages. Nodes and edges
tagged by 〈〈preserve〉〉 represent unchanged model elements whereas
those tagged by 〈〈create〉〉 represent new ones. The rule inserts both a
new data page and a new index page into the hypertext layer of the
model. The names of the new pages are set as described above. Here,
the rule uses an internal parameter entityname whose value is set by
the match of the contextual entity (node selectedEObject). Finally, a link
between the inserted index page and the new data page is inserted.

Please note that the Henshin adapter requires the following guide-
lines for refactoring specifications to work properly:

• The unit to be executed must be named mainUnit.

• The main unit must have a parameter named selectedEObject.

• The contextual node must be named selectedEObject.

In the specification process for refactorings specified in Henshin,
the specification wizard provides an import page for the appropriate
Henshin file(s) and finally generates the complete refactoring-specific
Java code and extends the list of supported model refactorings for
SWM models.

149

EMF Refactor supports to combine existing refactorings to more
complex ones. Here, a domain-specific language, CoMReL (Compos-
ite Model Refactoring Language), is provided which implements the
concepts discussed in Section 7 of this thesis.

Figure 13.11: Unit specification of composite SWM model refactoring Create
Dynamic Pages for Orphants

Figure 13.11 shows a visual representation of the specification model
of refactoring Create Dynamic Pages for Orphants. This refactoring can
be used to insert both an index page and a data page for each en-
tity in the model which is not referenced by a dynamic page yet. The
main refactoring unit Create Dynamic Pages for Orphants is a non-strict
Sequential Unit consisting of a SingleQueuedUnit and a AtomicUnit.
The SingleQueuedUnit is applied on each entity of the contextual
web model. Here, the entities are obtained by helper unit Get All En-
tities. Finally, refactoring Update Links To Index Pages is applied on the
starting page of the model (which is also obtained by an appropriate
helper). This additional refactoring is required since the specification
of the refactoring does not consider to add a link from the starting
page to the newly created index page (see Figure 13.10).

The specification process for refactorings specified in CoMReL is
similar to that for Henshin. Here, the specification wizard provides
an import page for the appropriate CoMReL file and finally gener-
ates the complete refactoring-specific Java code and extends the list

150

of supported model refactorings for SWM models.

In this section, we specified several refactorings which are suited
to erase model smells specified in the previous section. The following
section demonstrates how this relation can be made more explicit
within the EMF Refactor tool set.

13.5 specification of smell-refactoring relations

Section 12.4 presents mechanisms to provide modelers with a quick
and easy way (1) to erase model smells by automatically suggest-
ing appropriate model refactorings, and (2) to get warnings in cases
where new model smells occur due to applying a model refactoring.
In order to propose suitable refactorings respectively to inform about
potential new smells, the tooling must be provided with information
on the relations between model smells and model refactorings.

A pragmatic way is to manually define these relations. Here, the ad-
vantage is that the designers can adjust the implementation of model
smells and model refactorings to the fact that they are going to be
related. A manually defined relation is done by a designer with the
definitive goal to erase a model smell using a given model refactoring.

Since there are two possible relationships for model smells and
model refactorings, EMF Refactor provides two extension points for
the manual definition of these relations as presented in Section 11.2.
On the one hand, a smell ID is related to a list of refactoring IDs (in
case of providing suitable refactorings for a given smell). On the other
hand, a refactoring ID is related to a list of smell IDs (in case of possible
new smells when applying a given refactoring).

Figure 13.12: Manual configuration of refactorings being suitable to erase a
given model smell

151

The definition of relations between model smells and model refac-
torings can be done in two ways: directly (by serving the correspond-
ing extension point) or via a dedicated property page. This page
provides graphical user interfaces for (de-)activating appropriate re-
lations. Figure 13.12 shows the property page for (de-) activating re-
lations between a given model smell and refactorings being suitable
to eliminate this smell. Here, we address smell No Dynamic Page for
SWM models (see meta model selection on the top). For this smell
refactoring Insert Dynamic Pages is selected as a potential solution
according to the discussions in the previous sections.

Since the application of a given refactoring poses a risk for insert-
ing new model smell occurrences, EMF Refactor supports the man-
ual configuration of this relationship between model refactorings and
model smells.

Figure 13.13: Manual configuration of potentially inserted smells after ap-
plying a given refactoring

Figure 13.13 shows an example for the selection of potentially new
smells after applying a specific refactoring. Here, the afore mentioned
SWM refactoring Insert Dynamic Pages is addressed and two smells
are specified which can occur after applying the refactoring. On the
one hand, smell Equally Named Pages occurs if the hypertext layer
already contains a page with the same name as one of the derived
names in the corresponding refactoring specification (see Figure 13.10
in the previous section). On the other hand, smell Missing Link oc-
curs since the specification of the refactoring does not consider to add
a link from the starting page to the newly created index page.

Please note that the relationships between model smells and refac-
torings need not be set for each project. Here, EMF Refactor uses

152

the Eclipse extension point technology to provide information about
smell-refactoring relationships throughout the entire Eclipse system.

With this section, the description of the tool set EMF Refactor fin-
ishes. The next chapter of this thesis presents several evaluation tasks
that have been performed in the context of this tool environment for
EMF model quality assurance.

153

14
T O O L E VA L U AT I O N

In this Chapter, we evaluate the tool set EMF Refactor along two dif-
ferent perspectives. The chapter is structured as follows. First, Sec-
tion 14.1 hypothesizes several claims to be addressed by the evalua-
tion tasks described in Section 14.2. Then, we present the results of
the evaluation in Section 14.3 followed by a discussion on threats to
validity in Section 14.4.

14.1 goals and hypotheses

This section defines the goals and hypotheses we want to evaluate.
In favor of a structured approach the following goals and hypotheses
are distinguished along the perspectives suitability and scalability. The
former subsumes aspects related to analysis capabilities like metrics
calculation and model smell detection as well as capabilities concern-
ing the active quality improvement of models in the sense of refactor-
ing execution. The latter perspective especially tackles performance
aspects like execution time.

The goals and hypotheses with respect to the suitability of the tool
environment EMF Refactor are:

goal G1 : The evaluation should show that the tools in EMF Refactor are
suited to support the analysis and refactoring tasks of the presented
model quality assurance process. This includes that using the tools
(1) prevents from incorrectly performing quality assurance tasks
such as counting faults, and (2) provides results more quickly
compared to manually performing the corresponding task.

goal G2 : The specification technologies supported by EMF Refactor are
suited to implement metrics, smells, and refactorings for any kind of
EMF-based modeling language.

hypothesis H1 : EMF Refactor guides students being new in UML mod-
eling along their way towards improved model quality by means of a
sophisticated tool chain.

hypothesis H2 : The code generation facilities provided by EMF Refac-
tor guide students on specifying new metrics, smells, and refactorings

155

for EMF-based modeling languages and allows to concentrate on the
essential specification part only.

The hypothesis concerning performance and scalability of the ap-
plication modules in EMF Refactor is:

hypothesis H3 : The application tools in EMF Refactor scale.

Now that the goals and hypotheses are stated, the manner of how
they are evaluated is described subsequently in turn followed by the
actually evaluation.

14.2 evaluation tasks

To evaluate the goals and hypotheses defined in the previous sec-
tion we processed three different tasks. First, we provide a number of
proof-of-concept implementations to evaluate G1 and G2 . For evalu-
ating H1 and H2 , we performed two study experiments. Finally, we
carried out several performance tests to evaluate H3 . This section de-
scribes these tasks in detail.

14.2.1 Proof-of-concept implementations

The suitability of EMF Refactor according to the quality assurance
process defined in Part I of this thesis is evaluated by implementing
a comprehensive catalog of model metrics, smells, and refactorings.
These proof-of-concept implementations particularly target the EMF
core meta model (Ecore), a commonly used meta model (UML21),
and a domain-specific meta model (SWM; see Sections 6.2 and 13.1).

Model Metrics Model Smells Model Refactorings

Ecore 23 3 22

UML2 107 27 27

SWM 9 10 6

Table 14.1: Proof-of-concept implementations of metrics, smells, and refac-
torings for Ecore, UML2, and SWM models

Table 14.1 summarizes the implementations. The majority of imple-
mented quality assurance techniques target UML2 models. For exam-
ple, we provide implementations for measuring the structural quality
conforming with well-known metrics like Afferent and Efferent Cou-
pling [110, 84] or DIT and MaxDIT [24, 69]. Example UML2 smells and

1 We refer to UML2 being the standard EMF-based representation of UML2, i.e.,
org.eclipse.emf.uml2.uml.

156

refactorings are Multiple Definitions of Classes with equal Names [97],
Primitive Obsession [11] and Introduce Parameter Object [64, 161]. 2

We implemented the afore mentioned quality assurance techniques
using different specification approaches. Table 14.2 summarizes the
used approaches for concrete specifications of metrics, smells, and
refactorings for UML2 models 3. For comparison purposes, we imple-
mented some refactorings using alternative approaches. Please note
that each used approach has been selected freely by the designer, i.e.,
we did not evaluate the suitability of the supported approaches for
each technique.

UML2 Metrics UML2 Smells UML2 Refactorings

Java 13 9 24

OCL 47 1 –

Henshin 12 13 11

Comb. 35 – –

Metric – 4 –

CoMReL – – 16

Table 14.2: Used specification approaches for UML2 metrics, smells, and
refactorings

Finally, we related 16 UML2 smells to 18 potentially suitable refac-
torings and 14 refactorings to 6 potentially occurring smells according
to Tables 5.5 and 5.6 in Section 5.3.3.

14.2.2 Study experiment I

To evaluate goal G1 and hypothesis H1 , we conducted the following
experiment, referred to as Ex_App in the remainder of this chapter. The
main subject of this experiment was the application of model qual-
ity assurance techniques to a given UML class model. In this exper-
iment, we followed the four common ethical principles for research
practices in empirical software engineering as discussed in [155] (in-
formed consent, scientific value, confidentiality, and beneficence). The
setting was as follows: 4

Participants 20 undergraduate students participated in this study.
The study was conducted as part of the course Introduction to Software

2 Lists of implemented metrics, smells, and refactorings for UML2 models can be
found on the EMF Refactor web site [47].

3 Details on implemented smells and refactorings for UML2 class models can be found
in Appendices D and F of this thesis.

4 The study material can be found in Appendix G of this thesis.

157

Engineering within the context of the B.Sc. study path held in winter
term 2013/14 at Philipps-University Marburg, Germany.

Preliminary Studies In a 90 minutes theoretical lecture we intro-
duced the participants to the topic of software quality and software
quality assurance. In particular, we introduced to the quality assur-
ance techniques metrics, smells, and refactoring. In a further 15 min-
utes introduction immediately before of the experiment we presented
the adaptation of these techniques to the field of software modeling.

Study design We asked participants to perform model quality as-
surance techniques on the UML class model presented in Figure 12.1
on page 126. We considered class models for two reasons: first, be-
cause class diagrams are the mostly used UML diagram type [29],
and second, since the students were especially introduced to UML
class models in a preceding lecture a few weeks before the experi-
ment took place. The experiment consisted of three main tasks with
each being restricted to 20 minutes. In task Ex_App_M, the participants
were asked to manually calculate a number of given metrics on the
example class model. 5 In task Ex_App_S, the participants were asked
to analyze the example class model with respect to 10 given model
smell descriptions (3 metric-based and 7 pattern-based smells). In
task Ex_App_R, the participants were asked to perform 5 refactorings
and one manual change on the example class model in order to im-
prove its structure. Finally, we randomly separated the participants
into two groups. The groups were located in two different rooms to
perform the tasks. The participants of group M (manual) were pro-
vided with an Eclipse IDE [50], Papyrus UML [59], and the example
UML class model. The participants of group T (tooling) were addi-
tionally provided with EMF Refactor [47] and brief summaries how
to use its functionalities.

Data collected We collected several measurements during the ex-
periment. First, in a pre-study questionnaire we asked the participants
about their personal skills, more precisely about their experience in
software modeling, metrics calculation, model smell detection, and
model refactoring. Here, we used a five-point Likert scale ranging
from values 1 (beginner) to 5 (expert). Second, the participants re-
turned the provided forms containing the results of the analyses tasks
Ex_App_M and Ex_App_S. Third, the participants were asked to send
the Eclipse project containing the refactored model after finishing task
Ex_App_R to the experimenter. Fourth, in an inter-study questionnaire
the students were asked to assess the difficulty of the tasks Ex_App_M,

5 In particular, 10 metrics to be calculated on the model level (sub task Ex_App_M_1),
10 metrics to be calculated on two different packages (sub task Ex_App_M_2), and 10

metrics to be calculated on three different classes (sub task Ex_App_M_3).

158

Ex_App_S, and Ex_App_R as well as to evaluate the provided time slot
for performing the tasks. Here, we used a five-point Likert scale rang-
ing from values 1 (very simple respectively much too short) to 5 (very
difficult respectively much too long). Fifth, in a post-study questionnaire
the participants of group M were asked how often during the exper-
iment they thought that the modeling environment should provide
functionality such as metrics calculation, smell detection, and refac-
toring. Here, we used a five-point Likert scale containing the values
never, rarely, sometimes, often, and always. The participants of group
T were asked how they appreciated the functionality of EMF Refactor.
Here, we used a five-point Likert scale ranging from values 1 (not
helpful at all) to 5 (very helpful). Finally, we asked all participants to
give additional comments on the experiment.

14.2.3 Study experiment II

To evaluate hypothesis H2 , we conducted the following experiment,
referred to as Ex_Spec in the remainder of this chapter. The main
subject of this experiment was the specification of new model qual-
ity assurance techniques (model metrics, model smells, and model
refactoring) for the DSML Simple Web Modeling Language (SWM)
as presented in Sections 6.2 and 13.1. Also here, we followed the four
common ethical principles for research practices in empirical software
engineering as discussed in [155] (informed consent, scientific value,
confidentiality, and beneficence). The setting was as follows: 6

Participants 8 graduate students participated in this study. The
study was conducted as part of the course Model-driven Software De-
velopment within the context of the M.Sc. study path held in winter
term 2013/14 at Philipps-University Marburg, Germany.

Preliminary Studies In a 45 minutes theoretical lecture we intro-
duced the participants to the topic of software model quality and
model quality assurance. In particular, we introduced the quality as-
surance techniques model metrics, model smells, and model refactor-
ing. In a further 45 minutes lecture we demonstrated the application
of existing techniques as well as the specification of new techniques
using the functionality of EMF Refactor. Finally, in a 15 minutes in-
troduction immediately ahead of the experiment we presented the
example language SWM.

Study design We asked participants to specify new model quality
assurance techniques for textual SWM models using EMF Refactor.
The grammar of SSM can be found in Listing 6.1 on page 68. The
corresponding meta model is shown in Figure 13.1 on page 138. The

6 The study material can be found in Appendix H of this thesis.

159

experiment consisted of three main tasks. The time slots for process-
ing the tasks were set to 40 minutes each. In task Ex_Spec_M, the
participants were asked to specify 5 new SWM metrics of increasing
complexity (sub tasks Ex_Spec_M_1 to Ex_Spec_M_5) using either Java
or OCL as concrete specification language. In task Ex_Spec_S, the par-
ticipants were asked to specify 4 new SWM model smells of increas-
ing complexity (sub tasks Ex_Spec_S_1 to Ex_Spec_S_4) using Java as
concrete specification language. In task Ex_Spec_R, the participants
were asked to specify 3 new SWM model refactorings of increasing
complexity (sub tasks Ex_Spec_R_1 to Ex_Spec_R_3) using Java as con-
crete specification language. The participants were provided with an
Eclipse IDE and a customized version of EMF Refactor including the
SWM language. Finally, we provided a brief summary how to use the
code generation functionality of EMF Refactor, three predefined plu-
gin projects to be used as targets for the appropriate generated code,
and an example SWM that can be used for testing purposes.

Data collected We collected several measurements during the ex-
periment. First, in a pre-study questionnaire we asked the participants
about their personal skills, more precisely about their proficiency
with Java and OCL as well as their experience with EMF. Here, we
used a ten-point Likert scale ranging from values 1 (beginner) to
10 (expert). Second, the participants were asked to send the pro-
vided Eclipse projects containing the specified techniques after fin-
ishing the tasks Ex_Spec_M, Ex_Spec_S, and Ex_Spec_R to the exper-
imenter. Third, in an inter-study questionnaire the participants were
asked to assess the difficulty of each sub task. Here, we used a ten-
point Likert scale ranging from values 1 (very simple) to 10 (very dif-
ficult). Fifth, in a post-study questionnaire the participants were asked
how much they appreciated (1) the possibility to use either Java or
OCL for specifying new SWM metrics and (2) the code generation
functionality of EMF Refactor. Here, we used a ten-point Likert scale
ranging from values 1 (not helpful at all) to 10 (extremely helpful).
Finally, we asked all participants to give additional comments on the
experiment.

14.2.4 Performance and scalability tests

To evaluate the scalability of the application modules in EMF Refactor,
we conducted several performance tests. We performed these tests on
a Lenovo ThinkPad W500, Intel Centrino vPro 2.8GHz, 4MB RAM.

Metrics calculation For evaluating the scalability of the metrics cal-
culation module we calculated a selected set of ten UML2 metrics on
class models having 100, 500, 1.000, 5.000. 10.000, 50.000 and 100.000

160

elements and measured the duration of the calculation. Table 14.3
summarizes the selected metrics:

UML2 Metric Description

TNME Total number of elements in the model.

MaxDIT Maximum of all depths of inheritance trees (con-
text: model).

MaxHAgg Maximum of aggregation trees (context: model).

DNH Depth in the nesting hierarchy (context: package).

NATIP Number of inherited attributes in classes within
the package.

NOPIP Number of inherited operations in classes within
the package.

HAgg Length of the longest path to the leaves in the
aggregation hierarchy (context: class).

MaxDITC Depth of Inheritance Tree (maximum due to mul-
tiple inheritance; context: class).

NSUBC2 Number of all children of the class.

NSUPC2 Total number of ancestors of the class.

Table 14.3: UML2 metrics used for performance and scalability testing

We selected these metrics to cover inheritance and nesting issues.
Note that they are calculated on different context types (model, pack-
age, and class). We consider UML2 models only due to the variety of
implemented metrics (see Table 14.2 on pagee 157).

Model instances are created using a basic model similar to the ex-
ample class model shown in Figure 6.1 on page 56. To provide an
adequate model instance of required size we duplicated respectively
nested the root package. Doing this, we assure that the number of
calculated metrics grows nearly linearly compared to the model size.
For each model size, we repeated the metrics calculation ten times
and reported the average time needed for metrics calculation.

Smell detection For evaluating the scalability of the smell detection
module we analyzed UML2 class models with 100, 500, 1.000, 5.000.
10.000, 50.000 and 100.000 elements with respect to a set of seven
selected smells for UML2 models and measured the time needed for
smell detection. The selected smells are:

1. Concrete Superclass - The model contains an abstract class
with a concrete superclass.

161

2. Equal Attributes in Sibling Classes - Each sibling class of
a common parent contains an equal attribute.

3. Specialization Aggregation - The model contains a general-
ization hierarchy between associations.

4. Speculative Generality (Abstract Class) - The model con-
tains an abstract class that is inherited by one single class only.

5. Speculative Generality (Interface) - The model contains an
interface that is implemented by one single class only.

6. Unused Class - The model contains a class that has no child or
parent classes, that is not associated to any other classes, and
that is not used as attribute or parameter type.

7. Unused Interface - The model contains an interface that is not
specialized by another interface, and not realized or used by
any classes.

We selected the model smells with respect to their influence on
quality aspect confinement (see Section 4.2). Smells 1 to 3 use consis-
tent language concepts being more complex than necessary. Smells 4

and 6 can also be found in the example case presented in Section 6.1.
Finally, smells 5 and 7 are similar to smells 4 an 6 but consider inter-
faces instead of classes. Again, we consider UML2 model smells only
due to the same reasons mentioned above.

The model instances are constructed in the same way as in the
metrics calculation case. For each model size, we repeated the smell
detection ten times and reported the average time needed for smell
detection.

Refactoring execution For evaluating the scalability of the refac-
toring execution module we applied 7 pretty complex UML2 refactor-
ings on models with a larger refactoring context instead of large-scale
models. Table 14.4 summarizes these refactorings and describes the
context each refactoring has been applied on.

We measured the time in-between committing the refactoring (i.e.,
after parameter input) and finishing the corresponding model change.
Moreover, we repeated each refactoring application ten times to ad-
dress potential side effects and reported the average time needed for
refactoring execution.

14.3 evaluation results

This section summarizes the results and observations made during
the evaluation tasks described in the previous section. The following
discussions are guided by the order of goals and hypotheses defined
in Section 14.1 and refer to the corresponding task if appropriate.

162

Refactoring Context

Extract Class Refactoring application on a class having 10 at-
tributes and 10 operations.

Extract Sub-
class

Refactoring application on a class having 10 at-
tributes and 10 operations. The selected class has
10 child classes already. Each child class has 10 at-
tributes and 10 operations.

Extract Super-
class

Refactoring application on 10 classes having 10

equal attributes and 10 equal operations.

Inline Class Refactoring application on a class having 10 at-
tributes and 10 operations.

Introduce
Parameter
Object

Refactoring application on 9 parameters of an op-
eration with 10 input parameters. The owning
class has altogether 10 operations with 10 parame-
ters each. Each operation has parameters equal to
the selected ones.

Merge States Refactoring application on a state with 5 incoming
transitions. The parameter state has entry, doAc-
tion, and exit behaviour. The prameter state has
5 incoming transitions equal to the selected state.
The owning region has 20 further states.

Remove
Superclass

Refactoring application on a class having 10 at-
tributes and 10 operations. The selected class has
10 child classes already. Each child class has 10 at-
tributes and 10 operations.

Table 14.4: UML2 refactorings used for performance and scalability testing

14.3.1 Suitability

The goals and hypotheses defined with respect to the suitability of
EMF Refactor are evaluated as follows.

G1 – General suitability, correctness, and efficiency of application modules

The functionalities described in Chapters 12 and 13 as well as the
entries in Table 11.2 on page 124 show that EMF Refactor fulfills the
requirements defined in Chapter 9 and Section 11.1. All basic func-
tionalities (metrics calculation, smell detection, and refactoring appli-
cation) are provided as well as further functionalities such as con-
figurability and metrics reporting. Furthermore, the proof-of-concept
implementations summarized in Section 14.2.1 show that EMF Refac-

163

tor supports metrics calculation, smell detection, and refactoring of
EMF-based models to a high extent.

To analyze whether using the tools prevent from incorrectly per-
forming quality assurance tasks we partially use the results of exper-
iment Ex_App. We start with a summary on the personal skills of the
study participants.

Figure 14.1: Personal skills of the participants in experiment Ex_App

Figure 14.1 shows the results of the pre-study questionnaire of exper-
iment Ex_App for both groups M and T. The left diagram illustrates the
average score of given estimations (ranging from 1 (beginner) to 5 (ex-
pert)) in the context of the participant’s experience in software mod-
eling, metrics calculation, model smell detection, and model refactor-
ing. The diagram on the right-hand-side illustrates the corresponding
median score. Both diagrams show that the participants of experi-
ment Ex_App are obviously inexperienced in UML modeling (group
M: average and median 2.5 each; group T: average 2.1 and median 2).
Especially, they are inexperienced in applying model quality assur-
ance techniques. Here, both average and median scores are less than
2. Moreover, the participants of group T seem to be slightly less ex-
perienced than those of group M. This means that the results of the
following analysis of the returned forms and Eclipse projects are not
influenced by different personal skills of both groups.

Figure 14.2 shows the percentages of correct results of the per-
formed tasks Ex_App_M, Ex_App_S, and Ex_App_R. Task Ex_App_S is
subdivided into two parts: one part addresses the correctness of the
numbers of detected smells for each smell type, the other part ad-
dresses the correctness with respect to the number of model smell
occurrences. Furthermore, we illustrate four kinds of correctness. For
each group M and T we provide the correctness of the returned re-
sults concerning both the number of the submitted results and the
maximal number of results.

164

Figure 14.2: Percentages of correct results concerning experiment Ex_App

The results provided by group T are highly correct. In fact, 599 out
of 600 submitted (and also maximal possible) metrics and all sub-
mitted model smells are correct as well as 49 out of 50 performed
refactorings. For group M, only 135 out of the 320 submitted results
are correct (42.2% respectively 22.5% according to the maximal num-
ber of results). For smell detection and refactoring, these values are
slightly better nevertheless far from perfect. In summary, the results
show that the use of EMF Refactor (group T) prevent from incorrectly
performing quality assurance tasks as partially done by group M.

To analyze whether the application tools in EMF Refactor provide
results more quickly compared to manually performing the corre-
sponding task we also partially use the results of experiment Ex_App.
Again, we start with an analysis of the returned forms and Eclipse
projects.

Figure 14.3: Percentages of performed tasks during experiment Ex_App

165

Figure 14.3 shows the percentages of the performed tasks Ex_App_M,
Ex_App_S, and Ex_App_R. From altogether 600 metrics that should
be maximally calculated the participants of group M calculated 320

(53.3%) whereas those of group T calculated each metric. Further-
more, in task Ex_App_S the participants of group M searched for 83 out
of 100 possible smell types (83%). Again, the participants of group
T searched for each smell type. Finally, the participants of group M

performed 49 out of 60 demanded model changes (83.7%). Here, the
participants of group T performed 59 out of 60 changes (98.3%).

The results show that during the 20 minutes time slot the partic-
ipants of group T (which are even less experienced with the topic
of the experiment according to the pre-study questionnaire, see discus-
sion above) calculated above 87% more metrics than those of group
M. Here, the speed-ups for smell detection and refactoring execution
are approximately 20% each. However, these values might be even
more distinctive if more time would be provided as the results of the
inter-study questionnaire of experiment Ex_App show. Here, 5 out of 8
data items (62.5%) provided by the participants of group M claimed
that the provided 20 minutes time slots for each task were too short
respectively much too short. On the other hand, 6 out of 10 data items
(60%) provided by the participants of group T claimed that these slots
were too long respectively much too long.

G2 – Suitability of supported specification technologies

The proof-of-concept implementations summarized in Section 14.2.1
show that each supported specification approach is suited to specify
metrics, smells, and refactorings which can then be used by the corre-
sponding application modules. Our experiences in using the various
specification approaches show that using Java has been the favorite
approach for implementing specifications, especially for implement-
ing refactoring specifications. In fact, this may be due to the pref-
erences of the designer and the progress of supported approaches
by the corresponding tool. Independent of the preferred specification
language, we feel confident that OCL is particularly suited for spec-
ifying metrics which can be directly deduced from the contextual
model element using adequate meta attributes respectively references.
Henshin transformations have been proven well-suited especially for
specifying the model change part of a refactoring.

H1 – Guided model quality assurance

To evaluate whether EMF Refactor guides inexperienced students
along their way towards improved model quality we consider the
results of experiment Ex_App. More concretely, we relate the number

166

of (correct) applied quality assurance techniques to the personal skills
and the noticed severity of the performed tasks.

As shown in the diagram in Figure 14.1 on page 164, the partic-
ipants of experiment Ex_App are obviously inexperienced in UML
modeling, especially in applying model quality assurance techniques
(see discussion on goal G1).

Figure 14.4: Difficulty scores for the tasks in experiment Ex_App

Despite of this inexperiences the entries in the inter-study question-
naire showed that the difficulties of the tasks in this experiment are
at least rated as simple in general (see box plots in Figure 14.4). The
average score for group T on the five-point Likert scale ranging from
values 1 (very simple) to 5 (very difficult) is 1.48 and the median is
1. Here, the analysis tasks are scored as being slightly easier to per-
form (average 1.43 and median 1 for task Ex_App_M; average 1.5 and
median 1.5 for task Ex_App_S) in relation to task Ex_App_R(average
1.6 and median 1.5). However, the scores of the manual group M are
significantly higher than those of group T. Here, the average score is
3.13 and the median is 2.5.

These ratings are reflected in the submitted results of the tasks
Ex_App_M, Ex_App_S, and Ex_App_R (forms and Eclipse projects). We ana-
lyze the results in detail in the discussions on goal G1 with respect to
correctness and efficiency. From this discussions, we can summarize
that the participants of group T

• correctly calculated all metrics demanded in task Ex_App_M,

• correctly detected all smells demanded in task Ex_App_S, and

167

• successfully applied 98% of the refactorings demanded in task
Ex_App_R.

Finally, in the inter-study questionnaire nearly all ratings (29 out of
30) returned by the participants of group T claimed that the func-
tionality of EMF Refactor is either helpful or very helpful to perform
the tasks of this experiment. Moreover, more than half of the ratings
(16 out of 30) returned by the participants of group M claimed that
during the experiment they often respectively always thought that the
modeling environment should provide such a functionality (metrics
calculation, smell detection, and refactoring).

In summary, the results presented above show that even inexpe-
rienced modelers are able to apply a huge number of model qual-
ity assurance techniques within a relatively short period of time (60
metric calculations, 23 smell detections, and 5 refactorings within 60

minutes) when using EMF Refactor.

H2 – Guided specification process and usefulness of code generation

To evaluate whether the code generation facilities provided by EMF
Refactor guide students on specifying new metrics, smells, and refac-
torings for EMF-based modeling languages and allows to concentrate
on the essential specification part only we consider the results of ex-
periment Ex_Spec. We start with relating the number of (correct) im-
plemented quality assurance techniques to the personal skills and the
noticed difficulties of the performed tasks.

Figure 14.5: Personal skills of the participants in experiment Ex_Spec

Figure 14.5 shows the results of the pre-study questionnaire of ex-
periment Ex_Spec. The diagram illustrates the number of given es-
timations per score (ranging from 1 (beginner) to 10 (expert)) in the
context of the proficiency with Java and OCL and the experience with
EMF. It shows that the proficiency with Java is pretty diverse among
the participants of the study (average 6.28; median 6). However, the
proficiency with OCL is very low (1.88 on average; median 2) and the
participants have little to moderate experience with EMF only (aver-
age score 3.13; median 3).

168

Despite of this rather low proficiencies respectively inexperiences
the entries in the inter-study questionnaire showed that the difficulties
of the tasks in this experiment are rated as moderate in common. The
average score on the ten-point Likert scale ranging from values 1

(very simple) to 10 (very difficult) is 4.5 and the median is 4. Here, the
analysis tasks are scored as being easier (average 3.25 and median 3.5
for task Ex_Spec_M; average 3.38 and median 2 for task Ex_Spec_S;)
whereas Ex_Spec_R is scored as being the most difficult one (average
5.63 and median 6) as expected due to the complexity of refactoring
specifications as repeatedly mentioned throughout this thesis.

The returned Eclipse projects containing the specified techniques af-
ter finishing tasks Ex_Spec_M, Ex_Spec_S, and Ex_Spec_R lead to the
following results:

• During the 40 minutes time slot of task Ex_Spec_M the partic-
ipants implemented 3.6 metrics on average (11.2 minutes per
metric on average).

• In 76% of the implemented metrics the participants used Java as
specification language, in 12% they used OCL. The possibility to
combine two metrics to more complex ones was used by every
second participant.

• Just over half (52%) of the implemented metrics were specified
correctly. Most of the erroneous implementations are caused by
conceptional misunderstandings (8 cases) respectively incorrect
usage of Java and OCL (3 cases). However, in 4 cases the code
generation module lead to lost code due to overwriting files
without warning.

• During the 40 minutes time slot of task Ex_Spec_S the partici-
pants implemented 3.6 model smells on average (less than 11

minutes per model smell on average).

• 72.4% of the implemented model smells were specified correctly.
The erroneous implementations are caused either by concep-
tional misunderstandings (5 cases) or incorrect usage of Java
(4 cases).

• During the 40 minutes time slot of task Ex_Spec_R the partici-
pants implemented 2.3 model refactorings on average (17.5 min-
utes per model refactoring on average).

• 62.5% of the implemented model refactorings were specified
correctly. The erroneous implementations are caused either by
conceptional misunderstandings (5 cases) or incorrect usage of
Java (3 cases).

In summary, the results presented above show that even inexpe-
rienced designers are able to specify a number of new model met-
rics, smells, and refactorings within a relatively short period of time

169

(nearly 10 techniques within 120 minutes).7

In the post-study questionnaire of experiment Ex_Spec we asked the
participants how much they appreciated (1) the possibility to use ei-
ther Java or OCL for specifying new SWM metrics and (2) the code
generation functionality of EMF Refactor.

Figure 14.6: Evaluation of the helpfulness of the specification components
of EMF Refactor

Figure 14.6 summarizes the evaluation results of these questions. It
shows that the opportunity to choose between different languages is
seen as (very) helpful (average score 7.86; median 9; see left pair of bars
in Figure 14.6). Similar ratings are given to the code generation facili-
ties of EMF Refactor. Here, the median is 8 for each component. The
overall average value for the code generation components is 7.96 (see
right pair of bars). The best average value is given to the metrics spec-
ification component (8.38) whereas those for the smells respectively
refactoring specification components are scored slightly lower (8 and
7.5, respectively). Here, those participants who awarded moderate
scores only (ranging from 4 to 6) criticized two suboptimal structures
and gave valuable proposals to improve the generated code in order
to make it even more reasonable for the designer.

In the proof-of-concept implementations, Java specifications of UML2
metrics use 15.2 LoC (Lines of Code) on average (min. 1 LoC; max. 36
LoC), whereas UML2 smells are implemented in 20.5 LoC on average
(min. 13 LoC; max. 74 LoC). Refactoring specifications require 99.7
LoC on average (min. 8 LoC; max. 269 LoC). Here, about 20% (20.2

7 One comment in the post-study questionnaire stated:’Even without great experiences
time saving was obvious.’

170

LoC on average) are used for specifying the model change part only,
but almost 80% (79.5 LoC on average) for specifying the initial and
final precondition checks. This shows that the complexity of refactor-
ing specifications is particularly hidden in checking the correspond-
ing preconditions (compare footnote in Section 13.3). In summary,
specifications are compact and concentrate purely on the quality as-
surance technique to be specified.

14.3.2 Performance and scalability

The hypothesis concerning performance and scalability of the appli-
cation modules in EMF Refactor is evaluated as follows.

H3 – Scalability of application modules

Table 14.5 shows the results of the performance tests for (1) calculat-
ing 10 UML2 metrics and (2) the detection of 7 UML2 model smells
on class models with 100 to 100 000 elements as described in Sec-
tion 14.2.4.

model
elements

metric
instances

average
time

smell
occurrences

average
time

100 42 .365 sec 12 .475 sec

500 201 .563 sec 60 .550 sec

1 000 399 1.472 sec 120 .607 sec

5 000 2 008 8.494 sec 600 2.834 sec

10 000 4 016 37.705 sec 1 200 10.716 sec

50 000 20 068 8 m 36 sec 6 000 5 m 05 sec

100 000 40 136 33 m 54 sec 12 000 20 m 50 sec

Table 14.5: Results of the performance tests for metrics calculation and smell
detection

The results show that the application modules for metrics calcula-
tion and smell detection are well-suited for small and mid-sized EMF-
based models. For large-scale models (having more than 10.000 ele-
ments), reporting of a high number of calculated metrics (respectively
detected smells) is provided in a satisfying time only. However, since
static analyses normally do not need to be performed time-critically,
this is no crucial limitation of our tool set. Furthermore, the configura-
tion mechanism of our tools can be even used to deal with large-scale
models efficiently. For example, the configuration of only a small
number of relevant metrics and smells reduces the overall execution
time. Moreover, a smell search can be performed on a subtree of the

171

model only, again reducing the overall execution time. However, po-
tential inefficiencies need to be analyzed and performance-oriented
technologies for metric computation and smell detection need to be
discussed, e.g., performing metrics calculations in parallel.

Refactoring min. time max. time aver. time

Extract Class 43 ms 110 ms 66 ms

Extract Subclass 178 ms 236 ms 196 ms

Extract Superclass 91 ms 119 ms 105 ms

Inline Class 17 ms 47 ms 34 ms

Introduce Parameter Object 85 ms 101 ms 93 ms

Merge States 78 ms 107 ms 88 ms

Remove Superclass 143 ms 231 ms 182 ms

Table 14.6: Results of the performance tests for refactoring application

Table 14.6 summarizes the results of the performance tests for the
application of 7 UML2 model refactorings on model instances having
a larger refactoring context as described in Section 14.2.4. The maxi-
mum time needed to apply a refactoring (without parameter input)
has been 236 ms. So, the results show that the refactoring execution
module is well-suited for applying refactorings even on large-scale
refactoring contexts.

14.3.3 Summary

For summarizing the discussion of the results presented in the pre-
vious section, we claim the following statements along the goals and
hypotheses defined in Section 14.1:

goal G1 : The evaluation should show that the tools in EMF Refactor are
suited to support the analysis and refactoring tasks of the presented
model quality assurance process. This includes that using the tools
(1) prevents from incorrectly performing quality assurance tasks
such as counting faults, and (2) provides results more quickly
compared to manually performing the corresponding task. X

=⇒ This goal is proven by the presented architecture and func-
tionality of EMF Refactor, the proof-of-concept implementations,
and the results of experiment Ex_App.

goal G2 : The specification technologies supported by EMF Refactor are
suited to implement metrics, smells, and refactorings for any kind of
EMF-based modeling language. X

172

=⇒ This goal is proven by the presented proof-of-concept im-
plementations.

hypothesis H1 : EMF Refactor guides students being new in UML mod-
eling along their way towards improved model quality by means of a
sophisticated tool chain. (X)

=⇒ This hypothesis seems to be proven by the results of ex-
periment Ex_App (see discussion on threats to validity in the
subsequent section).

hypothesis H2 : The code generation facilities provided by EMF Refac-
tor guide students on specifying new metrics, smells, and refactorings
for EMF-based modeling languages and allows to concentrate on the
essential specification part only. (X)

=⇒ This hypothesis seems to be proven by the proof-of-concept
implementations and the results of experiment Ex_Spec (see dis-
cussion on threats to validity in the subsequent section).

hypothesis H3 : The application tools in EMF Refactor scale. X/
=⇒ This hypothesis is only partially proven by the results of the
performance tests for the refactoring tools in EMF Refactor. For
the analysis tools (metrics calculation and smell detection) this
hypothesis is rejected by the results of the performance tests.
However, we can split and lessen the hypothesis to H∗

3 : The
refactoring tools in EMF Refactor scale whereas the analysis tools in
EMF Refactor (metrics calculation and smell detection) scale for small
and mid-sized models. Then, H∗

8 is proven by the results of the
performance tests.

14.4 threats to validity

In this section, we discuss several threats to validity concerning the
evaluation tasks presented in Section 14.2 that should be considered
when interpreting the corresponding results.

14.4.1 Proof-of-concept implementations

The first threat concerning our proof-of-concept implementations is
the selection of modeling languages for those we implemented the qual-
ity assurance techniques. Here, we tried to select representatives of
three kinds of modeling languages. We chose Ecore as MOF-based
meta modeling language, UML2 as commonly used modeling lan-
guage, and SWM as representative of a domain-specific modeling
language that is frequently used in literature, for example in [21]. We
are convinced that this selection is appropriate.

Another threat is the selection of implemented techniques for these lan-
guages. For UML, we implemented the vast majority of techniques

173

that we found in literature as summarized and discussed in Chap-
ter 5 of this thesis. Some of these techniques we adapted to Ecore
since UML class diagrams are closely related to Ecore models. How-
ever, the quality of MOF-based meta models may depend on differ-
ent objectives than the quality of design models formulated in UML.
For example, all editors and every transformation to other artifacts
depend on the meta model, and therefore on its quality. To develop
quality assurance techniques specifically tailored to meta modeling
and to implement them for Ecore is an open research topic and a
promising task for future work. Finally, we implemented the quality
assurance techniques for SWM according to the example case dis-
cussed in Section 6.2 of this thesis. Again, we are convinced that this
selection is appropriate.

A further threat is the selection of the appropriate specification language
for these implementations. As we stated in Section 14.2.1, each used
approach has been selected freely by the designer. We selected differ-
ent specification techniques only for demonstrating the usefulness of
the approaches and the flexibility of the tool set. Each quality assur-
ance technique could be also have been implemented in Java due to
its powerfulness. So in summary, the choices do not reflect suitability
and efficiency issues. However, comparison studies concerning these
issues may be directions for future work.

14.4.2 Study experiment I

Concerning the study design of experiment Exp_App one threat to va-
lidity is the choice and number of the participants. Since we demanded
inexperienced modelers we chose the students of a beginner course
to be suited as participants for the experiment. Furthermore, the stu-
dents were introduced to UML (especially to UML class models) in
a preceding lecture a few weeks ahead the experiment. The relatively
small number of participants (20) does not allow for inferential and
inferential statistics. However, the results presented in the previous
section seem to be conclusive and we do not think that a similar ex-
periment with a considerably higher number of participants would
lead to considerable different results.

Another significant threat is the potential communication between par-
ticipants. This might be crucial since we performed the experiment as
part of a B.Sc. course having a grading system. To respond to this
threat we anonymized the experiment and multiply mentioned that
the results of the tutorial do not influence the final grade. Instead, we
motivated the participants to be cooperative. Finally, we scattered the
used computers over the room to have as many distance between the
students as possible.

A further threat is the selection of the modeling language and the model
for performing the tasks of experiment Exp_App. As already men-

174

tioned above we introduced the UML language, especially the use
of UML class diagrams, in a preceding lecture a few weeks ahead
the experiment. So, the participants were sufficiently familiar with
the used modeling language though not experienced (as the results
of the pre-study questionnaire show). Although the used model is con-
structed it is of suitable size. Furthermore, the model was clear and
comprehensible for the students as clarified in the preliminary stud-
ies of the experiment.

Finally, the selection of the quality assurance techniques to be used rep-
resents a further threat to validity. We designed the experiment to
address quality assurance techniques of different complexity. For met-
rics calculation, we selected three different contexts. For smell detec-
tion, we prepared a mixture of metric-based and pattern-based smells.
Furthermore, we used simple (e.g., Rename Class) and more complex
refactorings (e.g., Remove Superclass). Finally, we listed the techniques
according to their increasing complexity and multiply advised not to
perform each task in the order they listed.

14.4.3 Study experiment II

To interpret the results of experiment Exp_Spec several threats have
to be considered that are similar to those for experiment Exp_App.

Again, the first threat to validity is the choice and number of the partic-
ipants. The design of experiment Exp_Spec demanded for participants
having moderate to good skills in Java and UML modeling. So, we de-
cided to recruit graduate students of a M.Sc. course being suited as
participants of the experiment. Furthermore, the students were intro-
duced to OCL and EMF in preceding lectures a few weeks ahead the
experiment. With respect to the small number of participants (7) we
ague in the same way as above.

Like in Exp_App, the potential communication between participants is
also a threat of this experiment. Here, we respond to this threat in the
same way as above.

Another threat is the selection of the modeling language for specifying
new model quality assurance techniques. We used the SWM language
for two reasons. First, the students already used a variant of SWM in
preceding lectures a few weeks ahead the experiment. Second, we
think that the size of the SWM meta model is appropriate for the
given tasks and its concepts are clear and highly comprehensible.

Finally, the selection of the quality assurance techniques to be speci-
fied represents a further threat to validity. Here, we tried to select
techniques which address different language features like relations
between the hypertext and the data layer or relations only within
the data layer. Furthermore, the techniques were completely new to
the students and we implemented them a couple of weeks ahead
the experiment. So, we were familiar with potential implementation

175

problems which helped when performing the experiment. Finally, we
listed the techniques according to their increasing complexity and
multiply advised not to perform each task in the order they listed.

14.4.4 Performance and scalability tests

The first threat to validity to be discussed concerning the settings of
the performance and scalability tests is the choice of the model quality
assurance techniques that are performed during the tests. At first, we
state that we chose UML because of the large number of implemented
techniques. We selected the metrics in order to cover two language
features, i.e., inheritance and nesting, and three different contexts. We
calculated a few local metrics (for example, metric NSUPC2 calculates
the total number of ancestors of a class) as well as many global ones
(for example, metric MaxDIT). Therefore, the selection of the metrics
to be calculated influenced the execution time rather negatively than
positively. The same arguments hold for the selection of the smells to
be detected. Finally, we selected complex refactorings only resulting
in more elaborated precondition checks and model change parts. Also
here, the execution time is influenced rather negatively.

Another threat is the creation methodology of the example models.
Here, we prepared a fictive UML class model used in Section 6.1
and duplicated respectively nested the root package in order to pro-
vide numbers of calculated metrics and smell occurrences that grow
nearly linearly with respect to the model size. We concede that us-
ing real world models would strengthen the confidence in using the
tools. However, we are convinced that for the purpose of performance
testing the prepared models are appropriate.

Finally, a threat related to the previous one is the preparation of the
refactoring context. Here, we are convinced that the prepared contexts
do not occur in real world models in such extents. So also here, the
execution time is influenced rather negatively.

176

15
C O N C L U S I O N A N D F U T U R E W O R K

This part of the thesis presented a tool environment for model quality
assurance based on the Eclipse Modeling Framework (EMF), a com-
mon open source technology in model-based software development.
It has been designed to support a syntax-oriented model quality as-
surance process that can be easily adapted to specific needs in model-
based projects as discussed in the first part of this thesis. The entire
tool set presented belongs to the Eclipse incubation project EMF Refac-
tor [47] and is available under the Eclipse public license.

The EMF Refactor framework supports both the model designer
and the model reviewer by obtaining metrics reports, by checking
for potential model deficiencies (called model smells) and by system-
atically restructuring models using refactorings. Automatically pro-
posed refactorings as quick fixes for occurring smells and informa-
tion on implications of a selected refactoring concerning new model
smells widen the provided functionality and support an integrated
use of the quality assurance tools.

The sets of actually supported techniques can be configured sep-
arately for each project. Here, the configuration of model smells in
combination with the specification of smell-refactoring relations might
influence the section of model refactorings (and vice versa). Future
releases of EMF Refactor should address these dependencies, e.g., by
using a fix point analysis.

The main functionality of EMF Refactor is integrated into several
editors. Here, not only standard tree-based EMF instance editors are
supported but also graphical GMF-based editors as used by Papyrus
UML and textual editors provided by Xtext. Moreover, we integrated
our tool environment into the widely used EMF-based UML CASE
tool IBM Rational Software Architect. Among other functionalities,
each version provides a highlighting of model elements for smells
in the corresponding model view and a preview of upcoming model
changes when performing a refactoring using a tree-based visualiza-
tion provided by EMF Compare. It is up to future work, to present the
preview of refactoring effects also graphically respectively textually.

Model checks and refactorings can be specified by several speci-
fication mechanisms. The current version of EMF Refactor supports
Java, OCL, and the model transformation language Henshin as possi-

177

ble specification approaches. However, further query languages like
EMF Query and EVL as well as model transformation approaches
such as EWL and ATL (in-place) are interesting alternatives to be
used in future releases.

In EMF Refactor, metrics can be composed to more complex met-
rics and refactorings can be composed by using a dedicated language
named CoMReL. It is up to future work to analyze the precondi-
tions of component refactorings with respect to their execution or-
der and to deduce a composite precondition therefrom. Here, we are
currently working on a first approach for in-depth composition of
refactorings for Henshin-specified ones using algebraic graph trans-
formations and critical pair analysis.

In future releases, we will continue with making the quality assur-
ance tools still more user-friendly. Besides support for further avail-
able quality assurance techniques and further specification languages,
performance and scalability shall be further optimized. Here, poten-
tial inefficiencies need to be analyzed and performance-oriented tech-
nologies for metric computation and smell detection need to be dis-
cussed, e.g., performing metrics calculations in parallel. Another open
issue is how to deal with false positives during model smell detec-
tion. These are concrete smell occurrences being actually non-issues
which should be ignored. Here, we think of using mechanisms like
@SupressWarnings in Java to indicate areas to be elided during a new
smell search. In the context of EMF, EAnnotations might be useful.

Finally, we can think of providing tool support for further (construc-
tive) model quality assurance techniques such as complex editing op-
erations whose specification seems to be similar to those for model
refactorings. Here, a potential example is to insert design patterns
into the model. A combination with the already existing functionality
would lead to an interesting feature: refactoring to patterns.

In summary, since EMF Refactor is based on EMF, quality assur-
ance for a variety of modeling languages is supported (in contrast to
UML CASE tools like RSA). It is the first tool providing metrics cal-
culation for EMF-based models and is fully integrated into the mod-
eling IDE (in contrast to SDMetrics). After detecting model smells,
EMF Refactor provides a quick-fix mechanism by suggesting refactor-
ing operations (in contrast to EVL and EMF Validation). Finally, EMF
Refactor provides a homogeneous refactoring workflow in Eclipse by
using LTK (in contrast to EWL). Therefore, we are convinced that the
current version of EMF Refactor presented in this part contributes
to make model-based and model-driven development more mature
yielding software of higher quality.

178

16
T H E S I S C O N C L U S I O N

Chapter 16 initially provides a summary of this thesis and concludes
with an outlook on the current and future work

16.1 summary

The paradigm of model-based software development (MBSD) has be-
come more and more popular since it promises an increase in the ef-
ficiency and quality of software development. In this paradigm, mod-
els play an increasingly important role and become primary artifacts
in the software development process. As a consequence, software
quality and quality assurance frequently leads back to the quality
and quality assurance of the involved models.

Well-known quality assurance techniques for models are model
metrics and model refactorings. They origin from corresponding tech-
niques for software code by lifting them to models. Furthermore, the
concept of code smells can be lifted to models leading to model smells.
However, these techniques are mostly considered in isolation only.

To meet these problems, this thesis presents an integrated approach
to perform model quality assurance systematically. In particular, we
define a structured process for quality assurance of software models
that can be adapted to project-specific and domain-specific needs. The
process is structured into two sub-processes: a process for the spec-
ification of project-specific model quality assurance techniques, and
a process for applying them on concrete software models within on-
going MBSD projects. The approach concentrates on quality aspects
to be checked on the model syntax and is based on model analysis
techniques, i.e., on reports on model metrics and on checks against
the existence (respectively absence) of model smells. Finally, model
refactoring is the technique of choice to eliminate a recognized model
smell. Three example cases performing this model quality assurance
process serve as proof-of-concept implementations and show its ap-
plicability and flexibility, and hence the usefulness of the approach.

Further (minor) conceptual contributions of this thesis are (1) the
definition of a quality model for model quality that consists of high-
level quality attributes and low-level characteristics, (2) overviews on
metrics, smells, and refactorings for UML models discussed in litera-

179

ture including structured descriptions of each technique, and (3) an
approach for composite model refactoring that concentrates on the
specification of refactoring composition.

Since manually reviewing models is time consuming and error
prone, several tasks of the proposed project-specific model quality
assurance process should consequently be automated. Therefore, this
thesis also presents a flexible tool environment for model quality as-
surance based on the Eclipse Modeling Framework (EMF). The tool
set is part of the Eclipse Modeling Project (EMP) and belongs to the
Eclipse incubation project EMF Refactor which is available under the
Eclipse public license (EPL). We evaluated the suitability of the tools
for supporting the techniques of the model quality assurance process
by performing and analyzing several experiments and studies.

EMF Refactor supports both the model designer and the model re-
viewer by obtaining metrics reports, by checking for potential model
deficiencies (called model smells) and by systematically restructur-
ing models using refactorings. Automatically proposed refactorings
as quick fixes for occurring smells and information on implications
of a selected refactoring concerning new model smells widen the pro-
vided functionality and support an integrated use of the quality as-
surance tools. The functionality of EMF Refactor is integrated into
several editors like standard tree-based EMF instance editors, graphi-
cal GMF-based editors as used by Papyrus UML, and textual editors
provided by Xtext.

Model checks and refactorings can be specified by several specifica-
tion mechanisms. Actually, EMF Refactor supports Java, OCL, and the
model transformation language Henshin as possible specification ap-
proaches. Further specification languages can be inserted using suit-
able adapters. Finally, metrics can be composed to more complex met-
rics and refactorings can be composed by using a dedicated language
named CoMReL (Composite Model Refactoring Language).

In summary, the author of this thesis is convinced that perform-
ing quality assurance processes is an essential task to obtain software
products of high quality. Using the structured model quality assur-
ance process and the corresponding tool environment presented in
this thesis, model-based and model-driven development can be made
more mature yielding software of higher quality.

16.2 outlook

Though the work presented in this thesis is rather comprehensive
and elaborated, there are several directions for further enhancements.
This final section gives outlook to current and future work for both
conceptual and tool related issues.

On the conceptual side, further model quality assurance techniques
may be considered. Especially, the use of modeling conventions that

180

have to be proven to be effective with respect to prevention of de-
fects might be integrated into the quality assurance process. Here,
adequate modeling conventions have to developed that are suitable
to hinder the modeler from inserting smells.

Concerning model metrics, current work concentrates on automat-
ically deducing metrics suites from meta model specifications. Here,
the idea is to specify recurring patterns in MOF-based meta mod-
els using the abstract syntax and to derive several kinds of struc-
tural metrics therefrom. Here, a prototypical implementation based
on Henshin (for pattern specification) and OCL (for metrics calcula-
tion) exists and will be shipped with the forthcoming major release
of EMF Refactor.

Concerning model smells, there might be some which are difficult
to describe by metrics or patterns. For example, shotgun surgery is
a code smell which occurs when an application-oriented change re-
quires changes in many different classes. This smell can be formu-
lated also for models, but it is difficult to detect it by analyzing mod-
els. It is up to future work to develop an adequate technique for this
kind of model smells.

Concerning model refactoring, we are currently working on a light-
weight approach to synchronize model and code refactorings in order
to fill the design/implementation gap [117]. Here, model-to-code cor-
respondences are dynamically discovered by a matcher that takes e.g.
names, types, and method signatures into account. The approach is
supported by a prototypical implementation for synchronized refac-
torings of UML models and Java projects within the Eclipse IDE.

Concerning composite model refactoring, future work will concen-
trate on analyzing the preconditions of component refactorings with
respect to their execution order and to deduce a composite precondi-
tion therefrom. Here, we think of using concepts from algebraic graph
transformations like critical pair analysis (CPA) [35]. In a similar way,
specifications of model smells and model refactorings could be ana-
lyzed in order to decide whether the refactoring (1) is usable to erase
the smell, or (2) its application would insert a new one. However, in
order to provide this functionality, an appropriate implementation of
CPA is needed. Since Henshin actually does not provide CPA yet, cur-
rent work concentrates on a prototype that translates Henshin trans-
formation rules to AGG [12, 148] and uses AGG’s CPA functionality.

Finally, we will continue with making our quality assurance tools
still more user-friendly. Besides support for further available tech-
niques and specification languages, performance and scalability shall
be further optimized. Here, potential inefficiencies in the framework
need to be analyzed and performance-oriented technologies for met-
ric computation and smell detection need to be discussed. Another
open issue is how to deal with false positives during model smell
detection. These are concrete smell occurrences being actually non-

181

issues to be ignored. Here, we think of using mechanisms similar to
@SupressWarnings in Java to indicate areas to be elided during a smell
search. In the context of EMF, EAnnotations might be useful.

However, we are convinced that the current functionality provided
by EMF Refactor represents a solid foundation for quality assurance
of EMF-based models.

182

A P P E N D I C E S

The following appendices contain several additional mate-
rial related to the main parts of this thesis. Appendices A
to C contain catalogs with brief descriptions of metrics,
smells, and refactorings for UML class models extracted
from literature. More detailed specifications of selected
smells and refactorings for UML class models can be found
in Appendices D and E whereas Appendix F presents de-
tails on the implementations of the specified refactorings.
Finally, appendices G and H contain material concerning
the experiments presented in Chapter 14 of this thesis.

183

A
A C ATA L O G O N U M L C L A S S M O D E L M E T R I C S

This appendix contains a catalog on metrics for UML class models
found in literature. First, we present a number of basic metrics just
used to define more complex ones. These are just named, very shortly
described, and equipped with references from literature. Later, more
complex metrics are listed, shortly explained, and assigned to quality
aspects which can potentially be measured by the metric.

a.1 basic metrics

The basic metrics are ordered according to their contexts, i.e., the
UML meta model element type the metric is calculated on. Some of
them refer to the entire model, some to single packages, and some to
classes. Within each category the metrics are presented in alphabetic
order.

a.1.1 Context element: Model

1. NAggH - Total number of aggregation hierarchies. [69]

2. NAGM - Total number of aggregations in the model. [86, 69]

3. NAM - Total number of attributes in classes in the model. [71]

4. NASM - Total number of associations in the model. [86, 69]

5. NCM - Total number of classes in the model. [86, 105, 70, 6, 72]

6. NDep - Total number of dependency relationships. [69]

7. NIH - Total number of inheritance hierarchies in the model. [84,
105, 70, 69, 6, 72]

8. NIM - Total number of inheritance relations in the model. [86,
69]

9. NOPM - Total number of operations in the model. [71]

10. NPN - Total number of packages in the model. [86]

185

a.1.2 Context element: Package

1. NACP - Number of abstract classes within the package. [109, 84]

2. NAggR - Number of aggregation relationships within the pack-
age. [70, 72]

3. NAP - Total number of associations within the package. [70, 72]

4. NCP - Number of all classes in the package. [84]

5. NIP - Number of interfaces within the package. [109, 84]

6. NPP - Number of nested packages inside the package. [84]

7. R - Number of relationships between classes and interfaces within
the package. [110]

a.1.3 Context element: Class

1. DAC - Number of attributes that have another class as type. [99,
22, 72]

2. DAC’ - Number of different classes that are used as types of
attributes. [99, 72]

3. EC_Attr - Number of times the class is externally used as at-
tribute type. [22]

4. EC_Par - Number of times the class is externally used as param-
eter type. [22]

5. IC_Par - Number of parameters in the class having another class
or interface as their type. [22]

6. NAA - Total number of associations with other classes or with
itself. [81, 70, 84, 69, 72]

7. NAC - Total number of associations with other classes. [86]

8. NAI - Number of attributes visible to subclasses (public and
protected, including inherited attributes). [84]

9. NAP - Number of public attributes (including inherited attributes). [84]

10. NASC - Total number of associations. [100, 70, 72]

11. NATC - Total number of attributes (unweighted). [100, 86]

12. NCM - Number of class methods. [100, 70, 72]

13. NIA - Number of inherited associations. [84]

186

14. NID - Number of internal dependencies (within the package of
the class). [109, 84]

15. NIM - Number of instance methods. [100, 70, 72]

16. NIV - Number of instance variables. [100, 70, 72]

17. NLA - Number of local associations. [84]

18. NMA - Number of methods defined in a subclass. [100, 70, 72]

19. NMI - Number of methods inherited by a subclass. [100, 70, 72]

20. NMO - Number of methods overridden by a subclass. [100, 70,
72]

21. NODP - Number of direct part classes which compose a com-
posite class. [69, 70, 72]

22. NOPC1 - Number of operations (unweighted). [24, 100, 86]

23. NOM - Number of local methods. [99, 72]

24. NSUBC (NOC) - Number of direct children. [24, 100, 105, 70,
84, 86, 8, 72, 113]

25. NSUBC* - Number of all children. [86]

26. NSUPC - Number of direct parents. [24, 94, 84, 86]

27. NSUPC* - Total number of ancestors. [86]

28. PIM - Number of public instance methods. [100, 70, 72]

29. SIZE2 - Number of attributes plus number of local methods. [99,
72]

187

a.2 complex metrics

The catalog of complex metrics is similarly structured to the catalog
of basic metrics. Since the complex metrics are the proper ones to
measure model quality, they are presented in more detail. For each
metric its name, a short description, the range of values, and its poten-
tial interpretation are given. The definition of a complex metric might
rely on one or more basic metrics previously presented. Again, also
the complex metrics are ordered according to their contexts. Within
each category the metrics are presented in alphabetic order.

a.2.1 Context element: Model

1. AGvsC

description : Relation between number of aggregations and
number of classes. [71]. This metrics is defined as AGvsC =

(NAGM
NAGM+NCM)2 where NAGM is the total number of

aggregations in the model, NCM is the total number of
classes in the model, and (NAGM + NCM) > 0.

range : 0 6 AGvsC < 1

interpretation : This metric is a complexity measurement
for class diagrams. According to [71] and with regard to
complexity, the worst case is when the metric value tends
to be 1, and the best case when the metric value tends to
be 0.

2. ANA

description : Average number of ancestors of all classes. [6]

range : 0 6 ANA 6 total number of classes (NCM) −1

interpretation : A class with many ancestors inherits pos-
sibly many features. For this reason a class model with a
high ANA value can be considered as complex.

3. AvsC

description : Relation between the number of attributes and
number of classes [71]. This metrics is defined as AvsC =

(NAM
NAM+NCM)2 where NAM is the total number of at-

tributes in the model, NCM is the total number of classes
in the model, and (NAM + NCM) > 0.

range : 0 6 AvsC < 1

interpretation : If the value is higher, classes have more at-
tributes and the model can be considered to be more com-
plex. It is also possible that the model contains unnecessary

188

information and does therefore not correspond to the mod-
eling purpose. On the other hand, a lower value could be
a hint for relevant but missing information.

4. ASvsC

description : Relation between number of associations and
number of classes [71]. This metrics is defined as ASvsC =

(NASM
NASM+NCM)2 where NASM is the total number of

associations in the model, NCM is the total number of
classes in the model, and (NASM + NCM) > 0.

range : 0 6 ASvsC < 1

interpretation : This metric is a complexity measurement
for class diagrams. According to [71] and with regard to
complexity, the worst case is when the metric value tends
to be 1, and the best case when the metric value tends to
be 0.

5. DEPvsC

description : Relation between number of dependencies and
number of classes [71]. This metrics is defined as DEPvsC =

(NDep
NDep+NCM)2 where NDep is the total number of de-

pendencies in the model, NCM is the total number of
classes in the model, and (NDep + NCM) > 0.

range : 0 6 DEPvsC < 1

interpretation : This metric is a complexity measurement
for class diagrams. According to [71] and with regard to
complexity, the worst case is when the metric value tends
to be 1, and the best case when the metric value tends to
be 0.

6. GEvsC

description : Relation between number of generalizations and
number of classes [71]. This metrics is defined as DEPvsC =

(NIM
NIM+NCM)2 where NIM is the total number of gener-

alization relations in the model, NCM is the total number
of classes in the model, and (NIM + NCM) > 0.

range : 0 6 GEvsC < 1

interpretation : If the value is high, the classes are stronger
coupled due to inheritance. Hence, the class model inheri-
tance hierarchy can be considered as complex.

7. MaxDIT

description : Maximum of all depth of inheritance trees. [69]

range : 0 6 MaxDIT 6 total number of classes (NCM) −1

189

interpretation : A class model with a deeper inheritance
hierarchy can be considered as complex. In this cases the
value of MaxDIT is high.

8. MaxHAgg

description : Maximum of aggregation trees. [69]

range : 0 6 MaxHAgg 6 total number of classes (NCM) −1

interpretation : A class model with deeper aggregation trees
can be considered as complex. In that case, the value of
MaxHAgg is high.

9. MEvsC

description : Ratio between number of methods (operations)
and number of classes [71]. It is defined as DEPvsC =

(NOPM
NOPM+NCM)2 where NOPM is the total number of op-

erations in the model, NCM is the total number of classes
in the model, and (NOPM + NCM) > 0.

range : 0 6 MEvsC < 1

interpretation : If the value is higher, the classes have a lot
of methods (operations) and the model can be considered
to be complex.

10. MGH

description : Complexity due to generalization hierarchies.
The detailed definition can be found in [71].

range : 0 6 MGH

interpretation : Higher values indicate more complex gen-
eralization hierarchies.

11. MMI

description : Complexity due to multiple inheritance. The
detailed definition can be found in [71].

range : 0 6 MMI

interpretation : Higher values indicate a higher complexity
due to multiple inheritance.

12. OA3

description : Average of the weighted numbers of class re-
sponsibilities. [105, 70, 72]

range : 0 6 OA3

interpretation : This metric measures the global complex-
ity of the entire class model. Higher values indicate more
complex models.

190

13. OA4

description : Standard deviation of the weighted numbers of
class responsibilities. [105, 70, 72]

range : 0 6 OA4

interpretation : This metric measures the global complex-
ity of the entire class model. Higher values indicate more
complex models.

14. OA5

description : Average of the number of direct dependencies
of classes. [105, 70, 72]

range : 0 6 OA5

interpretation : This metric measures the global complex-
ity of the entire class model. Higher values indicate more
complex models.

15. OA6

description : Standard deviation of the number of direct de-
pendencies of classes. [105, 70, 72]

range : 0 6 OA6

interpretation : This metric measures the global complex-
ity of the entire class model. Higher values indicate more
complex models.

16. OA7

description : Ratio between number of inherited responsibil-
ities and total number of responsibilities. [105, 70, 72]

range : 0 6 OA7 6 1

interpretation : This metric measures the level of reuse. If
the value is higher, features are reused more often. Accord-
ing to [70], the aim of this metric is to measure the com-
plexity of a class model.

a.2.2 Context element: Package

1. A

description : Ratio between number of abstract classes (and
interfaces) and total number of classes within the package
(abstractness) [84, 109, 110]. It is defined as A = NACP+NIP

NCP+NIP

where NACP is the number of abstract classes within the
package, NIP is the number of interfaces within the pack-
age, and NCP is the number of classes within the package.

range : 0 6 A 6 1

191

interpretation : A higher value indicates a heavier use of
abstract classes and interfaces making the model harder to
understand. This could be interpreted differentially. First,
the modeler(s) could use the UML language feature of ab-
stract classes respectively interfaces too exhaustively and
therefore not in sync with the modeling purpose. Second,
classes could be marked as abstract by mistake. Third, a
high abstractness value could be a hint for relevant but
missing concrete classes.

2. AHF

description : Ratio between the number of invisibile attributes
and total number of attributes within a package (attribute
hiding factor). [23, 70, 72]

range : 0 6 AHF 6 1

interpretation : Ideally all attributes should be hidden in
classes. Hence, a value close to 1 is preferred.

3. AIF

description : Ratio between the number of inherited attributes
and total number of attributes within the package (attribute
inheritance factor). [23, 70, 72]

range : 0 6 AIF 6 1

interpretation : This metric measures the level of reuse. A
higher value indicates a higher level of reuse. Nevertheless
a very high value may indicate a complex model.

4. Ca

description : Number of classes in other packages that de-
pend on classes within the package (afferent coupling). [109,
84, 110]

range : 0 6 Ca 6 total number of classes within other pack-
ages

interpretation : The value should be low.

5. Ce

description : Number of classes in other packages that the
class within the package depend on (efferent coupling). [109,
84, 110]

range : 0 6 Ca 6 total number of classes within other pack-
ages

interpretation : The value should be low.

6. DN

192

description : Normalized distance of the package from the
main sequence. [84, 110]

range : 0 6 DN 6 1

interpretation : The main sequence is part of a theory of
Martin which states that the abstractness A and the insta-
bility I of a package should be about the same. That is, ab-
stractions have to be very stable, concrete implementations
may change more [84]. The higher the value the more it is
worse.

7. DNH

description : Depth in the nesting hierarchy. [84]

range : 0 6 DNH 6 total number of packages in the model
(NPN) −1

interpretation : The nesting level of containment hierarchies
should not be too deep, say 5 to 7 as maximum, according
to [84].

8. H

description : Ratio between number of relationships between
classes within the package and total number of classes
within the package (Relational Cohesion). [109, 84, 110]

range : 0 6 H 6 total number of relationships within the
package

interpretation : Classes inside a package should be strongly
related what means the cohesion should be high. A high
value indicates a high cohesion.

9. I

description : Ratio between efferent coupling and total cou-
pling (Instability) 1. [109, 84, 110]

range : 0 6 I 6 1

interpretation : The value should be low. If the value is
high, classes are more coupled in between packages than
within one package.

10. MHF

description : Ratio between the number of invisible methods
and total number of methods within the package (method
hiding factor). [23, 70, 72]

range : 0 6 MHF 6 1

1 total coupling = afferent coupling + efferent coupling

193

interpretation : According to [23] the value should grow if
the model is refined and gets more details. If the value is
small, the model can be assumed to be of an earlier phase.

11. MIF

description : Ratio between the number of inherited meth-
ods and total number of methods within the package (method
inheritance factor). [23, 70, 72]

range : 0 6 MIF 6 1

interpretation : This metric can be used to measure the
level of reuse. A high value indicates a high level of reuse.
According to [23] the value should not be too high (smaller
than 0.7/0.8), because inheritance is wrongly used in this
case with negative effects to the maintainability and defect
density of the modeled solution. However, there has been
no empirical evaluation.

12. NAVCP

description : Ratio between number of associations within
the package and total number of classes within the pack-
age. [70, 72]

range : 0 6 NAVCP 6 total number of associations within
the package (NAP)

interpretation : The more associations per class a package
has, the more complex it is to maintain and understand.
Hence, a higher value indicates higher complexity.

13. PF

description : Ratio between the actual number of different
possible polymorphic situations and its maximum. [23, 70,
72]

range : 0 6 PF 6 1

interpretation : PF measures the potential polymorphism.
If the value is low, many methods are overridden and the
usage of polymorphism is high.

14. PK1

description : Usage of classes of other packages by classes of
this package. [105, 70, 72]

range : 0 6 PK1

interpretation : The aim of this metric is to measure inter-
package coupling. The metric measures the dependency of
the classes of a given package from exterior classes.

15. PK2

194

description : Reuse of package classes by classes of other
packages. [105, 70, 72]

range : 0 6 PK2

interpretation : The aim of this metric is to measure inter-
package coupling. A low value says that packages are not
strongly coupled. The metric measures the dependency of
exterior classes to package classes.

16. PK3

description : Average number of other package’s classes us-
ages by classes of a package. [105, 70, 72]

range : 0 6 PK3

interpretation : The aim of this metric is to measure inter-
package coupling. It is the average value of PK1 metric for
all packages.

a.2.3 Context element: Class

1. APPM

description : Average number of parameters of all methods
within the class. [100, 70, 72]

range : 0 6 APPM 6 total number of parameters of all meth-
ods within the class

interpretation : According to [100], parameters require more
effort from clients, and high and low numbers of parame-
ters imply a style of design. Lorenz and Kidd suggest 0.7
parameters per method as upper threshold.

2. CBC

description : Number of attributes and associations with class
types (Coupling between classes). [86]

range : 0 6 CBC

interpretation : A high value indicates a class that is strongly
coupled to other classes.

3. CBO

description : Total number of classes a class is coupled to. [24,
84, 8, 113]

range : 0 6 CBO 6 total number of classes in the model
(TNC) −1

interpretation : A class that depends on too many other
classes can indicate a bad modular design. Highly coupled
classes are harder to test and maintain. A high CBO value
indicates a class that is highly coupled.

195

4. CL1

description : Weighted number of responsibilities. [105, 70,
72]

range : 0 6 CL1

interpretation : This metric is defined as measurement for
the class complexity. Higher values indicates more com-
plex classes.

5. CL2

description : Weighted number of dependencies. [105, 70, 72]

range : 0 6 CL2

interpretation : This metric is defined as measurement for
the class complexity. Higher values indicates more com-
plex classes.

6. DAM

description : Ratio between number of private and protected
attributes and total number of attributes (data access met-
ric). [6, 72]

range : 0 6 DAM 6 1

interpretation : This metric is used to measure the encapsu-
lation. If the value is close to 1, the encapsulation is good.

7. DCC

description : Number of different classes the class is directly
related to (direct class coupling) [6, 72]. This metric is sim-
ilar to metric CBO but it considers only coupling because
of attributes or operation parameters.

range : 0 6 DCC 6 total number of classes in the model
(TNC) −1

interpretation : A high DCC value indicates a class that is
highly coupled.

8. DIT

description : Depth of inheritance tree. [24, 105, 72, 86, 8, 72,
113]

range : 0 6 DIT C

interpretation : The higher the DIT, the greater the chance
of reuse becomes. However, a high value of DIT can cause
program comprehension problems. [86]

9. HAgg

description : Length of the longest path to the leaves in the
aggregation hierarchy. [69, 70, 72]

196

range : 0 6 HAgg

interpretation : The metric measures the class complexity
due to aggregation relations. A higher value indicates a
higher complexity.

10. MAgg

description : Number of direct or indirect whole classes within
an aggregation hierarchy. [69, 70, 72]

range : 0 6 MAgg

interpretation : This metric measures the class complexity
due to multiple aggregation relations [70]. A higher value
indicates a higher complexity.

11. MFA

description : Ratio between number of inherited methods and
total number of instance methods (measure of functional
abstraction). [6, 72]

range : 0 6 MFA 6 1

interpretation : This metric is defined to assess design prop-
erty inheritance. If the value is high, many operations are
inherited.

12. NASC

description : Number of linked associations including aggre-
gations. [86]

range : 0 6 NASC

interpretation : This metric is useful for estimating the static
relationships between classes. [86]

13. NATC2

description : Number of attributes weighted by their visibil-
ity kind e.g. 1.0 for public, 0.5 for protected, and 0 for pri-
vate. [86]

range : 0 6 NATC2

interpretation : Due to encapsulation, the value of this met-
ric should not be not too high.

14. NDepIn

description : Number of distinct classes depending on the
class. [105, 69, 70, 72]

range : 0 6 NDepIn

interpretation : The greater the number of classes is that
depend on a given class, the greater the inter-class depen-
dency and therefore the greater the design complexity of

197

such a class. The inter-class dependency is also called ex-
port coupling, which if misused could be a potential source
of design complexity [70]. A higher NDepIn value indi-
cates a complex class.

15. NDepOut

description : Number of classes on which the class depends.
[69, 70, 72]

range : 0 6 NDepOut

interpretation : The greater the number of classes on which
a given class depends, the greater the inter-class depen-
dency and therefore the greater the design complexity of
such a class. This inter-class dependency is also called im-
port coupling, which if misused could be a potential source
of design complexity. It is better to minimize NDepOut
value, since, higher values represent a situation in which
many dependencies are spreading across the class diagram [70].
A higher NDepOut value indicates a complex class.

16. NP

description : Total number of direct or indirect part classes
of a whole class. [69, 70, 72]

range : 0 6 NP

interpretation : The metric measures the class complexity
due to aggregation relations. A higher value indicates a
higher complexity.

17. NW

description : Number of direct or indirect whole classes of a
part class. [69, 70, 72]

range : 0 6 NW

interpretation : The metric measures the class complexity
due to aggregation relations. A higher value indicates higher
complexity.

18. RFC

description : Number of methods plus number of used meth-
ods of other classes (Response for a Class). [24, 84, 8, 113]

range : 0 6 RFC

interpretation : The number should not be too high. A small
response set is better [84].

19. SIX

198

description : Ratio between weighted number of overridden
methods and total number of methods (specialization in-
dex). [100, 70, 72]

range : 0 6 SIX 6 total number of methods (NOPC1)

interpretation : Lorenz and Kidd [100] have commented
that this weighted calculations has done a good job on
identifying classes worth looking at for their placement in
the inheritance hierarchy and for design problems.

20. WMC [NOPC2]

description : Weighted methods per class [24, 84, 86, 8, 72,
113]. NOPC2 is a special version of metric WMC that weights
the methods according their visibility.

range : 0 6 WMC

interpretation : A class should have a reasonable responsi-
bility. A good value for WMC depends on the weighting
and other criteria e.g. project phase etc.

199

B
A C ATA L O G O N U M L C L A S S M O D E L S M E L L S

This appendix contains a catalog on smells for UML class models
found in literature. The smells in this catalog are presented in alpha-
betic order. For each smell we give a name, a short description, and a
corresponding source.

1. Association Class - Association classes cannot be directly trans-
lated to common programming languages. They defer the deci-
sion which class(es) will be responsible to manage the associa-
tion attributes eventually. [66, 119]

2. Attribute Name Overridden - The class defines a property with
the same name as an inherited attribute. During code gener-
ation, this may inadvertently hide the attribute of the parent
class. [83]

3. Attributes On Interfaces - The interface has attributes or out-
going associations. This rather appears to be a concession to
certain component technologies, and should be avoided other-
wise. [119]

4. Classes without Methods - A class without any method does
not provide any functionality. [97]

5. Concrete Superclass - An abstract class being subclass of a con-
crete class reflects poor design and a conflict in the model’s
inheritance hierarchy. [96]

6. Data Class - Classes with attributes, getters, and setters only. [11]

7. Data Clumps - The same (three or four) data items can be found
in lots of places (fields in classes or parameters in method sig-
natures). They really ought to be an object. [11]

8. Dependency Cycle - Cycles in the dependency graph should
be avoided. The elements participating in the cycle cannot be
tested, reused, or released independently. [110]

9. Descendant Reference - The reference to the descendent class
and the inheritance links back to the class effectively form a
dependency cycle between these classes. [83, 133]

201

10. Diamond Inheritance - This smell is based on the multiple in-
heritance concept of UML. It occurs when the same predeces-
sor is inherited by a class several times and is known in litera-
ture as ’diamond’ inheritance problem for object-oriented tech-
niques using multiple inheritance and was first discussed by
Sakkinen [136].

11. Large Class - The class has too many features (too many prop-
erties and/or operations) belonging to different concerns. There
is a significant difference in the relative size of this class to other
classes. [5]

12. Lazy Class - Lazy classes are small, have few methods, and little
behavior. They stand out in a class diagram because they are so
small. [5]

13. Long Parameter List - The operation has a long list of parame-
ters that makes it really uncomfortable to use the operation. [11]

14. Middle Man - Objects hide internal details but encapsulation
leads to delegation. [11]

15. Multiple Definitions of Classes with Equal Names - Several
classes have the same name. The set of classes with same name
may be contained in one diagram or in different diagrams. [97]

16. N-ary Aggregation - People are often confused by the seman-
tics of n-ary associations. N-ary associations cannot be directly
translated to common programming languages. [66, 119]

17. No Attribute Type - Without a type, the attribute has no mean-
ing in design, and code generation will not work. [66]

18. No Parameter Type - Without a type, the parameter has no
meaning in design, and code generation will not work. [66]

19. No Specification - Abstract classes cannot be instantiated. With-
out specializations that can be instantiated, the abstract class is
useless. [133]

20. Primitive Obsession - People new to objects are reluctant to
use small objects for small tasks. [11]

21. Public Attribute - The non-constant attribute is public. External
read/write access to attributes violates the information hiding
principle. Allowing external entities to directly modify the state
of an object is dangerous. [133]

22. Specialization Aggregation - People are often confused by the
semantics of specialized associations. The suggestion is there-
fore to model any restrictions on the parent association using
constraints. [119]

202

23. Speculative Generality - Hooks and special cases to handle
things that are not required. [11]

24. Unnamed Element - The model element, i.e., package, class,
interface, data type, attribute, operation, or parameter, has no
name. [83]

25. Unused Class - The class has no child classes, dependencies,
or associations, and it is not used as parameter or property
type. [133]

26. Unused Interface - The interface is not implemented anywhere,
has no associations, and is not used as parameter or attribute
type. [133]

203

C
A C ATA L O G O N U M L C L A S S M O D E L
R E FA C T O R I N G S

In this appendix follows a list of refactorings for UML class models
found in literature. The refactorings in this catalog are presented in
alphabetic order. For each refactoring we give a name, a short descrip-
tion, and at least one corresponding source. We further distinguish
basic and complex refactorings. We can consider basic refactorings
as atomic ones, while complex refactorings are composed from basic
ones. Detailed specifications of selected refactorings can be found in
the subsequent Appendix E of this thesis.

c.1 basic refactorings

1. Add Parameter - An operation needs more information from its
callers. This refactoring adds a parameter to an operation. [30,
150]

2. Create Associated Class - Creates an empty class and connects
it with a new association to the source class from where it is
extracted. The multiplicities of the new association are1 at both
ends. [107, 150]

3. Create Subclass - A class has features that are not used in all
instances. The refactoring creates a subclass for that subset of
features. [150]

4. Create Superclass - Creates a superclass for at least one class
and is normally followed by refactorings ’Pull Up Property’ and
’Pull Up Operation’. [141, 150, 107, 160]

5. Hide Property - This refactoring makes a public attribute [prop-
erty] of a given class private, and creates the associated getter
[and setter] operation. [128, 129]

6. Move Operation - This refactoring moves an operation from
one class to a related one. It is often applied when some class
has too much behavior or when classes collaborate too much. [107,
150]

205

7. Move Property - A property is better placed in another class
which is related to the class. This refactoring moves the property
from one class to another. [107, 150, 93]

8. Pull Up Operation - This refactoring pulls an operation of a
class to its superclass or to an implemented interface. Usually
this refactoring is used simultaneously on several classes which
inherit from the same superclass or implement the same inter-
face. The aim of this refactoring is often to extract identical op-
erations. [137, 107, 150]

9. Pull Up Property - This refactoring pulls a property from a class
or a set of classes to some superclass. It can also be applied
when the superclass is an interface. [14, 107, 30, 150]

10. Push Down Operation - An operation of a superclass is pushed
down to all its subclasses. This refactoring can also be used to
push down an operation from an interface to its implementa-
tions or sub-interfaces. [107, 150, 93]

11. Push Down Property - The attribute (property) is used by few
subclasses only. This refactoring moves the attribute (property)
to the using subclasses only. [107, 30, 150]

12. Remove Parameter - A parameter is no longer needed to specify
an operation. The refactoring removes this parameter from the
operation. [30, 150]

13. Rename Class - The current name of a class does not reflect its
purpose. This refactoring changes the name of the class to a new
name. This refactoring can also be applied to interfaces. [30]

14. Rename Operation - The current name of the operation does
not reflect its purpose. This refactoring changes the name of the
operation to a new name. [107, 30]

15. Rename Property - The current name of an attribute (property)
does not reflect its purpose. This refactoring changes the name
of the attribute (property). [107, 30]

16. Replace Delegation With Inheritance - This refactoring is the
opposite of the following refactoring ’Replace Inheritance With
Delegation’. [5]

17. Replace Inheritance With Delegation - Often it is useful to
work with composition and delegation rather than with inher-
itance. If you create a model for an application which should
be realized in a programming language that does not have mul-
tiple inheritance, this principle might become important. This
refactoring removes the inheritance relation, adds an associa-
tion, and adds a delegating method. [5]

206

c.2 complex refactorings

1. Extract Class - This refactoring extracts interrelated features
from a class to a new separated class. [107, 150]

2. Extract Subclass - There are features in a class required for a
special case only. This refactoring extracts a subclass containing
these features. The subclass can also be an interface if the class
considered is already an interface. [150]

3. Extract Superclass - There are two or more classes with sim-
ilar features. This refactoring creates a superclass and moves
the common features to the superclass. The refactoring helps
to reduce redundancy by assembling common features spread
throughout different classes. [141, 106, 150, 107, 160]

4. Inline Class - There are two classes connected by a 1:1 associ-
ation. One of them has no further use. This refactoring merges
these classes. [150, 93]

5. Introduce Parameter Object - There is a group of parameters
that naturally go together. This refactoring replaces a list of pa-
rameters with one object. This parameter object is created for
that purpose. [11, 131, 161, 104]

6. Remove Middle Man - A middle man class is doing mostly
simple delegation. This refactoring removes this class and asso-
ciates the corresponding classes directly. [30, 93]

207

D
S P E C I F I C AT I O N S O F U M L C L A S S M O D E L S M E L L S

In this appendix we describe selected smells for UML class models
found in literature. For each model smell a short description is given
as well as possible indicators to detect this smell in a given model.
Furthermore, we present a list of quality characteristics and quality
goals affected by this smell. Lists of refactorings suitable for eliminat-
ing the smell and an example complete each model smell description.

d.1 attribute name overridden

description The class defines a property with the same name as
an inherited attribute. For this smell, it is essential that the
property redefines the inherited attribute in order to conform
to the UML specification. The redefinition of attributes might
be confusing to model viewers. Furthermore, this smell might
produce conflicts in model-driven processes. During code gen-
eration, this smell may inadvertently hide the attribute of the
parent class. [83]

example Figure D.1 shows an attribute horsepower in class Car that
redefines the equally named attribute in abstract superclass Ve-
hicle. This is done to specialize the type of the attribute, i.e.,
there is a restriction of the attribute’s type. Sometimes, such a
redefinition might be confusing and decreases the model’s com-
prehensibility.

detection This smell can be detected by matching a correspond-
ing pattern based on the abstract syntax of UML. Figure D.2
shows the Henshin rule that specifies this pattern-based smell.
This rule defines two UML Properties (named attribute_1 and
attribute_2) which have the same name (specified by the internal
rule parameter attributename). Furthermore, there are two addi-
tional conditions which must be fulfilled. First, the owning class
of property attribute_1 must inherit property attribute_2. This is
defined by using a so-called positive application condition (PAC)
named InheritedAttribute and represented by tags 〈〈require〉〉. Sec-
ond, property attribute_1 must NOT redefine property attribute_2
since otherwise this would represent a non-smelly modeling.

209

Figure D.1: Example UML model smell Attribute Name Overridden

The absence of this redefinition relationship is defined by a so-
called negative application condition (NAC) named NoRedefinition
and represented by tags 〈〈forbid〉〉. In summary, the Henshin pat-
tern rule in Figure D.2 specifies two equally named attributes
of a class (one direct and one inherited attribute) which are not
related by a redefinition relationship.

Figure D.2: Henshin pattern rule specification of UML model smell Attribute
Name Overridden

usable uml model refactorings Rename Property for renaming
one of the involved attributes. Furthermore, the redefinition re-
lation has to be deleted.

210

affected quality characteristics and goals Redefined at-
tributes may lead to more complexity and might be a typical
case for redundant modeling. Simplicity, Redundancy → Com-
prehensibility, Consistency, Confinement, Changeability, Correct-
ness

d.2 concrete superclass

description An abstract class that is a subclass of a non-abstract
class reflects poor design and a conflict in the model’s inher-
itance hierarchy. In other words, if an abstract class has any
superclasses these have to be abstract as well. [96]

example Figure D.3 shows an example class hierarchy. Abstract
class PublicBuilding together with its subclasses Library and Church
represent a valid class hierarchy whereas class House exactly
addresses smell Concrete Superclass. If this class were also an
abstract class, for example named Building, the entire class hier-
archy would be valid again.

Figure D.3: Example UML model smell Concrete Superclass

detection This smell can be either detected by matching corre-
sponding patterns based on the abstract syntax of UML, or by
evaluating model metric Number of non-abstract superclasses. Fig-
ure D.4 shows the Henshin rule that specifies this pattern-based
smell. This pattern rule defines a UML Class abstractclass whose
meta attribute isAbstract is set to true. Furthermore, there is one

211

additional PAC (HasConcreteSuperclass) that specifies that this
abstract class has a generalization relationship to another class
(concreteclass) whose meta attribute isAbstract is set to false. In
summary, the Henshin pattern rule in Figure D.4 specifies an
abstract class that has a direct concrete superclass.

Figure D.4: Henshin pattern rule specification of UML model smell
Concrete Superclass

usable uml model refactorings No existing model refactoring
can be used to eliminate this smell. Either it has to be developed,
or the smell has to be eliminated directly, for example by mak-
ing the class non-abstract as well.

affected quality characteristics and goals Concrete super-
classes of abstract subclasses may not reflect a model aspect
in the right way. Furthermore, this may lead to more complex
models that are harder to understand. Precision, Simplicity →
Correctness, Comprehensibility

d.3 data clumps

description Fowler describes this smell as interrelated data items
which often occur as ’clump’ in the model. Often, there are the
same three or four data items together in lots of places, either
attributes in classes or parameters in operation signatures. They
really ought to be an object [11]. Zhang et al. [161] present a
more precise pattern-based definition of this model smell. For
attributes they define:

1. More than three attributes stay together in more than one
class.

212

2. These attributes should have same signatures (same names,
same types, and same visibility).

3. These data fields may not group together in the same or-
der.

For parameters they define:

1. More than three input parameters stay together in more
than one operations’ declaration.

2. These parameters should have same signatures (same names,
same types).

3. These parameters may not group together in the same or-
der.

example In Figure D.5 there are attributes customerName, customer-
Street customerZip, and customerCity that occur in altogether four
different classes.

 Bill

+getCustomerName() : String
+getCustomerStreet() : String
+getCustomerZip() : String
+getCustomerCity() : String
+setCustomerName(name : String) : void
+setCustomerStreet(street : String) : void
+setCustomerZip(zip : String) : void
+setCustomerCity(city : String) : void
+getPeriodOfPayment() : int
+setPeriodOfPayment(period : int) : void
+getOrder() : Order
+setOrder(order : Order) : void
+getArticles() : Article [1..*]
+setArticles(articles : Article [1..*]) : void

−customerName : String
−customerStreet : String
−customerZip : String
−customerCity : String
−periodOfPayment : int

ReminderLetter

−customerName : String
−customerStreet : String
−customerZip : String
−customerCity : String
−reminderText : String
−counter : int

+getCustomerName() : String
+getCustomerStreet() : String
+getCustomerZip() : String
+getCustomerCity() : String
+setCustomerName(name : String) : void
+setCustomerStreet(street : String) : void
+setCustomerZip(zip : String) : void
+setCustomerCity(city : String) : void
+getReminderText() : String
+setReminderText(text : String) : void
+getCounter() : int
+setCounter(counter : int) : void
+getBill() : Bill
+setBill(bill : Bill) : void

DeliveryNote

−customerName : String
−customerStreet : String
−customerZip : String
−customerCity : String
−deliveryDate : date

+getCustomerName() : String
+getCustomerStreet() : String
+getCustomerZip() : String
+getCustomerCity() : String
+setCustomerName(name : String) : void
+setCustomerStreet(street : String) : void
+setCustomerZip(zip : String) : void
+setCustomerCity(city : String) : void
+getDeliveryDate() : date
+setDeliveryDate(date : date) : void
+getBill() : Bill
+setBill(bill : Bill) : void

Order

−customerName : String
−customerStreet : String
−customerZip : String
−customerCity : String

+getCustomerName() : String
+getCustomerStreet() : String
+getCustomerZip() : String
+getCustomerCity() : String
+setCustomerName(name : String) : void
+setCustomerStreet(street : String) : void
+setCustomerZip(zip : String) : void
+setCustomerCity(city : String) : void
+getArticles() : Article [1..*]
+setArticles(articles : Article [1..*]) : void

Article

−no : int
−name : String
−price : long

+getNo() : int
+getName() : String
+getPrice() : long
+setNo(no : int) : void
+setName(name : String) : void
+setPrice(price : long) : void

−bill
1 1

−articles
1..*

1

−articles
1..*

1

−bill
1 1

−orders0..*

0..1

Figure D.5: Example UML model smell Data Clumps

detection This smell can be detected by matching corresponding
patterns based on the abstract syntax of UML. A more common
alternative of this smell, independent from the number of in-
volved elements, is to implemented this smell in a more general
way than Zhang et al. (see description above) who specified a fix
number of features (three). In contrast, we specify this smell us-
ing the two metrics Number of Equal Attributes with other Classes
(for attributes) and Number of Equal Input Parameters in Sibling
Operations (for parameters) and provide individual threshold
values.

213

usable uml model refactorings Extract Class for extracting the
involved attributes into a new class, Introduce Parameter Object
for extracting the involved parameters into a new class.

affected quality characteristics and goals Data clumps
represent redundantly modeled aspects. They may be harder to
understand and may not conform to a modular design. Redun-
dancy, Simplicity, Cohesion/Modular Design → Comprehensi-
bility, Changeability, Correctness

d.4 large class

description A class should model an entity representing one sin-
gle aspect of a given domain. So, its features (attributes and
operations) should be balanced well. A class having too much
features belonging to different concerns hints for too much in-
formation that should be expressed by this class. Often, this
is the central class of a diagram. In this case, the surrounding
classes may be inordinately small, which is also a smell. In any
case, the significant difference in the relative sizes of the classes
is the important thing. [11, 5]

example In Figure D.6 it is obvious that class Bill represents this
model smell. Except for its remarkable number of operations
which are mainly accessors or mutators, this class owns much
more attributes than the average attribute number of the other
classes.

detection This model smell can be easily detected by observing
the class diagram with all members shown. Another check is to
use metrics Number of Attributes and Number of Operations to de-
termine the relative sizes of the classes in a computational way.
A further simplification is to use the corresponding class metric
Number of Features and evaluating its value with respect to those
concerning other classes. This metric can be specified by OCL
query

self.ownedAttribute -> size()

+ self.ownedOperation -> size()

that returns the sum of the number of owned attributes and
the number of owned operations of the contextual class.

214

+getBillNo() : int
+setBillNo(no : int) : void
+getCustomer() : Customer
+setCustomer(customer : Customer) : void
+geCategoryNo1() : int
+getCategoryName1() : String
+getCategoryArticles1() : Article [0..*]
+setCategoryNo1(no : int) : void
+setCategoryName1(name : String) : void
+setCategoryArticles1(articles : Article [0..*]) : void
+getCategoryNo2() : int
+getCategoryName2() : String
+getCategoryArticles2() : Article [0..*]
+setCategoryNo2(no : int) : void
+setCategoryName2(name : String) : void
+setCategoryArticles2(articles : Article [0..*]) : void
+getCategoryNo3() : int
+getCategoryName3() : String
+getCategoryArticles3() : Article [0..*]
+setCategoryNo3(no : int) : void
+setCategoryName3(name : String) : void
+setCategoryArticles3(articles : Article [0..*]) : void
+getCategoryNo4() : int
+getCategoryName4() : String
+getCategoryArticles4() : Article [0..*]
+setCategoryNo4(no : int) : void
+setCategoryName4(name : String) : void
+setCategoryArticles4(articles : Article [0..*]) : void
+getCategoryNo5() : int
+getCategoryName5() : String
+getCategoryArticles5() : Article [0..*]
+setCategoryNo5(no : int) : void
+setCategoryName5(name : String) : void
+setCategoryArticles5(articles : Article [0..*]) : void
+getDeliveryStreet() : String
+getDeliveryZip() : String
+getDeliveryCity() : String
+setDeliveryStreet(name : String) : void
+setDeliveryZip(zip : String) : void
+setDeliveryCity(city : String) : void
+getBillingStreet() : String
+getBillingZip() : String
+getBillingCity() : String
+setBillingStreet(name : String) : void
+setBillingZip(zip : String) : void
+setBillingCity(city : String) : void
+getTotalSum() : long

+CATEGORY_HARDWARE : int = 1
+CATEGORY_TEXTILES : int = 2
+CATEGORY_UNDERWEAR : int = 3
+CATEGORY_SHOES : int = 4
+CATEGORY_FOODS : int = 5
−billNo : int
−categoryNo1 : int
−categoryName1 : String
−categoryArticles1 : Article [0..*]
−categoryNo2 : int
−categoryName2 : String
−categoryArticles2 : Article [0..*]
−categoryNo3 : int
−categoryName3 : String
−categoryArticles3 : Article [0..*]
−categoryNo4 : int
−categoryName4 : String
−categoryArticles4 : Article [0..*]
−categoryNo5 : int
−categoryName5 : String
−categoryArticles5 : Article [0..*]
−deliveryStreet : String
−deliveryZip : String
−deliveryCity : String
−billingStreet : String
−billingZip : String
−billingCity : String

Bill Customer

−name : String

+getName() : String
+setName(name : String) : void

Article

−no : int
−name : String
−price : long

+getNo() : int
+getName() : String
+getPrice() : long
+setNo(no : int) : void
+setName(name : String) : void
+setPrice(price : long) : void

 RegularCustomer

−bonus : float

+getBonus() : float
+setBonus(p : float) : void

−customer

11

Figure D.6: Example UML model smell Large Class

215

usable uml model refactorings Extract Class, Extract Superclass,
or Extract Subclass for extracting information in a new class.
Move Property, Move Operation for moving information to an as-
sociated class.

affected quality characteristics and goals Large classes
do not represent a good modular design and may contain re-
dundant information. Presentation, Cohesion/Modular Design,
Redundancy → Comprehensibility, Changeability, Correctness

d.5 long parameter list

description An operation has a long list of parameters that makes
it really uncomfortable to use the operation. Long parameter
lists are hard to understand and difficult to use. Furthermore,
using long parameter lists is not intended by the object-oriented
paradigm. An operation should have only as much parame-
ters as needed for solving the corresponding task. It is recom-
mended to pass only those parameters that cannot be obtained
by the owning class itself. [11, 131]

example In Figure D.7 class CustomerRelationshipManager owns two
operations each having a long parameter list. Here, this smell
can easily be detected by observation.

detection This smell can be simply detected by observing the model
or by calculating the corresponding class metric Number of Input
Parameters and evaluating its value with respect to a predefined
threshold value. Metric Number of Input Parameters can be speci-
fied by OCL expression

self.ownedParameter

-> select(direction = ParameterDirectionKind::_in or

direction = ParameterDirectionKind::inout)

-> size()

that returns the number of owned parameters of a given op-
eration with direction in respectively inout.

usable uml model refactorings Introduce Parameter Object for
extracting information to a new class. Remove Parameter for re-
moving not needed information.

affected quality characteristics and goals Long param-
eter lists may be harder to understand and may contain re-
dundant information. Presentation/Aesthetics, Simplicity, Co-
hesion/Modular Design → Comprehensibility, Changeability,
Correctness

216

C
u

st
o

m
er

R
el

at
io

n
sh

ip
M

an
ag

er

+s
en

dC
hr

is
tm

as
P

re
se

nt
(c

us
to

m
er

 :
C

us
to

m
er

, s
ho

pp
in

gL
is

t :
 C

us
to

m
er

S
ho

pp
in

gL
is

t,
w

is
hL

is
t :

 C
us

to
m

er
W

is
hL

is
t,

co
m

pl
ai

nt
Li

st
 :

C
us

to
m

er
C

om
pl

ai
nt

Li
st

, c
om

m
en

tL
is

t :
 C

us
to

m
er

P
ro

du
ct

C
om

m
en

tL
is

t)
 :

bo
ol

ea
n

+s
en

dB
irt

hd
ay

P
re

se
nt

(c
us

to
m

er
 :

C
us

to
m

er
, s

ho
pp

in
gL

is
t :

 C
us

to
m

er
S

ho
pp

in
gL

is
t,

w
is

hL
is

t :
 C

us
to

m
er

W
is

hL
is

t,
co

m
pl

ai
nt

Li
st

 :
C

us
to

m
er

C
om

pl
ai

nt
Li

st
, c

om
m

en
tL

is
t :

 C
us

to
m

er
P

ro
du

ct
C

om
m

en
tL

is
t)

 :
bo

ol
ea

n

C
u

st
o

m
er

P
ro

d
u

ct
C

o
m

m
en

tL
is

t

−c
us

to
m

er
N

o
: i

nt
−c

om
m

en
t :

 S
tri

ng
 [1

..*
]

+a
dd

C
om

m
en

t(
ar

tic
le

 :
A

rti
cl

e,
 c

om
m

en
t :

 C
om

m
en

t)
 :

vo
id

+g
et

C
om

m
en

ts
()

 :
S

tri
ng

 [0
..*

]
+g

et
A

rti
cl

es
()

 :
A

rti
cl

e
[0

..*
]

C
u

st
o

m
er

C
o

m
p

la
in

tL
is

t

−c
us

to
m

er
N

o
: i

nt
−c

om
pl

ai
nt

 :
S

tri
ng

 [0
..*

]

+a
dd

C
om

pl
ai

nt
(c

 :
S

tri
ng

)
: v

oi
d

+g
et

C
om

pl
ai

nt
s(

) :
 S

tri
ng

 [0
..*

]

C
u

st
o

m
er

W
is

h
L

is
t

+a
dd

A
rti

cl
e(

 a
rti

cl
e

: A
rti

cl
e

) :
 v

oi
d

+g
et

A
rti

cl
es

()
 :

A
rti

cl
e

[0
..*

]

−c
us

to
m

er
N

o
: i

nt

C
u

st
o

m
er

S
h

o
p

p
in

g
L

is
t

+a
dd

A
rti

cl
e(

 a
rti

cl
e

: A
rti

cl
e

) :
 v

oi
d

+g
et

A
rti

cl
es

()
 :

A
rti

cl
e

[0
..*

]

−c
us

to
m

er
N

o
: i

nt

C
u

st
o

m
er

−n
o

: i
nt

−n
am

e
: S

tri
ng

+g
et

N
am

e(
) :

 S
tri

ng
+s

et
N

am
e(

 n
am

e
: S

tri
ng

)
: v

oi
d

+g
et

N
o(

) :
 in

t
+s

et
N

o(
 n

o
: i

nt
)

: v
oi

d

A
rt

ic
le

−n
o

: i
nt

−n
am

e
: S

tri
ng

−p
ric

e
: l

on
g

+g
et

N
o(

) :
 in

t
+g

et
N

am
e(

) :
 S

tri
ng

+g
et

P
ric

e(
) :

 lo
ng

+s
et

N
o(

 n
o

: i
nt

)
: v

oi
d

+s
et

N
am

e(
 n

am
e

: S
tri

ng
)

: v
oi

d
+s

et
P

ric
e(

 p
ric

e
: l

on
g

) :
 v

oi
d

−a
rti

cl
es

0.
.*

0.
.*

−a
rti

cl
es

0.
.*

0.
.*

−a
rti

cl
es

0.
.*

0.
.*

Figure D.7: Example UML model smell Long Parameter List

217

d.6 multiple definitions of classes with equal names

description This smell occurs if in a single model more than one
class has the same name. The different classes with the same
name may be defined in the same diagram or in different dia-
grams. It is essential that equally named classes are owned by
distinct packages (namespaces) in order to respect the unique-
ness of qualified names in UML. Equally named classes could
lead to misunderstandings of the modeled aspects. Furthermore,
this smell will cause problems during code generation in a model-
driven process. [97]

example Figure D.8 shows class Customer in package Rental owning
attributes name and address as well as associating its rented ve-
hicle. Furthermore, there is another class Customer in package
Accounting modeling the aspect that a Customer holds at least
one account. This situation reflects a typical case of redundant
modeling that can be made more concrete by smell Multiple Def-
initions of Classes with Equal Names.

Figure D.8: Example UML model smell Multiple Definitions of Classes with
Equal Names

detection This smell can be detected by matching a corresponding
(anti-) pattern based on the abstract syntax of UML. Figure D.9
shows the Henshin rule that specifies this pattern-based smell.
This pattern rule defines two UML Classes (named class_1 and
class_2) which have the same name (specified by the internal

218

rule parameter classname). As mentioned above, it is essential
that these classes are owned by distinct packages. This addi-
tional constraint is specified by PAC DifferentPackages. In sum-
mary, the Henshin pattern rule in Figure D.9 specifies two equally
named classes that are owned by different packages.

Figure D.9: Henshin pattern rule specification of UML model smell Multiple
Definitions of Classes with Equal Names

usable uml model refactorings Rename Class for renaming one
involved class.

affected quality characteristics and goals Equally named
classes are redundancy at its best. Redundancy → Correctness,
Consistency, Comprehensibility, Changeability

d.7 primitive obsession

description In this smell, primitive data types like Boolean and
Integer are used to encode data that would be better modeled
as a separate class. Mostly this is done since developers are re-
luctant to use small classes for small tasks. Here, the use of even
small classes might be a better choice to increase the under-
standability of the model. Furthermore, it is against the object-
oriented paradigm to treat domain objects, even small ones,
as primitive type instead of a class modeling its constituent
parts. [11]

example In Figure D.10 this smell occurs twice. First, there are four
constant attributes which would be better modeled as enumer-
ation. Furthermore, there are many attributes of primitive type
Integer which partially adhere to each other and technically
present a point respectively coordinate.

detection This smell can hardly be detected. An indicator for this
smell may be a high value of metric Number of Constant At-

219

Triangle

−BLUE : int
−GREEN : int
−ORANGE : int
−RED : int
−color : int
−x1 : int
−y1 : int
−z1 : int
−x2 : int
−y2 : int
−z2 : int
−x3 : int
−y3 : int
−z3 : int

+init(x1 : int, y1 : int, z1 : int, x2 : int, y2 : int, z2 : int, x3 : int, y3 : int, z3 : int) : void
+draw() : void
+setColor(color : int) : void
+getColor() : int

Figure D.10: Example UML model smell Primitive Obsession

tributes since this might be a hint for the misuse of an enu-
meration. Also, a high value of metric Number of Primitive typed
Attributes might indicate the existence of this smell [104]. Fig-
ure D.11 shows the implemented specifications of both met-
rics by using corresponding Henshin pattern rules. The rule
on the top of Figure D.11 defines the abstract syntax pattern
of an attribute of a given Class (named context) that has some
PrimitiveType as type. In EMF Refactor, the number of occur-
rences of this pattern w.r.t. a contextual class is counted and
represents the value of the corresponding metric. The bottom of
Figure D.11 shows the Henshin pattern rule of metric Number
of constant Attributes. It defines the pattern of an attribute of a
given Class (named context) whose meta attribute isReadOnly is
set to true, i.e this class attribute has a constant value. Again,
we can count the occurrences of this pattern with respect to a
contextual class. In summary, this smell can be implemented in
two metric-based variants (whereas the corresponding metrics
can be implemented by patterns!).

usable uml model refactorings Extract Class or Introduce Pa-
rameter Object for extracting information into a new class.

affected quality characteristics and goals Using primitive
types instead of small classes might show problems in modu-
lar design. Furthermore, this might be imprecise and might re-
flect semantic misunderstandings. Cohesion/Modular Design,
Semantic Adequacy, Precision, Simplicity → Correctness, Con-
finement, Comprehensibility

220

Figure D.11: Henshin pattern rule specifications of UML model metrics
Number of primitive typed Attributes and Number of constant At-
tributes used for specifying UML smell Primitive Obsession

d.8 specialization aggregation

description The association is a specialization of another associa-
tion. This means, that there is a generalization relation between
the two involved associations. People are often confused by the
semantics of specialized associations. The suggestion is there-
fore to model any restrictions on the parent association using
constraints. [119]

example Figure D.12 shows class Journey that is subclassed by class
AirJourney. Also there is a similar class inheritance hierarchy
including classes Route and AirRoute. Furthermore, there is an
association between both subclasses Journey and Route. This as-
sociation is also specialized by a corresponding association. In
fact, this association hierarchy might be confusing.

Figure D.12: Example UML model smell Specialization Aggregation

221

detection This smell can be detected by matching a corresponding
(anti-) pattern based on the abstract syntax of UML. Figure D.13
shows the Henshin rule that specifies this pattern-based smell.
This pattern rule defines two UML Associations (named as-
soc_1 and assoc_2) which are related by a Generalization rela-
tionship (specified by PAC HasGeneralization). In summary, the
Henshin pattern rule in Figure D.13 specifies an association that
specializes another one in the inheritance hierarchy of the cor-
responding classes.

Figure D.13: Henshin pattern rule specification of UML model smell Special-
ization Aggregation

usable uml model refactorings No existing model refactoring
can be used to eliminate this smell. Either it has to be devel-
oped, or the smell has to be eliminated directly, for example by
restructuring the model considering this specific aspect.

affected quality characteristics and goals Specialized as-
sociations are hard to understand and might represent redun-
dant modeling since involved classes can be already specializa-
tions. Simplicity, Redundancy → Comprehensibility

d.9 speculative generality

description Often, developer model special cases but it is not es-
sential to hold this information in the model. This is done since
the developer intends to use this specific information sometime.
In such cases this additional elements should be excluded to
avoid an increase in the complexity of the model. Not required
information might lead to an ambiguous model. This kind of
smell includes: abstract classes that are not doing much, meth-
ods with unused parameters, methods named with odd abstract
names [11]. Zhang et al. [161] present a more precise pattern-
based definition of this model smell. First, the involved element
has to be an abstract class or an interface. The smell occurs if

222

this element has not been inherited/implemented, or is only
inherited/implemented by one single class/interface.

example Figure D.14 shows two abstract classes AbstractLong and
AbstractDouble that are only inherited by one single concrete
class each. These classes might be modeled to address future
concerns. But in fact, they are non-essential and shall be re-
moved.

CalculatorModul

−accumulator : Number = 0

+add(num : Number) : Number
+mult(num : Number) : Number
+calculate() : Number
+reset() : void
+useInternal(numberInt : boolean, numberLong : boolean, numberFloat : boolean, numberDouble : boolean) : void

Long

−value : long

+hashCode() : long
+toString() : String

AbstractLong AbstractDouble

Double

−value : double

+hashCode() : long
+toString() : String

Number

+getDoubleValue() : double
+getLongValue() : long
+getFloatValue() : float
+getIntegerValue() : int

Figure D.14: Example UML model smell Speculative Generality

detection This smell can be detected by matching a correspond-
ing pattern based on the abstract syntax of UML in the case of
abstract classes and interfaces. Furthermore, it can be checked
whether corresponding metrics like Number of direct subclasses
and Number of implementing classes are evaluated to zero respec-
tively one. Figure D.15 shows the Henshin rules that specify
this pattern-based smell. The rule on the top of Figure D.15
defines the abstract syntax pattern of an abstract UML Class

(abstractclass; the meta attribute isAbstract is set to true) that has
one concrete subclass subclass_1; the meta attribute isAbstract
is set to false). Furthermore, this abstract class must not have
any further concrete subclasses (specified by NAC HasNoFur-
therConcreteSubclass). The rule on the bottom of Figure D.15 de-

223

fines an Interface that is realized by a Class (implementing-
class). Furthermore, NAC HasNoFurtherImplementation forbids
the presence of another InterfaceRealization. In summary,
this smell can be implemented in two pattern-based variants.

Figure D.15: Henshin pattern rule specifications of UML model smell Specu-
lative Generality

usable uml model refactorings Inline Class, Remove Superclass
for removing needless classes. Remove Parameter for removing
needless parameters. Rename Operation for giving an operation
a more concrete name.

affected quality characteristics and goals This smell may
lead to more complex models that might be harder to under-
stand. Simplicity, Presentation → Comprehensibility, Confine-
ment

d.10 unnamed element

description The model element, i.e., package, class, interface, data
type, attribute, operation, or parameter, has no name. This smell
summarizes corresponding smells such as Unnamed Class and
Unnamed Attribute. According to the UML specification this is
no misuse, i.e., the model is still valid. But on the one hand an

224

unnamed element could lead to misunderstandings of the mod-
eled aspect, on the other hand unnamed elements will cause
problems during code generation in a model-driven process.
However, a model element should be given a descriptive name
that reflects its purpose. [83]

example Figure D.16 shows classes SoccerClub, Date, and Person re-
lated by several associations. Among others, there is an asso-
ciation between classes SoccerClub and Person but without any
names, neither an association name nor corresponding role names.
Here, it is very hard to understand the meaning of the associa-
tion. Does it mean players, trainers, or even board members?

Figure D.16: Example UML model smell Unnamed Element

detection This smell can be detected by matching a correspond-
ing (anti-) patterns based on the abstract syntax of UML. Fig-
ure D.17 shows the Henshin rules that specify this pattern-based
smell. Each rule specifies a corresponding meta model element
(Property, Class, DataType, Interface, Operation, Package, and
Parameter) whose meta attribute name is not set (specified by
name=“”). The rule concerning an unnamed Property has an ad-
ditional PAC IsUnnamedAttribute that ensures that the Property

is in fact an attribute of a Classifier (i.e., Class or Interface).
The rule concerning an unnamed Parameter ensures that only
unnamed input parameters are detected (specified by rule at-
tribute dir and attribute condition dir!=return). In summary,
this smell can be implemented in seven pattern-based variants.

usable uml model refactorings Rename Class, Rename Attribute,
etc. for giving the model element a proper name.

225

Figure D.17: Henshin pattern rule specifications of UML model smell Un-
named Element

affected quality characteristics and goals A model ele-
ment without an appropriate name may reflect a real world as-
pect imprecise and incorrect. Furthermore, they might be harder
to understand. Simplicity, Conformity, Precision→ Consistency,
Comprehensibility, Correctness, Completeness

d.11 unused element

description An unused model element is useless and indicates in-
correct modeling. Either the element represents a valid domain
object, i.e., there are missing relationships to further objects, or
the modeler wanted to delete the element from the model but re-
moved it only from the diagram. For example, an unused class
has no child classes, dependencies, or associations and it is not
used as parameter or property type. [133]

example An example is given in the description of this smell (Un-
used Class).

detection This smell can be detected by matching corresponding
patterns based on the abstract syntax of UML. This patterns
have to be formulated in a way that the contextual element
(class, for example) is not allowed to have any specific rela-
tionships to other elements. However, these patterns have to
be defined specific to the considered contextual element type.

226

Another way to define this smell is to determine specific met-
rics and to check whether these metrics are evaluated to zero
each. For example, checking specific smell Unused Class requires
model metrics Number of direct children, Total number of depen-
dencies, Number of associated classes, Number of times the class is
externally used as attribute type, and Number of times the class is
externally used as parameter type. Figure D.18 shows altogether
four Henshin rules that specify this pattern-based smell. The
top rule specifies the abstract pattern of an unused UML Class.
It consists of five NACs which must hold altogether at the same
time:

• The class must not have any subclasses (NAC hasNoChild-
Class).

• The class must not have any superclasses (NAC hasNoPar-
entClass).

• The class must not be used as attribute or parameter type
(NAC isNoType).

• The class must not implement any interfaces (NAC does-
NotRealizeAnInterface).

• The class must not use any interfaces (NAC doesNotUseAn-
Interface).

The lower left rule specifies the abstract pattern of an unused
UML Enumeration. NAC isNotUsedAsType specifies that this enu-
meration is not used as type of a TypedElement (attribute, for
example). The rule in the middle specifies the abstract pattern
of an unused UML Interface. It consists of three NACs which
must hold altogether at the same time:

• The interface must not be implemented by a class (NAC
noInterfaceRealization).

• The interface must not be used by a class (NAC noInter-
faceUsage).

• The interface must not have any subinterfaces (NAC noInt-
erfaceSpecialization).

The lower right rule specifies the abstract pattern of an unused
UML Package. NAC noElements specifies that this package does
not have any packaged elements in it. In summary, this smell
can be implemented in four pattern-based variants.

usable uml model refactorings Here, there is no refactoring
needed. Just remove the element from the model or continue
modeling missing relationships.

affected quality characteristics and goals A model ele-
ment that is not used may reflect an imprecise modeling. Preci-
sion → Correctness, Confinement

227

Figure D.18: Henshin pattern rule specifications of UML model smell
Unused Element

228

E
S P E C I F I C AT I O N S O F U M L C L A S S M O D E L
R E FA C T O R I N G S

In this appendix we describe selected refactorings for UML class mod-
els found in literature. For each model refactoring a short description,
the contextual meta model element type for invoking the refactoring,
and the input parameters of the refactoring are given. Furthermore,
we present preconditions that have to be checked, either before or
after parameter input by the refactoring user, as well as postcondi-
tions that specify the behavior preservation of the refactoring. We
then specify the transformation that has to be performed after the
precondition checks have passed. Finally, an example completes each
model refactoring description.

e.1 add parameter

description An operation needs more information from its callers.
Therefore, this refactoring adds a parameter to an operation. [30,
150]

example Figure E.1 shows an operation setVisible in class Square that
ought to get an additional parameter vis of type Boolean. This
parameter has to be added.

Figure E.1: Example UML model refactoring Add Parameter

contextual element Operation

initial preconditions check There are no initial preconditions
that need to be checked.

refactoring parameters (1) parameterName - Name of the new
parameter. (2) parameterType - Type of the new parameter.

229

final preconditions check (1) The contextual operation does
not already have a parameter named parameterName. (2) There
is no operation with the same name as the contextual operation
and with the same parameter list (equal parameter names and
types) as the contextual operation including a new parameter
named parameterName of type parameterType in the class and
its inheritance hierarchy owning the contextual operation.

model transformation Add a new parameter named parameterName

of type parameterType to the parameter list of the contextual op-
eration.

postconditions There is a new parameter named parameterName

of type parameterType in the parameter list of the contextual
operation.

e.2 create associated class

description This refactoring creates an empty class and connects
it with a new association to the source class from where it is
extracted. The multiplicity of the new association is 1 at both
ends. Usually, refactorings Move Property and Move Operation
are the next steps after this refactoring. [107, 150]

example Figure E.2 shows class Bill storing name, street, and res-
idence of a customer. Improve the design with a special class
Address and use refactorings Move Property and Move Operation
afterwards to fill class Address. Please note that in this example
we used a variation of this refactoring that creates private as-
sociation ends as well as their corresponding getter and setter
operations.

Figure E.2: Example UML model refactoring Create Associated Class

contextual element Class

initial preconditions check There are no initial preconditions
that need to be checked.

refactoring parameters (1) className - Name of the new as-
sociated class. (2) namespaceName - Namespace of the new as-
sociated class given by a qualified name. (3) associationName

230

- Name of the new association. (4) endName1 and (5) endName2 -
Names of the association ends of the new association.

final preconditions check (1) There does not already exist a
classifier named className in the namespace named namespaceName.
(2) The contextual class does not already have an attribute named
endName1.

model transformation (1) Create a new class named className

in the namespace named namespaceName with default visibility.
(2) Insert an association named associationName and multiplic-
ity 1 : 1 between the contextual class and the newly created class.
(3) Name the new association end typed by the newly created
class endName1. (4) Name the new association end typed by the
conceptual class endName2.

postconditions (1) There is a new class named className in the
namespace named namespaceName with default visibility. (2) There
is an association named associationName and multiplicity 1 : 1
between the contextual class and the newly created class. (3)
The name the new association end typed by the newly created
class is endName1. (4) The name the new association end typed
by the conceptual class is endName2.

e.3 create subclass

description A class has features (attributes or operations) that are
not used in all instances. This refactoring creates a subclass for
that subset of features. However, the new subclass has no fea-
tures. Usually, refactorings Push Down Property and Push Down
Operation are the next steps after this refactoring. [150]

example Figure E.3 shows class File modeling all aspects a file can
have. Some aspects are just important for directories. Create a
subclass and move these features down to this kind of file via
refactorings Push Down Property and Push Down Operation.

contextual element Class

initial preconditions check There are no initial preconditions
that need to be checked.

refactoring parameters (1) className - Name of the new sub-
class. (2) namespaceName - Namespace of the new subclass given
by a qualified name.

final preconditions check There does not already exist a clas-
sifier named className in the namespace named namespaceName.

231

Figure E.3: Example UML model refactoring Create Subclass

model transformation (1) Create a new class named className

in the namespace named namespaceName with default visibility.
(2) Insert an inheritance relation from the newly created class to
the contextual class.

postconditions (1) There is a new class named className in the
namespace named namespaceName with default visibility. (2) There
is an inheritance relation from the newly created class to the
contextual class.

e.4 create superclass

description This refactoring can be applied when there are at least
two classes with similar features (attributes or operations). The
refactoring creates a superclass for this set of classes and is nor-
mally followed by refactorings Pull Up Property and Pull Up Op-
eration. So, the refactoring helps to reduce the duplicate com-
mon features spread throughout different classes. [141, 150, 107,
160]

example Figure E.4 shows classes Car and Bike which have common
attributes and operations. Create a new superclass and move
these common features to this new class by refactorings Pull Up
Property and Pull Up Operation.

contextual elements Set of Classes

232

Figure E.4: Example UML model refactoring Create Superclass

initial preconditions check There are no initial preconditions
that need to be checked.

refactoring parameters (1) className - Name of the new su-
perclass. (2) namespaceName - Namespace of the new superclass
given by a qualified name.

final preconditions check There does not already exist a clas-
sifier named className in the namespace named namespaceName.
If so, it must be an empty class, i.e., it has no attributes, no oper-
ations, no superclasses, and no inner classes; it is not associated
to other classes; it does not implement any interfaces, and is not
referred to as type of an attribute, operation or parameter.

model transformation (1) Create a new class named className

in the namespace named namespaceName with default visibility
if such a class does not exist yet. (2) Insert inheritance relations
from each contextual class to the newly created class respec-
tively existing class.

postconditions (1) There is a new class named className in the
namespace named namespaceName with default visibility. (2) There
is an inheritance relation from each contextual class to the newly
created class.

e.5 extract associated class

description This refactoring extracts interrelated features (attributes
and operations) from a class to a new separated class. [107, 150]

example Figure E.5 shows class Bill that contains the attributes of
the customer’s address. Extract these attributes in an own class
Address.

contextual element Class

233

Figure E.5: Example UML model refactoring Extract Associated Class

initial preconditions check There are no initial preconditions
that need to be checked. However, the initial preconditions of
the involved refactorings have to be checked properly.

refactoring parameters Each parameter of refactoring Create
Associated Class. Additionally, a list of attributes and operations
which have to be moved to the new associated class.

final preconditions check The contextual class owns each at-
tribute and operation of the corresponding input lists. Addition-
ally, the final preconditions of the involved refactorings have to
be checked properly.

model transformation (1) Use refactoring Create Associated Class
on the contextual class with the given parameters. (2) Use refac-
toring Move Property on each attribute of the appropriate param-
eter list with the corresponding parameter. (3) Use refactoring
Move Operation on each operation of the appropriate parameter
list with the corresponding parameter.

postconditions In each step the postconditions of the used refac-
torings have to be checked. No additional postconditions are
required.

e.6 extract subclass

description There are features (attributes and operations) in a class
required for a special case only. This refactoring extracts a sub-
class containing this features. [150]

example In Figure E.6 the association end container of class File is
just relevant for directories. Create a subclass Directory and push
down the association end container.

contextual element Class

initial preconditions check There are no initial preconditions
that need to be checked. However, the initial preconditions of
the involved refactorings have to be checked properly.

234

Figure E.6: Example UML model refactoring Extract Sublass

refactoring parameters Each parameter of refactoring Create
Associated Class. Additionally, a list of attributes and operations
which have to be pushed to the new subclass.

final preconditions check The contextual class owns each at-
tribute and operation of the corresponding input lists. Addition-
ally, the final preconditions of the involved refactorings have to
be checked properly.

model transformation (1) Use refactoring Create Subclass on the
contextual class with the given parameters. (2) Use refactoring
Push Down Property on each attribute of the appropriate param-
eter list. (3) Use refactoring Push Down Operation on each opera-
tion of the appropriate parameter list.

postconditions In each step the postconditions of the used refac-
torings have to be checked. No additional postconditions are
required.

e.7 extract superclass

description There are two or more classes with similar features.
This refactoring creates a new superclass and moves the com-
mon features to the superclass. The refactoring helps to reduce
redundancy by assembling common features spread through-
out different classes. [141, 106, 150, 107, 160]

235

example Figure E.7 shows classes Bike and Car that have common
attributes and operations. Extract these common features to a
new superclass Vehicle.

Figure E.7: Example UML model refactoring Extract Superlass

contextual elements Set of Classes

initial preconditions check The contextual classes have simi-
lar features, i.e., attributes with the same name, type, visibility
and multiplicity, or operations with the same name, visibility
and parameter list. Additionally, the initial preconditions of the
involved refactorings have to be checked properly.

refactoring parameters Each parameter of refactoring Create
Superclass. Additionally, a list of attributes and operations which
have to be pushed to the new subclass is taken from one contex-
tual class.

final preconditions check There are no final preconditions that
need to be checked. However, the final preconditions of the in-
volved refactorings have to be checked properly.

model transformation (1) Use refactoring Create Superclass on
the contextual classes with the given parameters. (2) Use refac-
toring Pull Up Property on each attribute of the appropriate pa-
rameter list with the corresponding parameter. (3) Use refac-
toring Pull Up Operation on each operation of the appropriate
parameter list with the corresponding parameter.

postconditions In each step the postconditions of the used refac-
torings have to be checked. No additional postconditions are
required.

e.8 inline class

description There are two classes connected by a 1:1 association.
One of them has no further use. This refactoring merges these
classes. [150, 93]

236

example In Figure E.8 class ZipCode only contains the zip code num-
ber and is only referenced from class Address. Thus, both classes
can be merged.

Figure E.8: Example UML model refactoring Inline Class

contextual element Class

initial preconditions check There are no initial preconditions
that need to be checked. However, the initial preconditions of
the involved refactorings have to be checked properly.

refactoring parameters Each parameter of refactoring Remove
Empty Associated Class. Additionally, a list of attributes and op-
erations which have to be moved to the associated class.

final preconditions check The contextual class owns each at-
tribute and operation of the corresponding input lists. Addition-
ally, the final preconditions of the involved refactorings have to
be checked properly.

model transformation (1) Use refactoring Move Property on each
attribute of the appropriate parameter list with the correspond-
ing parameter. (2) Use refactoring Move Operation on each oper-
ation of the appropriate parameter list with the corresponding
parameter. (3) Use refactoring Remove Empty Associated Class on
the contextual class.

postconditions In each step the postconditions of the used refac-
torings have to be checked. No additional postconditions are
required.

e.9 introduce parameter object

description There is a group of parameters that naturally go to-
gether. This refactoring replaces a list of parameters with one
object. This parameter object is created for that purpose. [11,
131, 161, 104]

example In Figure E.9 a date range is used in several operations.
Use refactoring Introduce Parameter Object to build class Dat-
eRange.

237

Figure E.9: Example UML model refactoring Introduce Parameter Object

contextual elements List of Parameters

initial preconditions check All contextual parameters belong
to the same operation.

refactoring parameters (1) className - Name of the new pa-
rameterclass. (2) namespaceName - Namespace of the new param-
eterclass given by a qualified name.

final preconditions check There does not already exist a clas-
sifier named className in the namespace named namespaceName.

model transformation (1) Create a new class named className

in the namespace named namespaceName with default visibility.
(2) Create for each contextual parameter a private attribute with
getter and setter operations. (3) Replace the parameter list in all
operations of the class owning the operation with the contextual
parameters with a new parameter with type of the parameter
class. Use refactorings Add Parameter and Remove Parameter for
this purpose.

postconditions (1) There is a new class named className in the
namespace named namespaceName with default visibility. (2) For
each contextual parameter there is a private attribute with getter
and setter operations. (3) There is a new parameter with type
of the parameter class in all operations of the class owning the
operation with the contextual parameters.

e.10 move operation

description This refactoring moves an operation of a class to an as-
sociated class. It is often applied when some class has too much
behavior or when classes collaborate too much. In most cases,
the visibility of the operation should be the same as before. In

238

some cases, when the operation is private or it is moved between
classes belonging to different packages, this is not enough. [107,
150]

example In Figure E.10 operation clearScreen is better placed in class
Display and therefore should be moved.

Figure E.10: Example UML model refactoring Move Operation

contextual element Operation

initial preconditions check The owning class of the contex-
tual operation has an association with multiplicities 1-1 to an-
other class. This association must be navigable in both direc-
tions.

refactoring parameters className - Name of the target class.

final preconditions check (1) The owning class of the contex-
tual operation has an association with multiplicities 1-1 to class
named className. (2) There is no operation with the same name
as the contextual operation and with the same parameter list
(equal parameter names and types) as the contextual operation
in the class and its inheritance hierarchy named className.

model transformation Move the contextual operation to the as-
sociated class named className. If needed change the visibility
of the contextual operation.

postconditions (1) The contextual operation does not exist any-
more in its source class. (2) The contextual operation exists in
the target class. (3) The contextual operation is still visible for
the source class in the target class.

e.11 move property

description A property (attribute) is better placed in another class
which is associated to this class. This refactoring moves this
property to the associated class. In most cases, the visibility of
the property should be the same as before. In some cases, when
the property is private or it is moved between classes belonging
to different packages, this is not enough [107, 150, 93]

239

Figure E.11: Example UML model refactoring Move Property

example Figure E.11 shows attribute address that is better placed in
class Family and therefore should be moved.

contextual element Property

initial preconditions check The owning class of the contex-
tual property has an association with multiplicities 1-1 to an-
other class. This association must be navigable in both direc-
tions.

refactoring parameters className - Name of the target class.

final preconditions check (1) The owning class of the contex-
tual property has an association with multiplicities 1-1 to class
named className. (2) There is no attribute with the same name
as the contextual property in the class named className. (3)
There is no attribute with the same name as the contextual prop-
erty in the inheritance hierarchy of the class named className.

model transformation Move the contextual property to the as-
sociated class named className. If needed change the visibility
of the contextual property.

postconditions (1) The contextual property does not exist any-
more in its source class. (2) The contextual property exists in
the target class. (3) The contextual property is still visible for
the source class in the target class.

e.12 pull up operation

description This refactoring pulls an operation of a class to its
superclass. Usually it is used simultaneously on several classes
which inherit from the same superclass. The aim of this refactor-
ing is often to extract identical operations. In some cases, when
the property is private or it is moved between classes belonging
to different packages, this is not enough. [137, 107, 150]

example In Figure E.12 on page 241 the same operation switchOn
exists in class DesktopPC and LaptopPC. Move it to superclass
Computer.

240

Figure E.12: Example UML model refactoring Pull Up Operation

contextual element Operation

initial preconditions check The contextual operation is owned
by a class that has a superclass.

refactoring parameters className - Name of the superclass
the contextual operation has to be pulled up to.

final preconditions check (1) The owning class of the contex-
tual operation has a superclass named className. (2) The su-
perclass does not own an operation with the same name as the
contextual operation and with the same parameter list (equal
parameter names and types) as the contextual operation. (3)
There is no operation with the same name as the contextual
operation and with the same parameter list (equal parameter
names and types) as the contextual operation in the inheritance
hierarchy of the superclass that is visible to it. (4) Each subclass
of this superclass owns an operation with the same name and
parameter list as the contextual operation.

model transformation (1) Move the contextual operation to the
class named className. (2) Remove each operation with the
same name and parameter list as the contextual operation from
the subclasses of the class named className. (3) If needed change
the visibility of the contextual operation.

postconditions (1) The contextual operation is owned by the su-
perclass. (2) The subclasses of the superclass do not own an
operation with the same name parameter list as the contextual
operation. (3) The contextual operation is still visible in all sub-
classes of the superclass.

e.13 pull up property

description This refactoring removes one property (attribute) from
a class or a set of classes and inserts it to one of its superclasses.

241

In most cases, the visibility of the property should be the same
as before. In some cases, when the property is private or it is
moved between classes belonging to different packages, this is
not enough. [14, 107, 30, 150]

example In Figure E.13 on page 242 the same attribute heatEmission
exists in class DesktopPC and LaptopPC. Move it to superclass
Computer. It must be still visible in the subclasses. Therefore,
change its visibility to private or protected.

Figure E.13: Example UML model refactoring Pull Up Property

contextual element Property

initial preconditions check The contextual property is owned
by a class that has a superclass.

refactoring parameters className - Name of the superclass
the contextual property has to be pulled up to.

final preconditions check (1) The owning class of the contex-
tual property has a superclass named className. (2) The super-
class does not own an attribute with the same name as the con-
textual property. (3) There is no attribute with the same name
as the contextual property in the inheritance hierarchy of the su-
perclass that is visible to it. (4) Each subclass of this superclass
owns an attribute with the same name, type, visibility, and mul-
tiplicity as the contextual property.

model transformation (1) Move the contextual property to the
class named className. (2) Remove each attribute with the same
name, type, visibility, and multiplicity as the contextual prop-
erty from the subclasses of the class named className. If needed
change the visibility of the contextual property.

postconditions (1) The contextual property is owned by the su-
perclass. (2) The subclasses of the superclass do not own an at-
tribute with the same name as the contextual property. (3) The
contextual property is still visible in all subclasses of the super-
class.

242

e.14 push down operation

description This refactoring pushes an operation from the owning
class down to all its subclasses. If it makes sense, the operation
can be removed from some of these afterwards. Sometimes, it
also makes sense to keep an operation in all subclasses to hide
it from the superclass. [107, 150, 93]

example In Figure E.14 the operation paint detects what to paint, a
triangle or a square. Better move the operation to the subclasses
Triangle and Square, so you do need a subclass detection.

Figure E.14: Example UML model refactoring Push Down Operation

contextual element Operation

initial preconditions check (1) The owning class of the con-
textual operation has subclasses. (2) No subclass of this owning
class contains an operation with the same name and the same
parameter list (equal parameter names and types) as the contex-
tual operation.

refactoring parameters This refactoring does not have any more
parameters.

final preconditions check There are no final preconditions that
need to be checked.

model transformation (1) Add a copy of the contextual opera-
tion to each subclass. (2) Remove the contextual operation.

postconditions (1) A copy of the contextual operation exist in
each subclass. (2) The contextual operation does not exist any-
more.

e.15 push down property

description An attribute (property) is used only by some sub-
classes. Move the attribute to only these subclasses. More gen-

243

erally, this refactoring moves the attribute to all subclasses. If it
makes sense, the attribute can be removed from some of these
afterwards. Sometimes, it also makes sense to keep an attribute
in all subclasses to hide it from the superclass. [107, 30, 150]

example Figure E.15 shows class Figure that has two length attributes.
One has no use in the case that the figure is a square. Thus, at-
tribute lengthB is pushed down. After this refactoring it might
be removed from class Square.

Figure E.15: Example UML model refactoring Push Down Property

contextual element Property

initial preconditions check (1) The owning class of the con-
textual property has subclasses. (2) No subclass of this owning
class contains an attribute with the same name as the contextual
property.

refactoring parameters This refactoring does not have any more
parameters.

final preconditions check There are no final preconditions that
need to be checked.

model transformation (1) Add a copy of the contextual prop-
erty to each subclass. (2) Remove the contextual property.

postconditions (1) A copy of the contextual property exist in
each subclass. (2) The contextual property does not exist any-
more.

e.16 remove empty associated class

description There is an empty class that is associated to another
class. An associated class is empty if it has no features except
for possible getter and setter operations for the corresponding
association end. Furthermore, it has no inner classes, subclasses,

244

or superclasses, it does not implement any interfaces, and it
is not referred to as type of an attribute, operation or parame-
ter. [150, 93]

example Figure E.16 shows an empty class ZipCode that is associ-
ated to class Address. This empty class has to be deleted by this
refactoring.

Figure E.16: Example UML model refactoring Remove Empty Associated Class

contextual element Class

initial preconditions check (1) The contextual class is associ-
ated to exactly one other class. (2) The contextual class has no
attributes except for a possibly owned association end. (3) The
contextual class has no operations except for possible getter and
setter operations for the corresponding association end. (4) The
contextual class has no inner class. (5) The contextual class has
no subclass. (6) The contextual class has no superclass. (7) The
contextual class does not implement any interfaces. (8) The con-
textual class is not referred to as type of an attribute, operation
or parameter.

refactoring parameters This refactoring does not have any more
parameters.

final preconditions check There are no final preconditions that
need to be checked.

model transformation (1) Remove the association to the con-
textual class together with its getter and setter operations for
the corresponding association ends. (2) Delete the contextual
class.

postconditions The contextual class does not exist anymore.

e.17 remove empty subclass

description A superclass has an empty subclass which shall be
removed. This class is not associated to another class. It has
no features, no inner classes, no further subclasses, and is not
associated to other classes. It does not implement any interfaces,

245

and it is not referred to as type of an attribute, operation or
parameter. [150]

example In Figure E.17 class SpecialRecord is superclass of class Record.
Class SpecialRecord has become empty after some other refactor-
ings. Remove the useless superclass SpecialRecord.

Figure E.17: Example UML model refactoring Remove Empty Subclass

contextual element Class

initial preconditions check (1) The contextual class is a sub-
class of at least one subclass. (2) The contextual class has no
attributes. (3) The contextual class has no operations. (4) The
contextual class has no further subclasses. (5) The contextual
class is not associated to other classes. (6) The contextual class
has no inner classes. (7) The contextual class does not imple-
ment any interfaces. (8) The contextual class is not referred to
as type of an attribute, operation or parameter.

refactoring parameters This refactoring does not have any more
parameters.

final preconditions check There are no final preconditions that
need to be checked.

model transformation (1) Remove the inheritance relations of
the contextual class to its superclasses. (2) Delete the contextual
class.

postconditions The contextual class does not exist anymore.

246

e.18 remove empty superclass

description A set of classes has an empty superclass which shall
be removed. This class is not associated to another class. It has
no features, no inner classes, and is not associated to other
classes. It does not implement any interfaces, and it is not re-
ferred to as type of an attribute, operation or parameter. [150]

example Figure E.18 shows class RequestHandler that is superclass
of class HttpRequestHandler. Class RequestHandler has become
empty after some other refactorings. Remove the useless super-
class RequestHandler.

Figure E.18: Example UML model refactoring Remove Empty Superclass

contextual element Class

initial preconditions check (1) The contextual class is a su-
perclass of a set of subclasses. (2) The contextual class has no
attributes. (3) The contextual class has no operations. (4) The
contextual class is not associated to other classes. (5) The con-
textual class has no inner classes. (6) The contextual class does
not implement any interfaces. (7) The contextual class is not re-
ferred to as type of an attribute, operation or parameter.

refactoring parameters This refactoring does not have any more
parameters.

final preconditions check There are no final preconditions that
need to be checked.

model transformation (1) If the contextual class has again su-
perclasses, move all inheritance relations of all its subclasses to
this superclasses. (2) If the contextual class has no further super-
classes, remove all inheritance relations from all its subclasses
to the contextual class. (3) Delete the contextual class.

247

postconditions (1) The contextual class does not exist anymore.
(2) All classes still inherit all features of potential superclasses.

e.19 remove parameter

description A parameter is no longer needed by the implemen-
tation of an operation. Therefore, this refactoring removes this
parameter from the parameter list of the corresponding opera-
tion. [30, 150]

example Figure E.19 shows parameter length in operation calcArea.
This parameter is unneeded since class Triangle already contains
every needed information for area calculation. So, this parame-
ter shall be removed.

Figure E.19: Example UML model refactoring Remove Parameter

contextual element Parameter

initial preconditions check There are no initial preconditions
that need to be checked.

refactoring parameters This refactoring does not have any more
parameters.

final preconditions check There is no operation with the same
name as the operation owning the contextual parameter and
with the same parameter list (equal parameter names and types)
as the operation owning the contextual parameter excluding the
contextual parameter in the class and its inheritance hierarchy
owning the operation with the contextual parameter.

postconditions The contextual parameter does not exist in the
parameter list of its previous owning operation.

e.20 remove superclass

description There is a set of classes having a superclass that does
not make sense anymore. Remove this superclass after pushing
remaining features down. [141, 150, 107, 160]

248

example Figure E.20 shows class HttpRequestHandler that has an un-
used superclass RequestHandler that has just one attribute and
one operation. Move these features down and remove the su-
perclass HttpRequestHandler.

Figure E.20: Example UML model refactoring Remove Superlass

contextual element Class

initial preconditions check There are no initial preconditions
that need to be checked. However, the initial preconditions of
the involved refactorings have to be checked properly.

refactoring parameters This refactoring has no additional pa-
rameter. A list of attributes and operations which have to be
pushed to the existing subclasses is taken from the contextual
class.

final preconditions check There are no final preconditions that
need to be checked. However, the final preconditions of the in-
volved refactorings have to be checked properly.

model transformation (1) Use refactoring Push Down Property
on each attribute of the appropriate parameter list. (2) Use refac-
toring Push Down Operation on each operation of the appropri-
ate parameter list. (3) Use refactoring Remove Empty Superclass
on the contextual class.

postconditions In each step the postconditions of the used refac-
torings have to be checked. No additional postconditions are
required.

249

e.21 rename class

description The current name of a class does not reflect its pur-
pose. This refactoring changes the name of the class to a new
name. [30]

example In Figure E.21 there is a typing mistake in class WeeelChair.
Correct the mistake.

Figure E.21: Example UML model refactoring Rename Class

contextual element Class

initial preconditions check The namespace of the contextual
class is a package.

refactoring parameters newName - New name of the contextual
class.

final preconditions check There is no classifier in the owning
package of the contextual class named newName.

model transformation Change the name of the contextual class
to newName.

postconditions The name of the contextual class is newName.

e.22 rename operation

description The current name of an operation does not reflect
its purpose. This refactoring changes the name of the opera-
tion. [107, 30]

example Figure E.22 shows class Book that owns an operation getti-
tle. Since camel case makes it easier to read the operation’s name
is changed to getTitle.

contextual element Operation

initial preconditions check There are no initial preconditions
that need to be checked.

250

Figure E.22: Example UML model refactoring Rename Operation

refactoring parameters newName - New name of the contextual
operation.

final preconditions check (1) There is no operation named newName

and with the same parameter list (equal parameter names and
types) as the contextual operation in the class owning the con-
textual operation. (2) There is no operation named newName and
with the same parameter list (equal parameter names and types)
as the contextual operation in the inheritance hierarchy of the
class owning the contextual operation.

model transformation Change the name of the contextual op-
eration to newName.

postconditions The name of the contextual operation is newName.

e.23 rename property

description The current name of an attribute or association end
does not reflect its purpose. This refactoring changes the name
of the property. [107, 30]

example In Figure E.23 class Wall owns an attribute wallColor. Change
the name to color since Wall is already the class name.

Figure E.23: Example UML model refactoring Rename Property

contextual element Property

initial preconditions check The contextual property is an at-
tribute or association end of a class.

251

refactoring parameters newName - New name of the contextual
attribute or association end.

final preconditions check (1) There is no attribute named newName

in the class owning the contextual attribute. (2) There is no at-
tribute named newName in the inheritance hierarchy of the class
owning the contextual attribute or association end.

model transformation Change the name of the contextual at-
tribute or association end to newName.

postconditions The name of the contextual attribute or associa-
tion end is newName.

252

F
I M P L E M E N TAT I O N S O F U M L M O D E L
R E FA C T O R I N G S

In this appendix we describe the implemented specifications of se-
lected refactorings for UML class models found in literature. For a
structured specification and discussion of these refactorings we refer
to Appendix E of this thesis. For each implemented model refactor-
ing short descriptions of the refactoring, its contextual element and its
parameters are given as well as a detailed description of its concrete
implementation. Here, we either discuss the corresponding Henshin
rules, Java code snippets, or CoMReL specifications. Furthermore, we
present a list of tests that have been performed.

253

f.1 add parameter

description An operation needs more information from its callers.
Therefore, this refactoring adds a parameter to an operation. [30,
150]

contextual element Operation

refactoring parameters (1) parameterName - Name of the new
parameter. (2) parameterType - Type of the new parameter.

implementation Refactoring Add Parameter has been implemented
in Java code using the UML2EMF API.

Figure F.1: Initial Check Implementation of UML class model refactoring
Add Parameter

Figure F.1 shows the concrete implementation of the initial pre-
condition check (Java method checkInitialConditions()). Here,
the only check is whether the contextual Operation (named se-
lectedEObject) is owned by a Class (line 181) since this refactor-
ing should not be applied on interface operations. If this pre-
condition is violated, an appropriate error message is returned
(lines 179–181).

Figure F.2 shows the concrete implementation of the final pre-
condition check (Java method checkFinalConditions()). Besides
the contextual Operation selectedEObject, this check additionally
considers the user input parameters paramName and paramType.
Here, the following checks are performed:

1. The contextual Operation must not own a Parameter named
as specified in paramName (lines 203–209).

2. There must be a Type element in the model named as spec-
ified in paramType (lines 211–216).

3. There must be at most one Type element in the model
named as specified in paramType (lines 219–221).

4. The owning Class of the contextual Operation must not
own a similar Operation after inserting the new Parameter

(lines 226–232).

254

Figure F.2: Final Check Implementation of UML class model
refactoring Add Parameter

5. The owning Class of the contextual Operation must not in-
herit a similar Operation after inserting the new Parameter

(lines 236–242).

255

Figure F.3 shows the implementation of the proper model change
of refactoring Add Parameter (method run()). A new Parameter

is created, named as specified in refactoring parameter param-
Name, and typed as specified in parameter paramType (lines 139–
144). Finally, this newly created parameter is inserted into the
parameter list of the contextual operation (line 145).

Figure F.3: Model Change Implementation of UML class model refactoring
Add Parameter

test cases The following test cases have been performed:

1. The contextual operation op1 is owned by an interface In-
terf1 ⇒ corresponding error message. X

2. paramName is set to p1; the contextual operation op1 owns
a parameter named p1 ⇒ corresponding error message. X

3. paramType is set to Type1; the model does not contain a type
element named Type1 ⇒ corresponding error message. X

4. paramType is set to Type1; the model contains two type ele-
ments named Type1 ⇒ corresponding error message. X

5. paramName is set to p1; paramType is set to Type1; the own-
ing class A of the contextual operation op1 owns an oper-
ation op1 with the same signature as the contextual opera-
tion op1 after inserting a new parameter p1 with type Type1
⇒ corresponding error message. X

6. paramName is set to p1; paramType is set to Type1; the own-
ing class A of the contextual operation op1 inherits an op-
eration op1 with the same signature as the contextual op-
eration op1 after inserting a new parameter p1 with type
Type1 ⇒ corresponding error message. X

7. paramName is set to p1; paramType is set to Type1; no precon-
dition is violated ⇒ refactoring execution as expected. X

256

f.2 create associated class

description This refactoring creates an empty class and connects
it with a new association to the source class from where it is
extracted. The multiplicity of the new association is 1 at both
ends. Usually, refactorings Move Property and Move Operation
are the next steps after this refactoring. [107, 150]

contextual element Class

refactoring parameters (1) className - Name of the new asso-
ciated class. (2) associationName - Name of the new association.
(4) roleName1 and (5) roleName2 - Names of the association ends
of the new association.

implementation Refactoring Create Associated Class has been im-
plemented in Henshin pattern rules (for specifying precondi-
tion checks) and a Henshin transformation rule (for specifying
the proper model changes) using the abstract syntax of UML.

Figure F.4: Initial Check Implementation of UML class model refactoring
Create Associated Class

Figure F.4 shows the Henshin pattern rule specification of the
initial precondition check. It specifies that the contextual Class

(named selectedclass) is not owned by a Package (see NAC NoPack-
age). Please note that this pattern models the situation of a vi-
olated precondition1. This means, that refactoring Create Associ-
ated Class can only be applied on classes which are owned by a
package!

Figure F.5 shows the Henshin pattern rule specifications of the
final precondition checks. Altogether four violated precondi-
tions are modeled:

1. The owning Package of the contextual Class already owns
an element named as specified in parameter classname.

2. The owning Package of the contextual Class already owns
an element named as specified in parameter association-
name.

1 This is done to provide meaningful error messages (see Section 13.4 of this thesis).

257

Figure F.5: Final Check Implementation of UML class model refactoring Cre-
ate Associated Class

3. The contextual Class already owns an attribute named as
specified in parameter rolename1.

4. The contextual Class already inherits an attribute named
as specified in parameter rolename1.

Figure F.6 shows the Henshin pattern rule specification of the
proper model change of refactoring Create Associated Class. This
rule inserts new Class respectively Association objects into the
owning Package of the contextual Class with names as spec-
ified in parameters classname respectively associationname. Fur-
thermore, it creates the corresponding association end Properties

as attributes of both classes with appropriate names and types.

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

258

Figure F.6: Model Change Implementation of UML class model refactoring
Create Associated Class

2. classname is set to B; the owning package P1 of the contex-
tual class A already owns a class B ⇒ corresponding error
message. X

3. classname is set to Interf1; the owning package P1 of the con-
textual class A owns an interface Interf1 ⇒ corresponding
error message. X

4. associationname is set to assoc1; the owning package P1 of
the contextual class A already owns an association assoc1
⇒ corresponding error message. X

5. associationname is set to Interf1; the owning package P1 of
the contextual class A owns an interface Interf1 ⇒ corre-
sponding error message. X

6. rolename1 is set to attr1; the contextual class A already owns
an attribute attr1 ⇒ corresponding error message. X

7. rolename1 is set to attr1; the contextual class A already in-
herits an attribute attr1⇒ corresponding error message. X

8. classname is set to B; associationname is set to assoc1; role-
name1 is set to b1; rolename2 is set to a1; no precondition is
violated ⇒ refactoring execution as expected. X

259

f.3 create subclass

description A class has features (attributes or operations) that are
not used in all instances. This refactoring creates a subclass for
that subset of features. However, the new subclass has no fea-
tures. Usually, refactorings Push Down Property and Push Down
Operation are the next steps after this refactoring. [150]

contextual element Class

refactoring parameters className - Name of the new subclass.

implementation Refactoring Create Subclass has been implemented
in Java code using the UML2EMF API.

Figure F.7: Initial Check Implementation of UML class model refactoring
Create Subclass

Figure F.7 shows the concrete implementation of the initial pre-
condition check (Java method checkInitialConditions()). Here,
the only check is whether the contextual Class (named select-
edEObject) is owned by a Package (line 173), i.e., this refactoring
can not be applied on inner classes, for example. If this pre-
condition is violated, an appropriate error message is returned
(lines 171–173).

Figure F.8: Final Check Implementation of UML class model refactoring Cre-
ate Subclass

260

Figure F.8 shows the concrete implementation of the final pre-
condition check (Java method checkFinalConditions()). Besides
the contextual Class selectedEObject, this check additionally con-
siders the user input parameter className. Here, the only check
is whether the owning Package of the contextual Class does
not own an element named as specified in refactoring parame-
ter className (line 192–195).

Figure F.9: Model Change Implementation of UML class model refactoring
Create Subclass

Figure F.9 shows the concrete implementation of the proper
model change of refactoring Create Subclass (method run()). First,
a new Class is created and named as specified in refactoring
parameter className (lines 131/132). Then, the new class is in-
serted into the owning Package of the contextual Class (line
133). Finally, a new Generalization relationship from the newly
created class to the contextual class is created (lines 135–137).

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

2. className is set to B; the owning package P1 of the contex-
tual class A already owns a class B ⇒ corresponding error
message. X

3. className is set to Interf1; the owning package P1 of the
contextual class A owns an interface Interf1 ⇒ correspond-
ing error message. X

4. className is set to B; no precondition is violated ⇒ refac-
toring execution as expected. X

261

f.4 create superclass

description This refactoring can be applied when there are at least
two classes with similar features (attributes or operations). The
refactoring creates a superclass for this set of classes and is nor-
mally followed by refactorings Pull Up Property and Pull Up Op-
eration. So, the refactoring helps to reduce the duplicate com-
mon features spread throughout different classes. [141, 150, 107,
160]

contextual elements Set of Classes

refactoring parameters className - Name of the new super-
class.

implementation Refactoring Create Superclass has been implemented
in Henshin pattern rules (for specifying precondition checks)
respectively Henshin transformation rules (for specifying the
proper model changes) using the abstract syntax of UML.

Figure F.10: Initial Check Implementation of UML class model refactoring
Create Superclass

Figure F.10 shows the Henshin pattern rule specification of the
initial precondition check. This rule defines the erroneous situa-
tion that the contextual Class (named selectedclass) is not owned
by a Package, i.e., this refactoring can not be applied on inner
classes, for example. NAC NoPackage specifies this violated pre-
condition.

Figures F.11 and F.12 shows the Henshin pattern rule specifi-
cations of the final precondition checks. Altogether eleven vio-
lated preconditions are modeled. First, it is checked whether the
owning Package of the contextual Class (selectedclass) already
owns an interface named as specified in parameter classname
(rule check_noInterface). Since the refactoring can also be applied
if a class named as specified in parameter classname already ex-
ists, the remaining rules check whether this class is concrete,
public and empty. The corresponding violated conditions are:

1. Rule check_noAbstractClass: The existing Class (excl) is ab-
stract.

262

Figure F.11: Final Check Implementation of UML class model
refactoring Create Superclass (1)

263

2. Rule check_isPublic: The existing Class (excl) is not public.
Here, an additional internal rule parameter vis is used in
combination with parameter condition vis != public.

3. Rule check_hasNoAttributes: The existing Class (excl) owns
at least one attribute (Property).

4. Rule check_hasNoOperation: The existing Class (excl) owns
at least one Operation.

5. Rule check_noSuperclass: The existing Class (excl) has a su-
perclass.

6. Rule check_noAssociation: The existing Class (excl) is involved
in at least one Association (as type of an association end
Property).

7. Rule check_noInnerClass: The existing Class (excl) has at
least one inner Class.

8. Rule check_noImplementingInterface: The existing Class (excl)
implements at least one Interface.

9. Rule check_noInterfaceUsing: The existing Class (excl) uses
at least one Interface.

10. Rule check_noType: The existing Class (excl) is used as type
of at least one TypedElement (Parameter, for example).

Figure F.13 on page 266 shows the Henshin pattern rule specifi-
cations of the proper model changes of refactoring Create Su-
perclass. Rule create_superclass creates a new Class named as
specified in parameter classname and inserts it into the own-
ing Package of the contextual Class (selectedclass) if such a class
does not exist yet (specified by NAC ClassNotExists). Then, rule
create_generalization creates a Generalization relation between
the contextual class and the (potentially created) class named as
specified in parameter classname.

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

2. classname is set to Interf1; the owning package P1 of the con-
textual class A owns an interface Interf1 ⇒ corresponding
error message. X

3. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; B is abstract ⇒ corresponding
error message. X

4. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B has private visibility ⇒
corresponding error message. X

264

Figure F.12: Final Check Implementation of UML class model
refactoring Create Superclass (2)

5. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B owns an attribute att ⇒
corresponding error message. X

265

6. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B owns an operation op ⇒
corresponding error message. X

7. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B has an inner class C ⇒
corresponding error message. X

8. classname is set to B; the owning package P1 of the con-
textual class A owns class B; class B has a superclass C ⇒
corresponding error message. X

9. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B has an incoming associa-
tion assoc ⇒ corresponding error message. X

10. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B has an outgoing associa-
tion assoc ⇒ corresponding error message. X

Figure F.13: Model Change Implementation of UML class model refactoring
Create Superclass

11. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B implements an interface
Interf1 ⇒ corresponding error message. X

12. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B uses an interface Interf1
⇒ corresponding error message. X

266

13. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B is used as type of class
attribute P1::C::att ⇒ corresponding error message. X

14. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; class B is used as type of param-
eter P1::C::op1::par1 ⇒ corresponding error message. X

15. classname is set to B; the owning package P1 of the con-
textual class A does not own a class B; no precondition is
violated ⇒ refactoring execution as expected. X

16. classname is set to B; the owning package P1 of the contex-
tual class A owns class B; no precondition is violated ⇒
refactoring execution as expected. X

267

f.5 extract associated class

description This refactoring extracts interrelated features (attributes
and operations) from a class to a new separated class. [107, 150]

contextual element Class

refactoring parameters Each parameter of refactoring Create
Associated Class. Additionally, a list of attributes and operations
which have to be moved to the new associated class.

Figure F.14: Initial Check Implementation of UML class model refactoring
Extract Associated Class

implementation Refactoring Extract Associated Class has been im-
plemented in Java code using the UML2EMF API (for specifying
precondition checks) respectively an appropriate model of the
CoMReL language (for specifying the proper model changes)
using predefined UML refactorings.

Figure F.14 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).

268

Here, the contextual elements are accessible by variables select-
edEObject (of type Class), attributesList (as list of type Property),
and operationsList (as list of type Operation). First, it is checked
whether the contextual class is owned by a Package, i.e., this
refactoring can not be applied on inner classes, for example
(lines 272–277). Then, it is checked whether each contextual
property is an attribute of the contextual class (lines 279–286)
respectively whether each contextual operation is owned by the
contextual class (lines 288–295).

Figure F.15 shows the concrete CoMReL unit specification of the
proper model change of refactoring Extract Associated Class2. As
described in Appendix E, refactoring Extract Associated Class re-
lies on three atomic model refactorings. The main refactoring
unit extractclass is a strict Sequential Unit consisting of one
AtomicUnit and two SingleQueuedUnits. The atomic unit cre-
ates the new associated class and the queued units move all at-
tributes and operations of the corresponding input lists to this
newly created class.

Each SingleQueuedUnit contains an AtomicUnit calling an al-
ready existing refactoring. First, the atomic one Move Attribute
must be applied on each attribute of the corresponding input
list. Analogously, an atomic unit for refactoring Move Opera-
tion is put into a single queued unit. In both cases, the strict
attributes are set to true since each feature should be moved.

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

2. Attributes att1 and att2 of the contextual attributes list (att1,
att2, att3) are owned by the contextual class A; attribute att3
of the contextual attributes list (att1, att2, att3) is owned by
class B; ⇒ corresponding error message. X

3. Operations op1 and op2 of the contextual operations list
(op1, op2, op3) are owned by the contextual class A; opera-
tion op3 of the contextual operations list (op1, op2, op3) is
owned by class B; ⇒ corresponding error message. X

4. className is set to B; associationName is set to assoc1; role-
Name1 is set to a; roleName2 is set to b; the contextual class
A owns each attribute of the contextual attributes list (att1,
att2, att3) as well as each operation of the contextual op-
erations list (op1, op2, op3); no violated preconditions ⇒
refactoring execution as expected. X

2 Although this refactoring has additional parameters (className, associationName, role-
Name1 and roleName2), no final precondition checks have to be implemented since
they are checked by the internal refactorings.

269

Figure F.15: Model Change Implementation of UML class model refac-
toring Extract Associated Class

270

f.6 extract subclass

description There are features (attributes and operations) in a class
required for a special case only. This refactoring extracts a sub-
class containing this features. [150]

contextual element Class

refactoring parameters Each parameter of refactoring Create
Associated Class. Additionally, a list of attributes and operations
which have to be pushed to the new subclass.

implementation Refactoring Extract Subclass has been implemented
in Java code using the UML2EMF API (for specifying precondi-
tion checks) respectively an appropriate model of the CoMReL
language (for specifying the proper model changes) using pre-
defined UML refactorings.

Figure F.16: Initial Check Implementation of UML class model refactoring
Extract Subclass

Figure F.16 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).

271

Here, the contextual elements are accessible by variables select-
edEObject (of type Class), attributesList (as list of type Property),
and operationsList (as list of type Operation). First, it is checked
whether the contextual class is owned by a Package, i.e., this
refactoring can not be applied on inner classes, for example
(lines 249–254). Then, it is checked whether each contextual
property is an attribute of the contextual class (lines 256–263)
respectively whether each contextual operation is owned by the
contextual class (lines 265–272).

Figure F.17 shows the concrete CoMReL unit specification of
the proper model change of refactoring Extract Subclass3. As
described in Appendix E, refactoring Extract Subclass relies on
three atomic model refactorings. The main refactoring unit ex-
tractsubclass is a strict SequentialUnit consisting of one Atomic

Unit and two SingleQueuedUnits. The atomic unit creates the
new subclass and the queued units push down all attributes
and operations of the corresponding input lists to each subclass
of the contextual Class (i.e., also to the newly created one).

Each SingleQueuedUnit contains an AtomicUnit calling an al-
ready existing model refactoring. First, atomic refactoring Push
Down Attribute must be applied on each attribute of the corre-
sponding input list. Analogously, an atomic unit for refactoring
Push Down Operation is put into a single queued unit. In both
cases, the according strict attributes are set to true since each
contextual feature should be pushed down.

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

2. Attributes att1 and att2 of the contextual attributes list (att1,
att2, att3) are owned by the contextual class A; attribute att3
of the contextual attributes list (att1, att2, att3) is owned by
class B; ⇒ corresponding error message. X

3. Operations op1 and op2 of the contextual operations list
(op1, op2, op3) are owned by the contextual class A; opera-
tion op3 of the contextual operations list (op1, op2, op3) is
owned by class B; ⇒ corresponding error message. X

4. className is set to B; the contextual class A owns each at-
tribute of the contextual attributes list (att1, att2, att3) as
well as each operation of the contextual operations list (op1,
op2, op3); class A does not have any subclasses; no violated
preconditions ⇒ refactoring execution as expected. X

3 Although this refactoring has an additional parameter (className), no final precon-
dition checks have to be implemented since they are checked by the internal refac-
torings.

272

5. className is set to D; the contextual class A owns each at-
tribute of the contextual attributes list (att1, att2, att3) as
well as each operation of the contextual operations list (op1,
op2, op3); class A has subclasses B and C; no violated pre-
conditions ⇒ refactoring execution as expected. X

Figure F.17: Model Change Implementation of UML class model refac-
toring Extract Subclass

273

f.7 extract superclass

description There are two or more classes with similar features.
This refactoring creates a new superclass and moves the com-
mon features to the superclass. The refactoring helps to reduce
redundancy by assembling common features spread through-
out different classes. [141, 106, 150, 107, 160]

contextual elements Set of Classes

refactoring parameters Each parameter of refactoring Create
Superclass. Additionally, a list of attributes and operations which
have to be pushed to the new subclass is taken from one contex-
tual class.

implementation Refactoring Extract Superclass has been implemented
in Java code using the UML2EMF API (for specifying precondi-
tion checks) respectively an appropriate model of the CoMReL
language (for specifying the proper model changes) using pre-
defined UML refactorings.

Figure F.18: Initial Check Implementation of UML class model refactoring
Extract Superclass

Figure F.18 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).
Here, the only check is whether the contextual Classes (named
selectedEObjects) are owned by the same Package (lines 229–239),
i.e., this refactoring can not be applied on inner classes or classes
which are owned by different packages, for example. If this pre-

274

condition is violated, an appropriate error message is returned
(lines 227/228/232/239).

Figure F.19: Final Check Implementation of UML class model refactoring
Extract Superclass

Figure F.19 shows the concrete implementation of the final pre-
condition check (Java method checkFinalConditions()). Besides
the contextual Classes list selectedEObjects, this check addition-
ally considers the user input parameter className. Here, it is
checked whether no contextual class is already named as speci-
fied in refactoring parameter className, otherwise an appropri-
ate error message is returned (lines 259–265).

Figure F.20 on page 276 shows the concrete CoMReL unit speci-
fication of the proper model change of refactoring Extract Super-
class. As described in Appendix E, refactoring Extract Superclass
relies on three atomic model refactorings. The main refactor-
ing unit extractsuperclass is a strict Sequential Unit consisting
of three SingleQueuedUnits where the first one creates super-
classes for all selected classes, the second one pulls up all com-
mon attributes, and the third one pulls up all common opera-
tions.

Each SingleQueuedUnit contains an AtomicUnit calling an al-
ready existing model refactoring. First, atomic refactoring Create
Superclass must be applied on each selected class. So, this atomic
unit is put into a strict SingleQueuedUnit to address the loop-
ing execution for each selected class. Analogously, atomic units
for refactorings Pull Up Attribute and Pull Up Operation are
put into a single queued unit each. In these cases, the according
strict attributes are set to false since only those features should
be pulled up that fulfill the corresponding preconditions.

275

Figure F.20: Model Change Implementation of UML class model refac-
toring Extract Superclass

To ensure conformity with respect to typing and multiplicity
of included ports, the main refactoring unit extractsuperclass re-
quires altogether three helper units. FilterUnit Get First Class
extracts the first class of a list of classes while FeatureUnits Get
Owned Attributes and Get Owned Operations take this extracted
class as input and yield all owned attributes and operations of
that class.

276

test cases The following test cases have been performed:

1. Class A of the contextual classes list (A, B, C) is an inner
class of class D ⇒ corresponding error message. X

2. Classes A and B of the contextual classes list (A, B, C) are
owned by package p1; Class C of the contextual classes list
(A, B, C) is owned by package p2 ⇒ corresponding error
message. X

3. className is set to A; the contextual classes list is (A, B, C)
⇒ corresponding error message. X

4. className is set to D; the contextual classes list is (A, B, C);
each class contains equal attributes att1 and att2 as well as
equal operations op1 and op2; no violated internal precon-
ditions ⇒ refactoring execution as expected. X

5. className is set to D; the contextual classes list is (A, B, C);
the classes do not have equal attributes nor operations; no
violated internal preconditions ⇒ refactoring execution as
expected. X

277

f.8 inline class

description There are two classes connected by a 1:1 association.
One of them has no further use. This refactoring merges these
classes. [150, 93]

contextual element Class

refactoring parameters Each parameter of refactoring Remove
Empty Associated Class. Additionally, a list of attributes and op-
erations which have to be moved to the associated class.

implementation Refactoring Inline Class has been implemented
in Java code using the UML2EMF API (for specifying precondi-
tion checks) respectively an appropriate model of the CoMReL
language (for specifying the proper model changes) using pre-
defined UML refactorings.

Figure F.21: Initial Check Implementation of UML class model refactoring
Inline Class

Figure F.21 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).
Here, the only check is whether the contextual Class (named se-
lectedEObject) is associated to at least one other class4, otherwise
this refactoring does not make sense and an appropriate error
message is returned (lines 216–223).

Figure F.22 shows the concrete CoMReL unit specification of the
proper model change of refactoring Inline Class5.

4 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

5 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented.

278

Figure F.22: Model Change Implementation of UML class model refac-
toring Inline Class

As described in Appendix E, refactoring Inline Class relies on
three atomic model refactorings. The main refactoring unit in-
lineclass is a strict Sequential Unit consisting of two separate
SingleQueuedUnits and one AtomicUnit. The queued units move
all attributes and operations from the contextual class to a spe-

279

cific associated class of the contextual Class. Then, the contex-
tual class is removed by the corresponding atomic unit.

Each SingleQueuedUnit contains an AtomicUnit calling an al-
ready existing model refactoring. First, atomic refactoring Move
Attribute must be applied on each attribute of the selected class.
Analogously, an atomic unit for refactoring Move Operation is
put into a single queued unit. In both cases, the according strict
attributes are set to true since each feature should be moved to
ensure that the contextual class is empty afterwards.

To ensure conformity with respect to typing and multiplicity
of included ports, the main refactoring unit inlineclass requires
altogether four helper units. MultiFeatureUnits Get Owned At-
tributes and Get Owned Operations take the contextual class as in-
put and yield all owned attributes and operations of that class.
SingleFeatureUnit Get Associated Class returns an arbitrary as-
sociated class of the corresponding class. Here, the initial check
of refactoring Inline Class guarantees that at least one associated
class exists. Please note that if the contextual class has more than
one associated classes refactoring Inline Class is not executed
since a corresponding precondition of the internal refactoring
Remove Empty Associated Class fails! Finally, SingleFeatureUnit
Get Class Name returns the name of the class given by helper Get
Associated Class.

test cases The following test cases have been performed:

1. The contextual class A is not associated to any classes in
the model ⇒ corresponding error message. X

2. The contextual class A is associated to class B; no further
associations to other classes; A owns operation op; B inher-
its an operation op with an equal parameter list as A::op ⇒
no changes. X

3. The contextual class A is associated to class B; no further
associations to other classes; A owns operation op and at-
tribute att; class A is used as type of attribute C::att1 ⇒ no
changes. X

4. The contextual class A is associated to classes B and C; A
owns operation op and attribute att ⇒ no changes. X

5. The contextual class A is associated to class B; no further
associations to other classes; A owns operation op and at-
tribute att; no violated internal preconditions⇒ no changes. X

280

f.9 introduce parameter object

description There is a group of parameters that naturally go to-
gether. This refactoring replaces a list of parameters with one
object. This parameter object is created for that purpose. [11,
131, 161, 104]

contextual elements List of Parameters

refactoring parameters (1) className - Name of the new pa-
rameterclass. (2) parameterName - Name of the new parameter.

Figure F.23: Initial Check Implementation of UML class model refactoring
Introduce Parameter Object

implementation Refactoring Introduce Parameter Object has been
implemented in Java code using the UML2EMF API (for speci-
fying precondition checks) respectively an appropriate model of

281

the CoMReL language (for specifying the proper model changes)
using predefined UML refactorings.

Figure F.23 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).
First, it is checked whether the contextual parameters (named
selectedEObjects) are owned by the same Operation (lines 236–
245). Then, lines 247–253 check whether each contextual param-
eter is an input parameter of the owning operation. Finally, it
is checked whether the owning operation of the contextual pa-
rameters is owned by a class (lines 255–261) which is in turn
owned by a package (lines 263–266). This means, that refactor-
ing Introduce Parameter Object can not be applied on parameters
of an interface operation, or on operation parameters of an inner
class, for example.

Figure F.24: Final Check Implementation of UML class model refactoring
Introduce Parameter Object

Figure F.24 shows the concrete implementation of the final pre-
condition check (Java method checkFinalConditions()). Besides
the contextual Parameter list selectedEObjects, this check addi-
tionally considers the user input parameters className and pa-
rameterName. The first check ensures whether the model does

282

not contain a Class named as specified in refactoring parame-
ter className (lines 288–296). Finally, it is checked whether no
parameter of the owning operation of the contextual parameters
is named as specified in parameterName (lines 298–305).

Figure F.25 shows the concrete CoMReL unit specification of the
proper model change of refactoring Introduce Parameter Object.
This refactoring relies on three atomic model refactorings. The
main refactoring unit introduceparameterobject is a strict Sequential
Unit consisting of one AtomicUnit and two SingleQueuedUnits.
The atomic unit creates a new class with contained attributes
which correspond to the given parameter list6. The queued units
replace the contextual parameters with one single parameter in
each affected operation of the containing class.

Each SingleQueuedUnit contains an AtomicUnit calling an al-
ready existing refactoring. First, atomic refactoring Add Param-
eter must be applied on each affected operation of the contain-
ing class. Then, refactoring Remove Parameter must be applied
on each corresponding parameter in the affected operations. In
both cases, the according strict attributes are set to true.

To ensure conformity with respect to typing and multiplicity of
included ports, the main refactoring unit introduceparameterob-
ject requires two helper units. MultiFeatureUnit Get Operations
Having Parameters returns all operations of the owning class of
the contextual parameter list which have these parameters in
their corresponding parameter lists. Instead of returning the
affected operations, MultiFeatureUnit Get Parameters Equal To
Parameters returns the affected parameters of these operations.

test cases The following test cases have been performed:

1. Parameters p1 and p2 of the contextual parameter list (p1,
p2, p3) are owned by operation A::op1; parameter p3 of the
contextual parameter list (p1, p2, p3) is owned by operation
A::op2 ⇒ corresponding error message. X

2. Each parameter of the contextual parameter list (p1, p2, p3)
is owned by operation A::op1; parameter p1 is a return pa-
rameter ⇒ corresponding error message. X

3. Each parameter of the contextual parameter list (p1, p2, p3)
is owned by operation Interf1::op1; Interf is an interface ⇒
corresponding error message. X

4. Each parameter of the contextual parameter list (p1, p2, p3)
is owned by operation A::op1; A is an inner class of class B
⇒ corresponding error message. X

6 The atomic refactoring Create Class with Attributes from Parameter List is neither de-
scribed in this document nor in Appendix E. It can be seen as a kind of helper refac-
toring. Nevertheless, it has been implemented in our tool support.

283

Figure F.25: Model Change Implementation of UML class model
refactoring Introduce Parameter Object

5. className is set to B; the model contains a class named B
⇒ corresponding error message. X

6. parameterName is set to p; each parameter of the contextual
parameter list (p1, p2, p3) is owned by operation A::op1; op-

284

eration A::op1 has a parameter named p ⇒ corresponding
error message. X

7. className is set to B; parameterName is set to p; each param-
eter of the contextual parameter list (p1, p2, p3) is owned
by operation A::op1; class A has no further operation with
the contextual parameter list as sublist; no violated internal
precondition ⇒ refactoring execution as expected. X

8. className is set to B; parameterName is set to p; each param-
eter of the contextual parameter list (p1, p2, p3) is owned
by operations A::op1, A::op2, and A::op3; no violated inter-
nal precondition ⇒ refactoring execution as expected. X

285

f.10 move operation

description This refactoring moves an operation of a class to an as-
sociated class. It is often applied when some class has too much
behavior or when classes collaborate too much. In most cases,
the visibility of the operation should be the same as before. In
some cases, when the operation is private or it is moved between
classes belonging to different packages, this is not enough. [107,
150]

contextual element Operation

refactoring parameters className - Name of the target class.

implementation Refactoring Add Parameter has been implemented
in Java code using the UML2EMF API.

Figure F.26: Initial Check Implementation of UML class model refactoring
Move Operation

Figure F.26 shows the concrete implementation of the initial
precondition checks (Java method checkInitialConditions()).
First, it is checked whether the contextual Operation (named se-
lectedEObject) is owned by a Class since this refactoring should
not be applied on interface operations. If this precondition is vi-
olated, an appropriate error message is returned (lines 172–175).
Then, it is checked whether the contextual operation has public
visibility since only public operations should be moved (lines

286

178–180). Finally, lines 183–188 check whether the owning class
of the contextual operation is related to at least one other class
using a bidirectional association with multiplicity 1:17.

Figure F.27: Final Check Implementation of UML class model refactoring
Move Operation

Figure F.27 shows the concrete implementation of the final pre-
condition check (Java method checkFinalConditions()). Besides
the contextual Operation selectedEObject, this check additionally
considers the user input parameter className. First, it is checked
whether the owning class of the contextual operation is related
to a Class named as specified in parameter className by a bidi-
rectional Association with 1:1 multiplicity (lines 209–215). Fur-
thermore, it is checked whether this associated class does not
already own (lines 219–223) or inherit (lines 226–229) an oper-
ation with the same name and a similar parameter list as the
contextual operation.

Figure F.28 shows the concrete implementation of the proper
model change of refactoring Move Operation (method run()).

7 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

287

Figure F.28: Model Change Implementation of UML class model refactoring
Move Operation

First, the appropriate associated Class is determined by using
input parameter className. Then, the contextual attribute (select-
edEObject) is removed from its containing class (line 137) and in-
serted to the corresponding attributes list of the associated class
(line 138).

test cases The following test cases have been performed:

1. The contextual operation op has private visibility ⇒ corre-
sponding error message. X

2. The contextual operation op is owned by an interface In-
terf1 ⇒ corresponding error message. X

3. The owning class A of the contextual operation op is not
associated to other classes ⇒ corresponding error mes-
sage. X

4. The owning class A of the contextual operation op has one
outgoing association assoc but no incoming associations ⇒
corresponding error message. X

5. The owning class A of the contextual operation op has one
incoming association assoc but no outgoing associations ⇒
corresponding error message. X

6. The owning class A of the contextual operation op has one
outgoing association assoc1 to class B and one outgoing
association assoc2 to class C but no further associations ⇒
corresponding error message. X

7. The owning class A of the contextual operation op has a
bidirectional association assoc to class B with multiplicity
1:0..* and no further associations ⇒ corresponding error
message. X

8. The owning class A of the contextual operation op has a
bidirectional association assoc to class B with multiplicity

288

1..*:1 and no further associations ⇒ corresponding error
message. X

9. The owning class A of the contextual operation op has a
bidirectional association assoc to class B with multiplicity
1..*:0..* and no further associations ⇒ corresponding error
message. X

10. The owning class A of the contextual operation op has a
bidirectional 1:1 association assoc to class B; the opposite
association end has private visibility ⇒ corresponding er-
ror message. X

11. className is set to B; the owning class A of the contextual
operation op has no associations to a class named B ⇒ cor-
responding error message. X

12. className is set to B; the owning class A of the contextual
operation op has an incoming association assoc from a class
named B but no outgoing association to it ⇒ correspond-
ing error message. X

13. className is set to B; the owning class A of the contextual
operation op has an outgoing association assoc to a class
named B but no incoming associations from it ⇒ corre-
sponding error message. X

14. className is set to B; the owning class A of the contextual
operation op has a bidirectional association assoc to class B
with multiplicity 1:0..* ⇒ corresponding error message. X

15. className is set to B; the owning class A of the contextual
operation op has a bidirectional association assoc to class B
with multiplicity 1..*:1 ⇒ corresponding error message. X

16. className is set to B; the owning class A of the contextual
operation op has a bidirectional association assoc to class
B with multiplicity 1..*:0..* ⇒ corresponding error mes-
sage. X

17. className is set to B; the owning class A of the contextual
operation op has a bidirectional 1:1 association assoc to class
B; the opposite association end has private visibility ⇒ cor-
responding error message. X

18. className is set to B; the owning class A of the contex-
tual operation op has a bidirectional 1:1 association assoc
to class B; the opposite association end has public visibility;
B owns an operation named op with a similar parameter
list as the contextual operation op ⇒ corresponding error
message. X

19. className is set to B; the owning class A of the contextual
operation op has a bidirectional 1:1 association assoc to class

289

B; the opposite association end has public visibility; B inher-
its an operation named op with a similar parameter list as
the contextual operation op ⇒ corresponding error mes-
sage. X

20. className is set to B; the owning class A of the contextual
operation op has a bidirectional 1:1 association assoc to class
B; the opposite association end has public visibility; B does
not own an operation named op with a similar parameter
list as the contextual operation op ⇒ refactoring execution
as expected. X

21. className is set to B; the owning class A of the contextual
operation op has a bidirectional 1:1 association assoc1 to
class B as well as a bidirectional 1:1 association assoc2 to
class C; the opposite association end has public visibility;
B does not own an operation named op with a similar pa-
rameter list as the contextual operation op ⇒ refactoring
execution as expected. X

290

f.11 move property

description A property (attribute) is better placed in another class
which is associated to this class. This refactoring moves this
property to the associated class. In most cases, the visibility of
the property should be the same as before. In some cases, when
the property is private or it is moved between classes belonging
to different packages, this is not enough [107, 150, 93]

contextual element Property

refactoring parameters className - Name of the target class.

Figure F.29: Initial Check Implementation of UML class model refactoring
Move Property

implementation Refactoring Move Property has been implemented
in Henshin pattern rules (for specifying precondition checks)

291

respectively a Henshin transformation rule (for specifying the
proper model changes) using the abstract syntax of UML.

Figure F.29 shows the Henshin pattern rule specifications of the
initial precondition check. Rule check_isClassAttribute specifies
the violated precondition that the contextual Property (selecte-
dattribute) is no class attribute (NAC NoAttribute). Rule check_no
Association defines the situation that the contextual attribute rep-
resents an association end (specified by PAC AssociationEnd), i.e.,
this refactoring can be applied on attributes only which are not
an end of an appropriate association. Rule check_isPublic defines
the violated precondition that the contextual attribute has a vis-
ibility different from public. Here, an additional internal rule
parameter vis is used in combination with parameter condition
vis != public. Finally, rule check_owningClassHasAssociatedClass
ensures that the owning class of the contextual attribute is re-
lated to at least one other Class (node associatedclass in Fig-
ure F.29) by an Association with 1:1 multiplicity and a public
opposite association end.

Figure F.30 shows the Henshin pattern rule specifications of
the final precondition check. Besides the contextual Property

selectedattribute, this check additionally considers the user input
parameter classname. The upper rule ensures that the owning
class of the contextual attribute is related to a Class named
as specified in parameter classname (node associatedclass in Fig-
ure F.30) by an Association with 1:1 multiplicity and a pub-
lic opposite association end. The other rules model the erro-
neous situations that this associated class already owns (rule
check_ownsNoAttribute) or inherits (henshin rule check_inheritsNo
Attribute) an attribute with the same name as the contextual one
already. Both rules use an internal parameter attributename each
to specify the equality of the corresponding attribute names.

Figure F.31 on page 294 shows the Henshin pattern rule specifi-
cation of the proper model change of refactoring Move Property.
This rule determines the appropriate associated Class by us-
ing input parameter classname, removes the contextual attribute
(selectedattribute) from its containing class and inserts it to the
corresponding attributes list of the associated class.

test cases The following test cases have been performed:

1. The contextual attribute att has private visibility ⇒ corre-
sponding error message. X

2. The contextual attribute att is an end of association assoc
⇒ corresponding error message. X

3. The contextual attribute att is owned by an interface Interf1
⇒ corresponding error message. X

292

Figure F.30: Final Check Implementation of UML class model
refactoring Move Property

4. The owning class A of the contextual attribute att is not
associated to other classes ⇒ corresponding error mes-
sage. X

293

5. The owning class A of the contextual attribute att has one
outgoing association assoc but no incoming associations ⇒
corresponding error message. X

6. The owning class A of the contextual attribute att has one
incoming association assoc but no outgoing associations ⇒
corresponding error message. X

Figure F.31: Model Change Implementation of UML class model
refactoring Move Property

7. The owning class A of the contextual attribute att has one
outgoing association assoc1 to class B and one outgoing
association assoc2 to class C but no further associations ⇒
corresponding error message. X

8. The owning class A of the contextual attribute att has a
bidirectional association assoc to class B with multiplicity
1:0..* and no further associations ⇒ corresponding error
message. X

9. The owning class A of the contextual attribute att has a
bidirectional association assoc to class B with multiplicity
1..*:1 and no further associations ⇒ corresponding error
message. X

10. The owning class A of the contextual attribute att has a
bidirectional association assoc to class B with multiplicity
1..*:0..* and no further associations ⇒ corresponding error
message. X

11. The owning class A of the contextual attribute att has a
bidirectional 1:1 association assoc to class B; the opposite

294

association end has private visibility ⇒ corresponding er-
ror message. X

12. classname is set to B; the owning class A of the contextual
attribute att has no associations to a class named B ⇒ cor-
responding error message. X

13. classname is set to B; the owning class A of the contextual
attribute att has an incoming association assoc from a class
named B but no outgoing association to it ⇒ correspond-
ing error message. X

14. classname is set to B; the owning class A of the contextual
attribute att has an outgoing association assoc to a class
named B but no incoming associations from it ⇒ corre-
sponding error message. X

15. classname is set to B; the owning class A of the contextual
attribute att has a bidirectional association assoc to class B
with multiplicity 1:0..* ⇒ corresponding error message. X

16. classname is set to B; the owning class A of the contextual
attribute att has a bidirectional association assoc to class B
with multiplicity 1..*:1 ⇒ corresponding error message. X

17. classname is set to B; the owning class A of the contextual
attribute att has a bidirectional association assoc to class
B with multiplicity 1..*:0..* ⇒ corresponding error mes-
sage. X

18. classname is set to B; the owning class A of the contextual
attribute att has a bidirectional 1:1 association assoc to class
B; the opposite association end has private visibility ⇒ cor-
responding error message. X

19. classname is set to B; the owning class A of the contextual
attribute att has a bidirectional 1:1 association assoc to class
B; the opposite association end has public visibility; B owns
an attribute named att ⇒ corresponding error message. X

20. classname is set to B; the owning class A of the contextual at-
tribute att has a bidirectional 1:1 association assoc to class B;
the opposite association end has public visibility; B inherits
an attribute named att ⇒ corresponding error message. X

21. classname is set to B; the owning class A of the contextual
attribute att has a bidirectional 1:1 association assoc to class
B; the opposite association end has public visibility; B does
not own an attribute named att ⇒ refactoring execution as
expected. X

22. classname is set to B; the owning class A of the contextual at-
tribute att has a bidirectional 1:1 association assoc1 to class
B as well as a bidirectional 1:1 association assoc2 to class

295

C; the opposite association end has public visibility; B does
not own an attribute named att ⇒ refactoring execution as
expected. X

296

f.12 pull up operation

description This refactoring pulls an operation of a class to its
superclass. Usually it is used simultaneously on several classes
which inherit from the same superclass. The aim of this refactor-
ing is often to extract identical operations. In some cases, when
the property is private or it is moved between classes belonging
to different packages, this is not enough. [137, 107, 150]

contextual element Operation

refactoring parameters className - Name of the superclass
the contextual operation has to be pulled up to.

implementation Refactoring Pull Up Operation has been imple-
mented in Java code using the UML2EMF API.

Figure F.32: Initial Check Implementation of UML class model refactoring
Pull Up Operation

Figure F.32 shows the concrete implementation of the initial
precondition checks (Java method checkInitialConditions()).
First, it is checked whether the contextual Operation (named se-
lectedEObject) is owned by a Class since this refactoring should
not be applied on interface operations. If this precondition is vi-
olated, an appropriate error message is returned (lines 187–190).
Then, it is checked whether the contextual operation has public
visibility since only public operations should be pulled up to
the specified superclass (lines 193–195). Finally, lines 197–201
check whether the owning class of the contextual operation has
at least one superclass.

297

Figure F.33: Final Check Implementation of UML class model refac-
toring Pull Up Operation

Figure F.33 shows the concrete implementation of the final pre-
condition check (Java method checkFinalConditions()). Besides
the contextual Operation selectedEObject, this check additionally
considers the user input parameter className. First, it is checked
whether the owning class of the contextual operation has a su-
perclass named as specified in parameter className (lines 220–
224). Then, it is checked whether each subclass of this superclass
has an operation that is equivalent to the contextual one (line
228–233)8. Finally, it is checked whether the specified superclass
does not already own (lines 238–242) or inherit (lines 245–249)

8 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

298

an operation with the same name and a similar parameter list
as the contextual operation.

Figure F.34: Model Change Implementation of UML class model refactoring
Pull Up Operation

Figure F.34 shows the concrete implementation of the proper
model change of refactoring Pull Up Operation (method run()).
First, the contextual operation (selectedEObject) is removed from
its containing class (line 135) and inserted to the correspond-
ing operations list of the superclass class (line 136) named as
specified in parameter className. Then, the corresponding oper-
ations which are equal to the contextual one are removed from
each subclass of the specified superclass (lines 138–152).

test cases The following test cases have been performed:

1. The contextual operation op is owned by an interface In-
terf1 ⇒ corresponding error message. X

2. The contextual operation op has protected visibility ⇒ cor-
responding error message. X

3. The owning class A of the contextual operation op has no
superclass ⇒ corresponding error message. X

4. classname is set to B; the owning class A of the contextual
operation op has no superclass named B ⇒ corresponding
error message. X

299

5. classname is set to B; the owning class A of the contextual
operation op has a superclass named B; subclass C of class
B does not own an operation op ⇒ corresponding error
message. X

6. classname is set to B; the owning class A of the contextual
operation op (type Integer, arbitrary input parameter list)
has a superclass named B; subclass C of class B owns an
operation op with the same parameter list as the contex-
tual operation op and with type String; C owns no further
operations ⇒ corresponding error message. X

7. classname is set to B; the owning class A of the contextual
operation op (type Integer, arbitrary input parameter list)
has a superclass named B; subclass C of class B owns an
operation op with a different parameter list as the contex-
tual operation op and with type Integer; C owns no further
operations ⇒ corresponding error message. X

8. classname is set to B; the owning class A of the contextual
operation op (type Integer, arbitrary input parameter list;
multiplicity 1) has a superclass named B; subclass C of
class B owns an operation op with the same parameter list
as the contextual operation op and with type Integer and
multiplicity 0..*; C owns no further operations ⇒ corre-
sponding error message. X

9. classname is set to B; the owning class A of the contextual
operation op (type Integer, arbitrary input parameter list;
multiplicity 1, visibility public) has a superclass named B;
subclass C of class B owns an operation op with the same
parameter list as the contextual operation op and with type
Integer, multiplicity 0..*, and visibility private; C owns no
further operations ⇒ corresponding error message. X

10. classname is set to B; the owning class A of the contextual
operation op has a superclass named B; B has an operation
op with an equal parameter list as the contextual operation
op ⇒ corresponding error message. X

11. classname is set to B; the owning class A of the contextual
operation op has a superclass named B; B inherits an op-
eration op with an equal parameter list as the contextual
operation op ⇒ corresponding error message. X

12. classname is set to B; the owning class A of the contextual
operation op has a superclass named B; subclasses C and D
of class B own equal operations op⇒ refactoring execution
as expected. X

300

f.13 pull up property

description This refactoring removes one property (attribute) from
a class or a set of classes and inserts it to one of its superclasses.
In most cases, the visibility of the property should be the same
as before. In some cases, when the property is private or it is
moved between classes belonging to different packages, this is
not enough. [14, 107, 30, 150]

contextual element Property

refactoring parameters className - Name of the superclass
the contextual property has to be pulled up to.

Figure F.35: Initial Check Implementation of UML class model refactoring
Pull Up Property

implementation UML class model refactoring Pull Up Property
has been implemented in Henshin pattern rules (for specifying
precondition checks) respectively Henshin transformation rules

301

(for specifying the proper model changes) using the abstract
syntax of UML.

Figure F.35 shows the Henshin pattern rule specifications of the
initial precondition checks. Rule check_isClassAttribute specifies
the violated precondition that the contextual Property (selecte-
dattribute) is no class attribute (NAC NoAttribute). Rule check_is
NoAssociationEnd defines the situation that the contextual at-
tribute represents an association end (specified by PAC Associa-
tionEnd), i.e., this refactoring can be applied on attributes only
which are not an end of an appropriate association. Rule check_
hasPublicVisibility defines the violated precondition that the con-
textual attribute has a visibility different from public. Here, an
additional internal rule parameter vis is used in combination
with parameter condition vis!=public rule check_ owningClass
HasSuperclass ensures that the owning class of the contextual at-
tribute has a Generalization relationship to at least one other
Class. Finally, pattern rule check_doesNotRedefine checks whether
the contextual attribute redefines another one in the inheritance
hierarchy of the corresponding classes what also represents a
violated precondition of this refactoring.

Figure F.36: Final Check Implementation of UML class model refactoring
Pull Up Property (1)

302

Figures F.36 to F.38 shows the Henshin pattern rule specifica-
tions of the final precondition checks. Besides the contextual
Property selectedattribute, these checks additionally consider the
user input parameter classname. Altogether nine violated pre-
conditions are modeled. The upper rule in Figure F.36 ensures
that the owning class of the contextual attribute has a superclass
named as specified in parameter classname (node superclass). The
following two rules model the erroneous situations that this su-
perclass already owns (rule check_ownsNoAttribute) or inherits
(rule check_inheritsNoAttribute) an attribute with the same name
as the contextual one already. Here, the rules use an internal
parameter attributename each to specify the equality of the cor-
responding attribute names.

Figure F.37: Final Check Implementation of UML class model refactoring
Pull Up Property (2)

The remaining rules check whether each subclass of the speci-
fied superclass has an attribute that is equivalent to the contex-
tual one. Again, each rule uses an internal parameter attribute-

303

name to specify the equality of the attribute names. The corre-
sponding violated preconditions are:

1. Rule check_siblingClassHasEqualAttribute_01: At least one sub-
class of the superclass named as specified in parameter
classname does not have an attribute with the same name
as the contextual attribute.

2. Rule check_siblingClassHasEqualAttribute_02: At least one sub-
class of the superclass named as specified in parameter
classname has an attribute with the same name as the con-
textual attribute but not of equal visibility. Here, rule pa-
rameter vis is used in the corresponding NAC to specify
this unequality.

Figure F.38: Final Check Implementation of UML class model refactoring
Pull Up Property (3)

3. Rule check_siblingClassHasEqualAttribute_03: At least one sub-
class of the superclass named as specified in parameter

304

classname has an attribute with the same name as the con-
textual attribute but not of equal multiplicity. Here, rule pa-
rameters upp and low are used in the corresponding NAC
to specify this inequality.

4. Rule check_siblingClassHasEqualAttribute_04: At least one sub-
class of the superclass named as specified in parameter
classname has an attribute with the same name as the con-
textual attribute but not of equal Type.

5. Rule check_siblingClassHasEqualAttribute_05: At least one sub-
class of the superclass named as specified in parameter
classname has an attribute with the same name as the con-
textual attribute but redefining another Property.

6. Rule check_siblingClassHasEqualAttribute_06: At least one sub-
class of the superclass named as specified in parameter
classname has an attribute with the same name as the con-
textual attribute but involved in an Association as associ-
ation end.

Figure F.39 shows the Henshin pattern rule specifications of
the proper model changes of refactoring Pull Up Property. Rule
pullup determines the appropriate superclass by using input pa-
rameter classname, removes the contextual attribute (selectedat-
tribute) from its owning class and inserts it to the correspond-
ing attributes list of the superclass. Rule delete determines the
sibling classes of the contextual class with respect to the speci-
fied superclass as well as the corresponding attribute (using the
internal rule parameter attributename) and removes this attribute
from its owning class. To remove these attribute from each sib-
ling class, we used the Henshin control structures as described
in [4].

test cases The following test cases have been performed:

1. The contextual attribute att is owned by an interface Interf1
⇒ corresponding error message. X

2. The contextual attribute att has private visibility ⇒ corre-
sponding error message. X

3. The contextual attribute att is an end of association assoc
⇒ corresponding error message. X

4. The contextual attribute att redefines another attribute su-
peratt ⇒ corresponding error message. X

5. The owning class A of the contextual attribute att has no
superclass ⇒ corresponding error message. X

6. classname is set to B; the owning class A of the contextual
attribute att has no superclass named B ⇒ corresponding
error message. X

305

Figure F.39: Model Change Implementation of UML class model refactoring
Pull Up Property

7. classname is set to B; the owning class A of the contextual
attribute att has a superclass named B; subclass C of class B
does not own an attribute att ⇒ corresponding error mes-
sage. X

8. classname is set to B; the owning class A of the contextual
attribute att has a superclass named B; subclass C of class B
owns an attribute att with private visibility ⇒ correspond-
ing error message. X

9. classname is set to B; the owning class A of the contextual
attribute att (multiplicity 1) has a superclass named B; sub-
class C of class B owns an attribute att with multiplicity 0..*
⇒ corresponding error message. X

10. classname is set to B; the owning class A of the contextual
attribute att (type Integer) has a superclass named B; sub-
class C of class B owns an attribute att with type String ⇒
corresponding error message. X

306

11. classname is set to B; the owning class A of the contextual
attribute att has a superclass named B; subclass C of class
B owns an attribute att that redefines another attribute su-
peratt. ⇒ corresponding error message. X

12. classname is set to B; the owning class A of the contextual
attribute att has a superclass named B; subclass C of class
B owns an attribute att that is an end of association assoc
⇒ corresponding error message. X

13. classname is set to B; the owning class A of the contextual
attribute att has a superclass named B; subclasses C and D
of class B own equal attributes att ⇒ refactoring execution
as expected. X

307

f.14 push down operation

description This refactoring pushes an operation from the owning
class down to all its subclasses. If it makes sense, the operation
can be removed from some of these afterwards. Sometimes, it
also makes sense to keep an operation in all subclasses to hide
it from the superclass. [107, 150, 93]

contextual element Operation

refactoring parameters This refactoring does not have any more
parameters.

Figure F.40: Initial Check Implementation of UML class model refactoring
Push Down Operation

308

implementation Refactoring Push Down Operation has been im-
plemented in Java code using the UML2EMF API.

Figure F.40 shows the concrete implementation of the initial
precondition checks (Java method checkInitialConditions()).
First, it is checked whether the contextual Operation (named se-
lectedEObject) is owned by a Class since this refactoring should
not be applied on interface operations. If this precondition is
violated, an appropriate error message is returned (lines 176–
179). Lines 182–184 check whether the contextual operation has
public visibility since only public operations should be pushed
down to the existing subclasses. Finally, the following checks
are performed with respect to the owning class of the contex-
tual operation9:

1. The owning class must have at least one subclass (lines
186–189).

2. The owning class must not be used as attribute type (lines
191–194).

3. The owning class must not have any subclasses that own
operations which are equal to the contextual operation (lines
197–201).

4. The owning class must not have any subclasses that in-
herit operations which are equal to the contextual opera-
tion (lines 204–208).

Figure F.41: Model Change Implementation of UML class model refactoring
Push Down Operation

Figure F.41 shows the concrete implementation of the proper
model change of refactoring Push Down Operation (method run())10.

9 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

10 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented.

309

First, the contextual operation (selectedEObject) is copied to the
corresponding operations list of each subclass of the owning
class of the contextual operation (lines 131–139). Then, the con-
textual operation is removed from its containing class (line 142).

test cases The following test cases have been performed:

1. The contextual operation op is owned by an interface In-
terf1 ⇒ corresponding error message. X

2. The contextual operation op has protected visibility ⇒ cor-
responding error message. X

3. The owning class A of the contextual operation op has no
subclass ⇒ corresponding error message. X

4. The owning class A of the contextual operation op is used
as type of attribute B::attB ⇒ corresponding error mes-
sage. X

5. The owning class A of the contextual operation op has a
subclass B that owns an operation op with an equivalent
parameter list like the contextual operation op ⇒ corre-
sponding error message. X

6. The owning class A of the contextual operation op has a
subclass B that inherits an operation op with an equiva-
lent parameter list like the contextual operation op ⇒ cor-
responding error message. X

7. The owning class A of the contextual operation op has sub-
classes B, C and D; no violated preconditions ⇒ refactor-
ing execution as expected. X

310

f.15 push down property

description An attribute (property) is used only by some sub-
classes. Move the attribute to only these subclasses. More gen-
erally, this refactoring moves the attribute to all subclasses. If it
makes sense, the attribute can be removed from some of these
afterwards. Sometimes, it also makes sense to keep an attribute
in all subclasses to hide it from the superclass. [107, 30, 150]

contextual element Property

refactoring parameters This refactoring does not have any more
parameters.

Figure F.42: Initial Check Implementation of UML class model refactoring
Push Down Property

implementation Refactoring Push Down Property has been imple-
mented in Java code using the UML2EMF API.

311

Figure F.42 shows the concrete implementation of the initial
precondition checks (Java method checkInitialConditions()).
First, it is checked whether the contextual Property (named se-
lectedEObject) is owned by a Class since this refactoring should
be applied on class attributes only. If this precondition is vio-
lated, an appropriate error message is returned (lines 205–208).
Lines 211–213 check whether the contextual attribute has public
visibility since only public attributes should be pushed down
to the existing subclasses. Finally, the following checks are per-
formed with respect to the owning class of the contextual at-
tribute11:

1. The owning class must have at least one subclass (lines
215–218).

2. The owning class must not be used as attribute type (lines
220–223).

3. The owning class must not have any subclasses that own
attributes which are equal to the contextual attribute (lines
226–229).

4. The owning class must not have any subclasses that inherit
attributes which are equal to the contextual attribute (lines
232–235).

Figure F.43 shows the concrete implementation of the proper
model change of refactoring Push Down Property (method run())12.
First, the contextual attribute (selectedEObject) is copied to the
corresponding attributes list of each subclass of the owning
class of the contextual attribute (lines 138–142). If the contextual
attribute is modeled as association end, lines 145–160 addition-
ally create new associations according to the copied attributes.
Finally, the potential association of the contextual attribute is
deleted (lines 167–169) and the contextual attribute is removed
from its containing class (line 171).

test cases The following test cases have been performed:

1. The contextual attribute att is owned by an interface Interf1
⇒ corresponding error message. X

2. The contextual attribute att has package visibility ⇒ corre-
sponding error message. X

3. The owning class A of the contextual attribute att has no
subclass ⇒ corresponding error message. X

11 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

12 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented.

312

Figure F.43: Model Change Implementation of UML class model
refactoring Push Down Property

4. The owning class A of the contextual attribute att is used as
type of attribute B::attB⇒ corresponding error message. X

5. The owning class A of the contextual attribute att has a
subclass B that owns an attribute att ⇒ corresponding er-
ror message. X

6. The owning class A of the contextual attribute att has a
subclass B that inherits an attribute att ⇒ corresponding
error message. X

313

7. The owning class A of the contextual attribute att has sub-
classes B, C and D; att is an end of association assoc; no vio-
lated preconditions⇒ refactoring execution as expected. X

8. The owning class A of the contextual attribute att has sub-
classes B, C and D; no violated preconditions ⇒ refactor-
ing execution as expected. X

314

f.16 remove empty associated class

description There is an empty class that is associated to another
class. An associated class is empty if it has no features except
for possible getter and setter operations for the corresponding
association end. Furthermore, it has no inner classes, subclasses,
or superclasses, it does not implement any interfaces, and it
is not referred to as type of an attribute, operation or parame-
ter. [150, 93]

contextual element Class

refactoring parameters This refactoring does not have any more
parameters.

implementation Refactoring Remove Empty Associated Class has
been implemented in Java code using the UML2EMF API.

Figure F.44 shows the implementation of the initial precondi-
tion check (Java method checkInitialConditions()). First, it is
checked whether the contextual Class (selectedEObject) is owned
by a Package, i.e., this refactoring can not be applied on inner
classes for example (lines 190–194). Then, it is checked whether
the contextual class is associated to at least one other class (lines
197–204) and to at most one other class (lines 206–211). The re-
maining checks ensure that the contextual Class is empty ex-
cept for the corresponding association end attribute. The fol-
lowing checks are performed and appropriate error messages
are returned13:

1. The contextual Class must not have any owned attributes
except for the corresponding association end attribute (lines
214–218).

2. The contextual Class must not have any owned operations
(lines 220/221).

3. The contextual Class must not have any inner classes (lines
223/224).

4. The contextual Class must not have any subclasses (lines
226/227).

5. The contextual Class must not have any superclasses (lines
229/230).

6. The contextual Class must not implement any interfaces
(lines 232–234).

7. The contextual Class must not use any interfaces (lines
236/237).

13 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

315

Figure F.44: Initial Check Implementation of UML class model
refactoring Remove Empty Associated Class

316

8. The contextual Class must not be used as attribute type
(lines 239–241).

9. The contextual Class must not be used as parameter type
(lines 243–246).

Figure F.45: Model Change Implementation of UML class model refactoring
Remove Empty Associated Class

Figure F.45 shows the concrete implementation of the proper
model change14 of refactoring Remove Empty Associated Class
(method run()). After collecting the corresponding elements
(lines 131–144), the appropriate association ends are deleted
from their containing classes if they are modeled as owned at-
tributes of these classes (lines 147–149). Then, the corresponding
Associations are removed from their owning Packages (lines
151–153). Finally, the contextual class is simply removed from
the element list of its owning Package (lines 156/157).

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

14 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented.

317

2. The contextual class A has no incoming association ⇒ cor-
responding error message. X

3. The contextual class A has no outgoing association ⇒ cor-
responding error message. X

4. The contextual class A is associated to class B and to C ⇒
corresponding error message. X

5. The contextual class A owns an attribute attr that is not an
association end ⇒ corresponding error message. X

6. The contextual class A owns an operation op⇒ correspond-
ing error message. X

7. The contextual class A has an inner class B ⇒ correspond-
ing error message. X

8. The contextual class A has a superclass B⇒ corresponding
error message. X

9. The contextual class A has a subclass B ⇒ corresponding
error message. X

10. The contextual class A implements interface Interf1 ⇒ cor-
responding error message. X

11. The contextual class A uses interface Interf1 ⇒ correspond-
ing error message. X

12. The contextual class A is used as type of class attribute
P1::B::att ⇒ corresponding error message. X

13. The contextual class A is used as type of parameter P1::C::op1::par1
⇒ corresponding error message. X

14. The contextual class A has an outgoing association to class
B; no precondition is violated ⇒ refactoring execution as
expected. X

15. The contextual class A has an incoming association from
class B; no precondition is violated ⇒ refactoring execu-
tion as expected. X

16. The contextual class A has an outgoing association to class
B as well as an incoming association from class B; no pre-
condition is violated⇒ refactoring execution as expected. X

318

f.17 remove empty subclass

description A superclass has an empty subclass which shall be
removed. This class is not associated to another class. It has
no features, no inner classes, no further subclasses, and is not
associated to other classes. It does not implement any interfaces,
and it is not referred to as type of an attribute, operation or
parameter. [150]

contextual element Class

refactoring parameters This refactoring does not have any more
parameters.

implementation Refactoring Remove Empty Subclass has been im-
plemented in Java code using the UML2EMF API.

Figure F.46 shows the implementation of the initial precondi-
tion check (Java method checkInitialConditions()). First, it is
checked whether the contextual Class (selectedEObject) is owned
by a Package, i.e., this refactoring can not be applied on inner
classes for example (lines 165–167). The remaining checks en-
sure that the contextual Class is empty. The following checks
are performed and appropriate error messages are returned15:

1. The contextual Class must have at least one superclass
(lines 169–171).

2. The contextual Class must not have any owned attributes
(lines 173/174).

3. The contextual Class must not have any owned operations
(lines 176/177).

4. The contextual Class must not have any subclasses (lines
179/180).

5. The contextual Class must not have any inner classes (lines
182/183).

6. The contextual Class must not have any outgoing associa-
tions (lines 185–188).

7. The contextual Class must not have any incoming associa-
tions (lines 190–193).

8. The contextual Class must not implement any interfaces
(lines 195–197).

9. The contextual Class must not use any interfaces (lines
199/200).

15 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

319

Figure F.46: Initial Check Implementation of UML class model
refactoring Remove Empty Subclass

10. The contextual Class must not be used as attribute type
(lines 202–204).

11. The contextual Class must not be used as parameter type
(lines 206–209).

320

Figure F.47 shows the concrete implementation of the proper
model change16 of refactoring Remove Empty Subclass (method
run()). First, all Generalization relationships from the contex-
tual Class (selectedEObject) to other classes are deleted (line 128).
Finally, the contextual class is simply removed from the element
list of its owning Package (lines 130/131).

Figure F.47: Model Change Implementation of UML class model refactoring
Remove Empty Subclass

test cases The following test cases have been performed:

1. The contextual class A has no superclass ⇒ corresponding
error message. X

2. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

3. The contextual class A owns an attribute attr⇒ correspond-
ing error message. X

4. The contextual class A owns an operation op⇒ correspond-
ing error message. X

5. The contextual class A has an inner class B ⇒ correspond-
ing error message. X

6. The contextual class A has a subclass B ⇒ corresponding
error message. X

7. The contextual class A has an incoming association assoc
⇒ corresponding error message. X

8. The contextual class A has an outgoing association assoc⇒
corresponding error message. X

9. The contextual class A implements interface Interf1 ⇒ cor-
responding error message. X

10. The contextual class A uses interface Interf1 ⇒ correspond-
ing error message. X

11. The contextual class A is used as type of class attribute
P1::B::att ⇒ corresponding error message. X

16 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented.

321

12. The contextual class A is used as type of parameter P1::C::op1::par1
⇒ corresponding error message. X

13. The contextual class A has one superclass B; no precondi-
tion is violated ⇒ refactoring execution as expected. X

14. The contextual class A has superclasses B and C; no precon-
dition is violated ⇒ refactoring execution as expected. X

322

f.18 remove empty superclass

description A set of classes has an empty superclass which shall
be removed. This class is not associated to another class. It has
no features, no inner classes, and is not associated to other
classes. It does not implement any interfaces, and it is not re-
ferred to as type of an attribute, operation or parameter. [150]

contextual element Class

refactoring parameters This refactoring does not have any more
parameters.

implementation Refactoring Remove Empty Superclass has been
implemented in Java code using the UML2EMF API.

Figure F.48 shows the implementation of the initial precondi-
tion check (Java method checkInitialConditions()). First, it is
checked whether the contextual Class (selectedEObject) is owned
by a Package, i.e., this refactoring can not be applied on inner
classes for example (lines 173–175). The remaining checks en-
sure that the contextual Class is empty. The following checks
are performed and appropriate error messages are returned17:

1. The contextual Class must have at least one subclass (lines
177/178).

2. The contextual Class must not have any owned attributes
(lines 180/181).

3. The contextual Class must not have any owned operations
(lines 183/184).

4. The contextual Class must not have any superclasses (lines
186/187).

5. The contextual Class must not have any inner classes (lines
189/190).

6. The contextual Class must not have any outgoing associa-
tions (lines 192–195).

7. The contextual Class must not have any incoming associa-
tions (lines 197-200).

8. The contextual Class must not implement any interfaces
(lines 202–205).

9. The contextual Class must not use any interfaces (lines
207/208).

10. The contextual Class must not be used as attribute type
(lines 210/211).

17 Please note that the concrete checks are implemented as static methods of a utility
class in order to avoid redundant code and to reuse it as often as possible.

323

Figure F.48: Initial Check Implementation of UML class model
refactoring Remove Empty Superclass

11. The contextual Class must not be used as parameter type
(lines 213–216).

Figure F.49 shows the concrete implementation of the proper
model change18 of refactoring Remove Empty Superclass (method

18 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented.

324

run()). First, all Generalization relationships from the other
classes to the contextual Class (selectedEObject) are deleted (lines
130—136). Finally, the contextual class is simply removed from
the element list of its owning Package (lines 138/139).

Figure F.49: Model Change Implementation of UML class model refactoring
Remove Empty Superclass

test cases The following test cases have been performed:

1. The contextual class A has no subclass ⇒ corresponding
error message. X

2. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

3. The contextual class A owns an attribute attr⇒ correspond-
ing error message. X

4. The contextual class A owns an operation op⇒ correspond-
ing error message. X

5. The contextual class A has an inner class B ⇒ correspond-
ing error message. X

6. The contextual class A has a superclass B⇒ corresponding
error message. X

7. The contextual class A has an incoming association assoc
⇒ corresponding error message. X

8. The contextual class A has an outgoing association assoc⇒
corresponding error message. X

9. The contextual class A implements interface Interf1 ⇒ cor-
responding error message. X

10. The contextual class A uses interface Interf1 ⇒ correspond-
ing error message. X

11. The contextual class A is used as type of class attribute
P1::B::att ⇒ corresponding error message. X

325

12. The contextual class A is used as type of parameter P1::C::op1::par1
⇒ corresponding error message. X

13. The contextual class A has one subclass B; no precondition
is violated ⇒ refactoring execution as expected. X

14. The contextual class A has subclasses B and C; no precon-
dition is violated ⇒ refactoring execution as expected. X

326

f.19 remove parameter

description A parameter is no longer needed by the implemen-
tation of an operation. Therefore, this refactoring removes this
parameter from the parameter list of the corresponding opera-
tion. [30, 150]

contextual element Parameter

refactoring parameters This refactoring does not have any more
parameters.

implementation Refactoring Add Parameter has been implemented
in Java code using the UML2EMF API.

Figure F.50: Initial Check Implementation of UML class model refactoring
Remove Parameter

Figure F.50 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).
Here, the following checks are performed:

327

1. The contextual Parameter must be an input parameter, i.e.,
its direction must not be of kind ParameterDirectionKind

::RETURN or ParameterDirectionKind::OUT (lines 167–173).

2. The owning Operation of the contextual Parameter must
be owned by a Class, i.e., this refactoring can not be ap-
plied on interface operation parameters (lines 176–181).

3. The owning Class of the owning Operation of the con-
textual Parameter must not own a similar Operation after
removing the contextual Parameter (lines 185–189).

4. The owning Class of the owning Operation of the contex-
tual Parameter must not inherit a similar Operation after
removing the contextual Parameter (lines 193–197).

Figure F.51: Model Change Implementation of UML class model refactoring
Remove Parameter

Figure F.51 shows the concrete implementation of the proper
model change19 of refactoring Remove Parameter (method run()).
Here, the contextual Parameter (selectedEObject) is simply re-
moved from the parameter list of its owning operation (lines
132/133).

test cases The following test cases have been performed:

1. The contextual parameter par1 has direction RETURN ⇒
corresponding error message. X

2. The owning operation op1 of the contextual parameter par1
is owned by an interface Interf1 ⇒ corresponding error
message. X

3. The owning class A of the owning operation op1 of the
contextual parameter par1 owns an operation op1 with the
same signature as the owning operation op1 after remov-
ing the contextual parameter par1 ⇒ corresponding error
message. X

4. The owning class A of the owning operation op1 of the con-
textual parameter par1 inherits an operation op1 with the

19 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented

328

same signature as the owning operation op1 after remov-
ing the contextual parameter par1 ⇒ corresponding error
message. X

5. No precondition is violated; the contextual parameter par1
is the first parameter in the list of altogether three input
parameters ⇒ refactoring execution as expected. X

6. No precondition is violated; the contextual parameter par1
is the middle parameter in the list of altogether three input
parameters ⇒ refactoring execution as expected. X

7. No precondition is violated; the contextual parameter par1
is the last parameter in the list of altogether three input
parameters ⇒ refactoring execution as expected. X

329

f.20 remove superclass

description There is a set of classes having a superclass that does
not make sense anymore. Remove this superclass after pushing
remaining features down. [141, 150, 107, 160]

contextual element Class

refactoring parameters This refactoring has no additional pa-
rameter. A list of attributes and operations which have to be
pushed to the existing subclasses is taken from the contextual
class.

implementation Refactoring Remove Superclass has been imple-
mented in Java code using the UML2EMF API (for specifying
precondition checks) respectively an appropriate model of the
CoMReL language (for specifying the proper model changes)
using predefined UML refactorings.

Figure F.52: Initial Check Implementation of UML class model refactoring
Remove Superclass

Figure F.52 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).
Here, the only check is whether the contextual Class (named
selectedEObject) has some subclasses, otherwise this refactoring
does not make sense and an appropriate error message is re-
turned (lines 218–222).

Figure F.53 shows the concrete CoMReL unit specification of
the proper model change of refactoring Remove Superclass20. As
described in Appendix E of this thesis, refactoring Remove Su-
perclass relies on three atomic model refactorings.

20 Since this refactoring does not have any additional parameters, no final precondition
checks have to be implemented.

330

Figure F.53: Model Change Implementation of UML class model refac-
toring Remove Superclass

The main refactoring unit removesuperclass is a strict Sequential
Unit consisting of two SingleQueuedUnits and one AtomicUnit.
The queued units push down all attributes and operations to
each subclass of the contextual Class. Then, this class is re-
moved by the corresponding atomic unit.

331

Each SingleQueuedUnit contains an AtomicUnit calling an al-
ready existing model refactoring. First, atomic refactoring Push
Down Attribute must be applied on each attribute of the selected
class. Analogously, an atomic unit for refactoring Push Down
Operation is put into a single queued unit. In both cases, the ac-
cording strict attributes are set to true since each feature should
be pushed down to ensure that the contextual class is empty
afterwards.

To ensure conformity with respect to typing and multiplicity
of included ports, the main refactoring unit removesuperclass re-
quires two helper units, more precisely FeatureUnits. These fea-
ture units, Get Owned Attributes and Get Owned Operations, take
the contextual class as input and yield all owned attributes and
operations of that class.

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ no
changes. X

2. The contextual class A has no subclasses ⇒ corresponding
error message. X

3. The contextual class A has a superclass B⇒ no changes. X

4. The contextual class A has subclasses B, C and D; class A
owns attribute att with private visibility ⇒ no changes. X

5. The contextual class A has subclasses B, C and D; class A
owns attribute att; class B owns attribute att⇒ no changes. X

6. The contextual class A has subclasses B, C and D; class A
owns attribute att; class B inherits attribute att from super-
class E ⇒ no changes. X

7. The contextual class A has subclasses B, C and D; class A
owns operation op with protected visibility⇒ no changes. X

8. The contextual class A has subclasses B, C and D; class
A owns operation op; class B owns operation op ⇒ no
changes. X

9. The contextual class A has subclasses B, C and D; class
A owns operation op; class B inherits operation op from
superclass E ⇒ no changes. X

10. The contextual class A has an inner class B⇒ no changes. X

11. The contextual class A has an incoming association assoc
⇒ no changes. X

12. The contextual class A has an outgoing association assoc⇒
no changes. X

13. The contextual class A implements interface Interf1 ⇒ no
changes. X

332

14. The contextual class A uses interface Interf1⇒ no changes. X

15. The contextual class A is used as type of class attribute
P1::B::att ⇒ no changes. X

16. The contextual class A is used as type of operation param-
eter P1::C::op1::par1 ⇒ no changes. X

17. The contextual class A has subclasses B, C and D; class A
contains attributes att1 and att2 as well as equal operations
op1 and op2; no violated internal preconditions ⇒ refactor-
ing execution as expected. X

333

f.21 rename class

description The current name of a class does not reflect its pur-
pose. This refactoring changes the name of the class to a new
name. [30]

contextual element Class

refactoring parameters newName - New name of the contextual
class.

implementation Refactoring Rename Class has been implemented
in Henshin pattern rules (for specifying precondition checks)
respectively a Henshin transformation rule (for specifying the
proper model change) using the abstract syntax of UML.

Figure F.54: Initial Check Implementation of UML class model refactoring
Rename Class

Figure F.54 shows the Henshin pattern rule specification of the
initial precondition check. This rule defines the erroneous situa-
tion that the contextual Class (named selectedclass) is not owned
by a Package, i.e., this refactoring can not be applied on inner
classes for example. NAC NoOwningPackage specifies this vio-
lated precondition.

Figure F.55: Final Check Implementation of UML class model refactoring
Rename Class

Figure F.55 shows the Henshin pattern rule that defines the fi-
nal precondition check of refactoring Rename Class. It specifies
the violated precondition that the owning Package of the con-
textual Class already owns an element with the same name as

334

specified in rule parameter newname (see PAC ExistingName in
Figure F.55).

Figure F.56 shows the Henshin transformation rule of the proper
model change specification of refactoring Rename Class. Here, at-
tribute name of the contextual Class (selectedclass) is set to the
value of rule parameter newname.

Figure F.56: Model Change Implementation of UML class model refactoring
Rename Class

test cases The following test cases have been performed:

1. The contextual class A is an inner class of class B ⇒ corre-
sponding error message. X

2. newname is set to B; the owning package P1 of the contex-
tual class A already owns a class B ⇒ corresponding error
message. X

3. newname is set to Interf1; the owning package P1 of the con-
textual class A owns an interface Interf1 ⇒ corresponding
error message. X

4. No precondition is violated ⇒ refactoring execution as ex-
pected. X

335

f.22 rename operation

description The current name of an operation does not reflect
its purpose. This refactoring changes the name of the opera-
tion. [107, 30]

contextual element Operation

refactoring parameters newName - New name of the contextual
operation.

implementation Refactoring Rename Operation has been implemented
in Java code using the UML2EMF API.

Figure F.57: Initial Check Implementation of UML class model refactoring
Rename Operation

Figure F.57 shows the concrete implementation of the initial
precondition check (Java method checkInitialConditions()).
Here, the only check is whether the contextual UML Operation

(named selectedEObject) is owned by a Class (line 168) since
this refactoring should not be applied on interface operations.
If this precondition is violated, an appropriate error message is
returned (lines 166–168).

Figure F.58 shows the concrete implementation of the final pre-
condition check (Java method checkInitialConditions()). Be-
sides the contextual Operation selectedEObject, this check addi-
tionally considers the user input parameter newName. Here, the
following checks are performed:

1. The specified name in parameter newName must be dif-
ferent from the current name of the contextual Operation

(line 187–189).

2. The owning Class of the contextual Operation must not
own an Operation named as specified in parameter new-
Name and having an equivalent parameter list (lines 192–
196).

3. The owning Class of the contextual Operation must not
inherit an Operation named as specified in parameter new-

336

Figure F.58: Final Check Implementation of UML class model refactoring
Rename Operation

Name and having an equivalent parameter list (lines 199–
202).

Figure F.59 shows the concrete implementation of the proper
model change of refactoring Rename Operation (method run()).
Here, attribute name of the contextual Operation (selectedEOb-
ject) is set to the value of rule parameter newName (line 132).

Figure F.59: Model Change Implementation of UML class model refactoring
Rename Operation

test cases The following test cases have been performed:

1. The contextual operation op1 is owned by an interface In-
terf1 ⇒ corresponding error message. X

2. newName is set to op1; the contextual operation is names
op1 ⇒ corresponding error message. X

3. newName is set to op2; the owning class A of the contextual
operation op1 ownes an operation op2 with the same sig-

337

nature as the contextual operation op1 ⇒ corresponding
error message. X

4. newName is set to op2; the owning class A of the contextual
operation op1 inherits an operation op2 with the same sig-
nature as the contextual operation op1 ⇒ corresponding
error message. X

5. No precondition is violated ⇒ refactoring execution as ex-
pected. X

338

f.23 rename property

description The current name of an attribute or association end
does not reflect its purpose. This refactoring changes the name
of the property. [107, 30]

contextual element Property

refactoring parameters newName - New name of the contextual
attribute or association end.

implementation The UML class model refactoring Rename Prop-
erty has been implemented in Henshin pattern rules (for specify-
ing precondition checks) respectively a Henshin transformation
rule (for specifying the proper model change) using the abstract
syntax of UML.

Figure F.60: Initial Check Implementation of UML class model refactoring
Rename Property

Figure F.60 shows the Henshin pattern rule specification of the
initial precondition check. This rule defines the erroneous situa-
tion that the contextual Property (named selectedattribute) is not
owned by a Class, i.e., this refactoring can be applied on class
attributes only. NAC NoOwningClass specifies this violated pre-
condition.

Figure F.61 shows the Henshin pattern rules that define the fi-
nal precondition checks of refactoring Rename Property. The first
rule specifies the violated precondition that the owning Class of
the contextual attribute (meta model element Property) already
owns an attribute with the same name as specified in rule pa-
rameter newname (PAC ExistingName). The second rule specifies
the violated precondition that the owning Class of the contex-
tual attribute already inherits an attribute with the same name
as specified in rule parameter newname (PAC InheritedName).

Figure F.62 shows the Henshin transformation rule of the proper
model change specification of refactoring Rename Property. Here,
attribute name of the contextual Property (selectedattribute) is set
to the value of rule parameter newname.

test cases The following test cases have been performed:

339

Figure F.61: Final Check Implementation of UML class model refactoring
Rename Property

1. The contextual attribute attr1 is an owned end of an asso-
ciation assoc1 ⇒ corresponding error message. X

2. newname is set to attr2; the owning class A of the contex-
tual attribute attr1 already owns an attribute attr2 ⇒ corre-
sponding error message. X

3. newname is set to attr2; the owning class A of the contextual
attribute attr1 already inherits an attribute attr2 ⇒ corre-
sponding error message. X

4. No precondition is violated ⇒ refactoring execution as ex-
pected. X

Figure F.62: Model Change Implementation of UML class model refactoring
Rename Property

340

G
S T U D Y M AT E R I A L E X P E R I M E N T E X _ A P P

This appendix contains material of the experiment Ex_App used in
Chapter 14 of this thesis.

341

Prof. Dr. Gabriele Taentzer
Thorsten Arendt

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik

Wintersemester 13/14
Mittwoch, 22.01.2014
14.15Uhr - 16.00Uhr

Einführung in die Softwaretechnik

Tutorium 11

Im Mittelpunkt dieses Tutoriums steht ein UML Klassenmodell, das im Rahmen der Analysephase eines
Softwareentwicklungsprojekts erstellt wurde. In diesem Projekt soll eine Anwendung für die Abrechnung
von Mietvorgängen eines Fahrzeugverleihs (z.B. Europcar, Sixt etc.) entwickelt werden. Abbildung 1 auf
der folgenden Seite zeigt ein erstes Analysemodell der entsprechenden Domäne.

Im Rahmen dieses Tutoriums sollen Techniken für die Qualitätssicherung von Softwaremodellen
angewendet werden. Diese Techniken sind Modellmetriken, Smells sowie Refactorings und werden
einerseits zur Analyse (Metriken und Smells) und andererseits zur Verbesserung der Qualität
(Refactorings) der Modelle verwendet.

Das Tutorium wird dabei zeitlich strukturiert unterteilt. Für jede Aufgabe wird eine Bearbeitungszeit von
20 Minuten eingeplant. Bitte bearbeiten Sie so viele Aufgaben wie möglich und beantworten Sie bitte
die Frage bezüglich der empfundenen Schwierigkeit der jeweiligen Aufgabe! Die Aufgabenblätter
werden nach Ablauf der Bearbeitungszeit wieder eingesammelt. Für die Bearbeitung der Aufgaben
können die verteilten Handouts verwenden werden. In Ausnahmefällen können Sie auch den Tutor um Rat
fragen. Am Ende des Tutoriums wird ein Fragebogen mit allgemeinen Fragen zu Ihren Beobachtungen
bzw. Erfahrungen, die Sie bei der Bearbeitung der Aufgaben gemacht haben, verteilt. Beantworten Sie
bitte die aufgeführten Fragen und geben Sie den Fragenbogen ausgefüllt an den Tutor zurück.

Verwenden Sie heute bitte die bereits auf den Fachbereichsrechnern vorinstallierte Version der Eclipse
Modeling Tools. Nach der Anmeldung mit Ihrem Fachbereich-Account finden Sie diese unter

D:\est1314\eclipse.

Starten Sie Eclipse mit einem Doppelklick auf die Datei eclipse.exe. Stellen Sie sicher, dass Sie den auf

D:\est1314\ws

befindlichen Workspace verwenden. Anderenfalls wechseln Sie zu diesem (File  Switch Workspace 
D:\est1314\ws). In diesem Workspace befindet sich das Projekt

de.unimarburg.swt.est

mit dem bereits vorgestellten UML-Klassenmodell aus Abbildung 1.

Bitte beachten Sie, dass die Ergebnisse dieses Tutoriums NICHT in die Benotung dieses Moduls
eingehen! Sie dienen lediglich einer Studie im Rahmen der Forschungstätigkeiten des Tutors.

Vielen Dank für Ihre Teilnahme!!!

Thorsten Arendt

342

Abb. 1: Erstes Domänenmodell eines Fahrzeugverleihs als UML Klassendiagramm

343

1 Berechnen von Metriken für UML-Klassenmodelle
Ziel dieser Aufgabe ist es, vorgegebene Metriken für das in Abbildung 1 gezeigte Domänenmodell eines
Fahrzeugverleihs in Form eines UML-Klassendiagramms zu berechnen.

Für die Bearbeitung dieser Aufgaben haben Sie insgesamt 20 Minuten Zeit.

Bitte bearbeiten Sie so viele Aufgaben wie möglich und beantworten Sie bitte die Fragen bezüglich
der empfundenen Schwierigkeit der jeweiligen Teilaufgabe sowie bezüglich der verfügbaren Zeit!

Aufgabe 1.1
Berechnen Sie bitte die folgenden Metriken auf Modellebene und tragen Sie die Ergebnisse bitte in die
vorgesehenen Zellen der folgenden Tabelle ein.

Metrik Beschreibung Wert
AKLM Anzahl aller Klassen im Modell
AVBM Anzahl aller Vererbungs-Beziehungen zwischen Klassen
VBvsKL Durchschnittliche Anzahl an Vererbungs-Beziehungen pro

Klasse

AVHM Anzahl aller Vererbungs-Hierarchien im Modell
MaxDIT Maximale Tiefe der Vererbungsbäume im Modell
AATM Gesamtanzahl der Attribute aller Klassen im Modell (eigene

und geerbte)

ATvsKL Durchschnittliche Anzahl an Attributen pro Klasse (eigene
und geerbte)

AOPM Gesamtanzahl der Operationen aller Klassen im Modell
(eigene und geerbte)

OPvsKL Durchschnittliche Anzahl an Operationen pro Klasse (eigene
und geerbte)

AELM Gesamtanzahl der Elemente im Modell (Pakete, Klassen,
Interfaces, Attribute, Operationen, Parameter, Assoziationen,
Assoziationsenden, Vererbungs-Beziehungen, Interface-
Realisierungen, Aufzählungen, und Aufzählungs-Literale)

Frage 4.1.1
Wie empfanden Sie den Schwierigkeitsgrad dieser Aufgabe (Metrikenberechnung auf Modellebene)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

344

Aufgabe 1.2
Berechnen Sie bitte die folgenden Metriken auf Paketebene für die Pakete Verleih und Allgemeines und
tragen Sie die Ergebnisse bitte in die vorgesehenen Zellen der folgenden Tabelle ein.

Metrik Beschreibung Verleih Allgemeines
AKLP Anzahl der Klassen im Paket
AASP Anzahl der Assoziationen im Paket
ASvsKL Verhältnis zwischen der Anzahl der Assoziationen und der

Anzahl der Klassen im Paket

AP Anteil der abstrakten Klassen an der Gesamtanzahl aller
Klassen im Paket (Abstraktheitsgrad)

AATKLP Anzahl aller Attribute in Klassen im Paket (auch geerbte)
AOPKLP Anzahl aller Operationen in Klassen im Paket (auch

geerbte)

Ca Afferent coupling: Anzahl der Klassen in anderen Paketen,
die von Klassen innerhalb des Paketes abhängen
(Abhängigkeit bedeutet: Typ eines Attributes, einer
Operation oder eines Parameters; Superklasse)

Ce Efferent coupling: Anzahl der Klassen in anderen Paketen,
von denen die Klassen innerhalb des Paketes abhängen
(Abhängigkeit wie oben)

TC Total coupling: afferent coupling + efferent coupling
I Verhältnis zwischen efferent coupling und total coupling

(Instabilität)

Frage 4.1.2
Wie empfanden Sie den Schwierigkeitsgrad dieser Aufgabe (Metrikenberechnung auf Paketebene)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

345

Aufgabe 1.3
Berechnen Sie bitte die folgenden Metriken auf Klassenebene für die Klassen Verleih::Fahrzeugverleih,
Allgemeines::Datum und Verleih::Motorrad und tragen Sie die Ergebnisse bitte in die vorgesehenen
Zellen der folgenden Tabelle ein.

Metrik Beschreibung Fahrzeugverleih Datum Motorrad

ASUPKL Anzahl aller Superklassen der Klasse (transitive Hülle)
MaxDITK Tiefe in der Vererbungs-Hierarchie (Maximum aufgrund

Mehrfachvererbung)

AAEATKL Anzahl der eigenen Attribute der Klasse, die in allen
Geschwisterklassen äquivalente Attribute haben

AATKL Anzahl der Attribute der Klasse (eigene und geerbte)
AATPTKL Anzahl der Attribute der Klasse mit primitivem Datentyp

(eigene und geerbte)

AOPKL Anzahl der Operationen der Klasse (eigene und geerbte)
AASKL Anzahl der Assoziationen mit anderen Klassen oder mit

sich selbst (auch geerbte Assoziationen)

AFEKL Anzahl der Features (Attribute und Operationen) der
Klasse (eigene und geerbte)

CBC Coupling between classes: Anzahl der Attribute der Klasse
sowie der navigierbaren Assoziationsenden, die eine
andere Klasse als Typ haben (eigene und geerbte)

AEBKL Anzahl der externen Benutzungen der Klasse als Typ von
Attributen, Operationen und Parametern (auch ihrer
Superklassen)

Frage 4.1.3
Wie empfanden Sie den Schwierigkeitsgrad dieser Aufgabe (Metrikenberechnung auf Klassenebene)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

Frage 4.1.4
Wie empfanden Sie die für diesen Aufgabenteil zur Verfügung stehende Zeit?

1 2 3 4 5

viel zu kurz eher zu kurz angemessen eher zu lang viel zu lang

346

2 Auffinden von Model Smells in UML-Klassenmodellen
Ziel dieser Aufgabe ist es, Model Smells in dem in Abbildung 1 gezeigten Domänenmodell eines
Fahrzeugverleihs in Form eines UML-Klassendiagramms zu finden.

Für die Bearbeitung dieser Aufgaben haben Sie insgesamt 20 Minuten Zeit.

Bitte bearbeiten Sie so viele Aufgaben wie möglich und beantworten Sie bitte die Fragen bezüglich
der empfundenen Schwierigkeit sowie bezüglich der zur Verfügung stehenden Zeit!

Aufgabe 2.1
Untersuchen Sie das Modell hinsichtlich der folgenden Model Smells. Notieren Sie bitte jeweils die
Anzahl der gefundenen Smell-Vorkommen in die vorgesehenen Zellen der ersten Tabelle. In der zweiten
Tabelle notieren Sie bitte für jeden gefundenen Smell die involvierten Elemente.

Model Smell Beschreibung Anzahl
Konkrete
Superklasse

Eine abstrakte Klasse besitzt eine konkrete Superklasse.

Diamond Problem Eine Klasse erbt mehrfach von einer anderen Klasse.
Gleiche
Klassennamen

Zwei in unterschiedlichen Paketen definierte Klassen haben den
gleichen Namen.

Keine
Spezifikation

Eine abstrakte Klasse besitzt keine konkrete Unterklasse.

Spekulative
Allgemeinheit

Eine abstrakte Klasse besitzt nur eine einzige Unterklasse.

Unbenutzte Klasse Eine Klasse hat keine Ober- oder Unterklasse, ist nicht mit einem
Interface assoziiert und ist nicht Typ eines externen Attributes,
einer Operation oder Parameters.

Äquivalente
Attribute

Jede Geschwisterklasse der besitzenden Klasse eines Attributes
besitzt ein äquivalentes Attribut.

Abstraktes Paket Ein Paket hat einen zu hohen Anteil an abstrakten Klassen (hier:
höher als 0.4).

Primitive
Obsession

Eine Klasse besitzt mehr Attribute mit primitivem Datentyp als
der angegebene Grenzwert (hier: mehr als 3).

Große Klasse Eine Klasse besitzt mehr Features (Attribute und Operationen;
auch geerbte) als der angegebene Grenzwert (hier: mehr als 6).

347

Gefundener Model Smell Involvierte Elemente

Frage 4.2.1
Wie empfanden Sie den Schwierigkeitsgrad dieses Aufgabenteils (Erkennen von Model Smells)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

Frage 4.2.2
Wie empfanden Sie die für diesen Aufgabenteil zur Verfügung stehende Zeit?

1 2 3 4 5

viel zu kurz eher zu kurz angemessen eher zu lang viel zu lang

348

3 Durchführen von Refactorings auf UML-Klassendiagrammen
Ziel dieser Aufgabe ist es, die in Aufgabe 2 entdeckten Model Smells in dem in Abbildung 1 gezeigten
Domänenmodell eines Fahrzeugverleihs (teilweise) zu eliminieren. Dazu werden neben manuellen
Änderungen am Modell insbesondere Refactorings (wie in der Vorlesung vorgestellt) verwendet, die Sie
in der unten stehenden Tabelle in der Spalte Maßnahmen finden.

Für die Bearbeitung dieser Aufgaben haben Sie insgesamt 20 Minuten Zeit.

Bitte bearbeiten Sie so viele Aufgaben wie möglich und beantworten Sie bitte die Fragen bezüglich
der empfundenen Schwierigkeit sowie bezüglich der zur Verfügung stehenden Zeit!

Nach der Bearbeitung dieser Aufgabe exportieren Sie bitte das Projekt in ein zip-Archiv
(File  Export...  General  Archive File  Select All  Browse  … Save Finish)
und senden Sie dieses bitte per Email an arendt@mathematik.uni-marburg.de.

Anschließend schließen Sie bitte das Projekt (Rechtsklick auf Projekt  Close Project) und
beenden Sie bitte Eclipse.

Die zu bearbeitenden Aufgaben beinhalten die folgenden Refactorings:

• Pull Up Attribute: Bei diesem Refactoring wird ein Attribut von einer Klasse in eine seiner
direkten Superklassen verschoben. Voraussetzung ist, dass ALLE weiteren Unterklassen der
Superklasse ein solches Attribut (gleicher Name, Typ, Multiplizität, Sichtbarkeit 'public', etc.)
besitzen. Nach dem Refactoring besitzt die Superklasse nun dieses Attribut und die
entsprechenden Attribute in den Unterklassen sind verschwunden.

• Remove Superclass: Bei diesem Refactoring wird eine Superklasse aus dem Modell entfernt.
Voraussetzung ist, dass diese Klasse mindestens eine Unterklasse besitzt. Sämtliche Features
(Attribute, Operationen, etc.) der Klasse werden bei diesem Refactoring in ihre Unterklassen
verschoben bzw. kopiert, sodass anschließend alle Unterklassen diese Features besitzen. Danach
werden die Vererbungs-Beziehungen (Generalisierungen) zu der Klasse entfernt und letztendlich
die nun leere Klasse aus dem Modell gelöscht.

• Rename Class: Dieses Refactoring wird dazu benutzt, eine Klasse umzubenennen. Wichtig ist,
dass der neue Klassenname noch nicht im entsprechenden Namespace (meistens das enthaltende
Paket) vorhanden ist.

349

Gefundener Smell Involvierte Elemente Maßnahmen

Abstraktes Paket Paket Allgemeines ---
 Paket Angebote siehe Smell Spekulative Allgemeinheit
Diamond Problem Klassen Subunternehmer, Mitarbeiter,

Kunde und Person

Äquivalente
Attribute

Klasse LKW; Attribut leistung Refactoring Pull Up Attribute auf leistung

 Klasse LKW; Attribut hersteller Refactoring Pull Up Attribute auf hersteller
 Klasse LKW; Attribut kennzeichen Refactoring Pull Up Attribute auf kennzeichen
 Klasse Auto; Attribut leistung s.o.
 Klasse Auto; Attribut hersteller s.o.
 Klasse Auto; Attribut kennzeichen s.o.
 Klasse Motorrad; Attribut leistung s.o.
 Klasse Motorrad; Attribut hersteller s.o.
 Klasse Motorrad; Attribut kennzeichen s.o.
Gleiche
Klassennamen

Klassen Verleih::Fahrzeugverleih und
Angebote::Fahrzeugverleih

Refactoring Rename Class auf Angebote::
Fahrzeugverleih zu Fahrzeugvermietung

Große Klasse Klasse Verleih::Fahrzeugverleih ---
 Klasse Kunde ---
 Klasse Subunternehmer ---
Spekulative
Allgemeinheit

Klassen Angebote::Service und
Angebote::Fahrzeugverleih

Refactoring Remove Superclass auf
Angebote::Service

Unbenutzte Klasse Klasse Rechnung Manuelle Änderung: Hinzufügen eines neuen
öffentlichen Attributes rechnungen vom Typ
Rechnung mit Multiplizität 0..* zu Klasse
Verleih::Fahrzeugverleih

Frage 4.3.1
Wie empfanden Sie den Schwierigkeitsgrad dieses Aufgabenteils (Durchführen von Modell-
Refactorings)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

Frage 4.3.2
Wie empfanden Sie die für diesen Aufgabenteil zur Verfügung stehende Zeit?

1 2 3 4 5

viel zu kurz eher zu kurz angemessen eher zu lang viel zu lang

350

4 Fragebogen

Zum Abschluss des heutigen Tutoriums bitte ich Sie, die folgenden Fragen zu beantworten. Dabei geht es,
wie bei der Bearbeitung der vorhergehenden Aufgaben nicht darum, die Antworten im "Sinne des Tutors"
zu geben. Im Gegenteil: Für die Auswertung des Fragenbogens sind insbesondere ehrliche Antworten von
Interesse! (Auch hier noch einmal der Hinweis: Es erfolgt keine Benotung!!!)

Für die Beantwortung der Fragen haben Sie maximal 10 Minuten Zeit.

Frage 4.0.1
In welchem Studiengang und in welchem Semester studieren Sie?

Studiengang Semester

Frage 4.0.2
Welche Erfahrungen haben Sie mit der Modellierung mit UML, insbesondere mit Klassendiagrammen?

1 2 3 4 5

Anfänger Experte

Frage 4.0.3
Welche Erfahrungen haben Sie mit der Berechnung von Softwaremetriken, insbesondere Modellmetriken?

1 2 3 4 5

Anfänger Experte

Frage 4.0.4
Welche Erfahrungen haben Sie mit dem Auffinden von Bad Smells, insbesondere Model Smells?

1 2 3 4 5

Anfänger Experte

Frage 4.0.5
Welche Erfahrungen haben Sie mit der Durchführung von Refactorings, insbesondere Modell-
Refactorings?

1 2 3 4 5

Anfänger Experte

351

Frage 4.4.1
Wie oft dachten Sie während des ersten Aufgabenteils (Berechnung von Metriken) daran, dass das
verwendete Modellierungswerkzeug (hier: Eclipse Papyrus) eine solche Funktionalität bereitstellen sollte?

nie selten manchmal oft immer

Frage 4.4.2
Wie oft dachten Sie während des zweiten Aufgabenteils (Auffinden von Model Smells) daran, dass das
verwendete Modellierungswerkzeug (hier: Eclipse Papyrus) eine solche Funktionalität bereitstellen sollte?

nie selten manchmal oft immer

Frage 4.4.3
Wie oft dachten Sie während des dritten Aufgabenteils (Durchführen von Refactorings) daran, dass das
verwendete Modellierungswerkzeug (hier: Eclipse Papyrus) eine solche Funktionalität bereitstellen sollte?

nie selten manchmal oft immer

Frage 4.5
Wie fanden Sie dieses Tutorium? Was hat Ihnen gefallen, was nicht? Was könnte verbessert werden?

352

1 Berechnen von Metriken für UML-Klassenmodelle
Ziel dieser Aufgabe ist es, vorgegebene Metriken für das in Abbildung 1 gezeigte Domänenmodell eines
Fahrzeugverleihs in Form eines UML-Klassendiagramms zu berechnen.

Benutzen Sie dazu bitte die entsprechende Funktionalität von EMF Refactor und beachten Sie bitte die
folgende Vorgehensweise:

• Aktivieren Sie die zu berechnende(n) Metrik(en) in den Projekteigenschaften (Projekt markieren
 Project  Properties  EMF Quality Assurance  Metrics Configuration  Metriken
auswählen  OK).

• Starten Sie eine Metriken-Berechnung, indem Sie das entsprechende Kontextelement im
graphischen Editor auswählen und im Kontextmenü (Rechtsklick) EMF Quality Assurance (use
existing techniques)  Calculate Configured Metrics (on element) auswählen. (Für Metriken
auf Modellebene klicken Sie bitte auf einen Zwischenraum zwischen den Paketen.)

Für die Bearbeitung dieser Aufgaben haben Sie insgesamt 20 Minuten Zeit.

Bitte bearbeiten Sie so viele Aufgaben wie möglich und beantworten Sie bitte die Fragen bezüglich
der empfundenen Schwierigkeit der jeweiligen Teilaufgabe sowie bezüglich der verfügbaren Zeit!

Aufgabe 1.1
Berechnen Sie bitte die folgenden Metriken auf Modellebene und tragen Sie die Ergebnisse bitte in die
vorgesehenen Zellen der folgenden Tabelle ein.

Metrik Beschreibung Wert
AKLM Anzahl aller Klassen im Modell
AVBM Anzahl aller Vererbungs-Beziehungen zwischen Klassen
VBvsKL Durchschnittliche Anzahl an Vererbungs-Beziehungen pro

Klasse

AVHM Anzahl aller Vererbungs-Hierarchien im Modell
MaxDIT Maximale Tiefe der Vererbungsbäume im Modell
AATM Gesamtanzahl der Attribute aller Klassen im Modell (eigene

und geerbte)

ATvsKL Durchschnittliche Anzahl an Attributen pro Klasse (eigene
und geerbte)

AOPM Gesamtanzahl der Operationen aller Klassen im Modell
(eigene und geerbte)

OPvsKL Durchschnittliche Anzahl an Operationen pro Klasse (eigene
und geerbte)

AELM Gesamtanzahl der Elemente im Modell (Pakete, Klassen,
Interfaces, Attribute, Operationen, Parameter, Assoziationen,
Assoziationsenden, Vererbungs-Beziehungen, Interface-
Realisierungen, Aufzählungen, und Aufzählungs-Literale)

Frage 4.1.1
Wie empfanden Sie den Schwierigkeitsgrad dieser Aufgabe (Metrikenberechnung auf Modellebene)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

353

Aufgabe 1.2
Berechnen Sie bitte die folgenden Metriken auf Paketebene für die Pakete Verleih und Allgemeines und
tragen Sie die Ergebnisse bitte in die vorgesehenen Zellen der folgenden Tabelle ein.

Metrik Beschreibung Verleih Allgemeines
AKLP Anzahl der Klassen im Paket
AASP Anzahl der Assoziationen im Paket
ASvsKL Verhältnis zwischen der Anzahl der Assoziationen und der

Anzahl der Klassen im Paket

AP Anteil der abstrakten Klassen an der Gesamtanzahl aller
Klassen im Paket (Abstraktheitsgrad)

AATKLP Anzahl aller Attribute in Klassen im Paket (auch geerbte)
AOPKLP Anzahl aller Operationen in Klassen im Paket (auch

geerbte)

Ca Afferent coupling: Anzahl der Klassen in anderen Paketen,
die von Klassen innerhalb des Paketes abhängen
(Abhängigkeit bedeutet: Typ eines Attributes, einer
Operation oder eines Parameters; Superklasse)

Ce Efferent coupling: Anzahl der Klassen in anderen Paketen,
von denen die Klassen innerhalb des Paketes abhängen
(Abhängigkeit wie oben)

TC Total coupling: afferent coupling + efferent coupling
I Verhältnis zwischen efferent coupling und total coupling

(Instabilität)

Frage 4.1.2
Wie empfanden Sie den Schwierigkeitsgrad dieser Aufgabe (Metrikenberechnung auf Paketebene)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

354

Aufgabe 1.3
Berechnen Sie bitte die folgenden Metriken auf Klassenebene für die Klassen Verleih::Fahrzeugverleih,
Allgemeines::Datum und Verleih::Motorrad und tragen Sie die Ergebnisse bitte in die vorgesehenen
Zellen der folgenden Tabelle ein.

Metrik Beschreibung Fahrzeugverleih Datum Motorrad

ASUPKL Anzahl aller Superklassen der Klasse (transitive Hülle)
MaxDITK Tiefe in der Vererbungs-Hierarchie (Maximum aufgrund

Mehrfachvererbung)

AAEATKL Anzahl der eigenen Attribute der Klasse, die in allen
Geschwisterklassen äquivalente Attribute haben

AATKL Anzahl der Attribute der Klasse (eigene und geerbte)
AATPTKL Anzahl der Attribute der Klasse mit primitivem Datentyp

(eigene und geerbte)

AOPKL Anzahl der Operationen der Klasse (eigene und geerbte)
AASKL Anzahl der Assoziationen mit anderen Klassen oder mit

sich selbst (auch geerbte Assoziationen)

AFEKL Anzahl der Features (Attribute und Operationen) der
Klasse (eigene und geerbte)

CBC Coupling between classes: Anzahl der Attribute der Klasse
sowie der navigierbaren Assoziationsenden, die eine
andere Klasse als Typ haben (eigene und geerbte)

AEBKL Anzahl der externen Benutzungen der Klasse als Typ von
Attributen, Operationen und Parametern (auch ihrer
Superklassen)

Frage 4.1.3
Wie empfanden Sie den Schwierigkeitsgrad dieser Aufgabe (Metrikenberechnung auf Klassenebene)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

Frage 4.1.4
Wie empfanden Sie die für diesen Aufgabenteil zur Verfügung stehende Zeit?

1 2 3 4 5

viel zu kurz eher zu kurz angemessen eher zu lang viel zu lang

355

2 Auffinden von Model Smells in UML-Klassenmodellen
Ziel dieser Aufgabe ist es, Model Smells in dem in Abbildung 1 gezeigten Domänenmodell eines
Fahrzeugverleihs in Form eines UML-Klassendiagramms zu finden.

Benutzen Sie dazu bitte die entsprechende Funktionalität von EMF Refactor und beachten Sie bitte die
folgende Vorgehensweise:

• Aktivieren Sie die zu findenden Model Smells in den Projekteigenschaften (Projekt markieren 
Project  Properties  EMF Quality Assurance  Smells Configuration  Model Smells
auswählen  OK). Für Metrik-basierte Model Smells tragen Sie bitte hier auch den in der
Aufgabenstellung angegebenen Grenzwert ein. Vorsicht: Dezimaltrennzeichen ist der Punkt,
also z.B. 4.2 statt 4,2!

• Starten Sie eine Smell-Suche auf dem kompletten Modell, indem Sie im graphischen Editor auf
einen Zwischenraum zwischen den Paketen klicken und im Kontextmenü (Rechtsklick) EMF
Quality Assurance (use existing techniques)  Find Configured Model Smells auswählen.

Für die Bearbeitung dieser Aufgaben haben Sie insgesamt 20 Minuten Zeit.

Bitte bearbeiten Sie so viele Aufgaben wie möglich und beantworten Sie bitte die Fragen bezüglich
der empfundenen Schwierigkeit sowie bezüglich der zur Verfügung stehenden Zeit!

Aufgabe 2.1
Untersuchen Sie das Modell hinsichtlich der folgenden Model Smells. Notieren Sie bitte jeweils die
Anzahl der gefundenen Smell-Vorkommen in die vorgesehenen Zellen der ersten Tabelle. In der zweiten
Tabelle notieren Sie bitte für jeden gefundenen Smell die involvierten Elemente.

Model Smell Beschreibung Anzahl
Konkrete
Superklasse

Eine abstrakte Klasse besitzt eine konkrete Superklasse.

Diamond Problem Eine Klasse erbt mehrfach von einer anderen Klasse.
Gleiche
Klassennamen

Zwei in unterschiedlichen Paketen definierte Klassen haben den
gleichen Namen.

Keine
Spezifikation

Eine abstrakte Klasse besitzt keine konkrete Unterklasse.

Spekulative
Allgemeinheit

Eine abstrakte Klasse besitzt nur eine einzige Unterklasse.

Unbenutzte Klasse Eine Klasse hat keine Ober- oder Unterklasse, ist nicht mit einem
Interface assoziiert und ist nicht Typ eines externen Attributes,
einer Operation oder Parameters.

Äquivalente
Attribute

Jede Geschwisterklasse der besitzenden Klasse eines Attributes
besitzt ein äquivalentes Attribut.

Abstraktes Paket Ein Paket hat einen zu hohen Anteil an abstrakten Klassen (hier:
höher als 0.4).

Primitive
Obsession

Eine Klasse besitzt mehr Attribute mit primitivem Datentyp als
der angegebene Grenzwert (hier: mehr als 3).

Große Klasse Eine Klasse besitzt mehr Features (Attribute und Operationen;
auch geerbte) als der angegebene Grenzwert (hier: mehr als 6).

356

Gefundener Model Smell Involvierte Elemente

Frage 4.2.1
Wie empfanden Sie den Schwierigkeitsgrad dieses Aufgabenteils (Erkennen von Model Smells)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

Frage 4.2.2
Wie empfanden Sie die für diesen Aufgabenteil zur Verfügung stehende Zeit?

1 2 3 4 5

viel zu kurz eher zu kurz angemessen eher zu lang viel zu lang

357

3 Durchführen von Refactorings auf UML-Klassendiagrammen
Ziel dieser Aufgabe ist es, die in Aufgabe 2 entdeckten Model Smells in dem in Abbildung 1 gezeigten
Domänenmodell eines Fahrzeugverleihs (teilweise) zu eliminieren. Dazu werden neben manuellen
Änderungen am Modell insbesondere Refactorings (wie in der Vorlesung vorgestellt) verwendet, die Sie
in der unten stehenden Tabelle in der Spalte Maßnahmen finden.

Benutzen Sie dazu bitte die entsprechende Funktionalität von EMF Refactor und beachten Sie bitte die
folgende Vorgehensweise:

• Aktivieren Sie die zu verwendenden Refactorings in den Projekteigenschaften (Projekt markieren
 Project  Properties  EMF Quality Assurance  Refactorings Configuration 
Refactorings auswählen  OK).

• Starten Sie ein Refactoring, indem Sie im graphischen Editor das entsprechende Kontextelement
auswählen (z.B. das zu verschiebende Attribut beim Refactoring Pull Up Attribute) und im
Kontextmenü (Rechtsklick) Papyrus UML Model Refactorings  Name des Refactorings
auswählen.

Für die Bearbeitung dieser Aufgaben haben Sie insgesamt 20 Minuten Zeit.

Bitte bearbeiten Sie so viele Aufgaben wie möglich und beantworten Sie bitte die Fragen bezüglich
der empfundenen Schwierigkeit sowie bezüglich der zur Verfügung stehenden Zeit!

Nach der Bearbeitung dieser Aufgabe exportieren Sie bitte das Projekt in ein zip-Archiv
(File  Export...  General  Archive File  Select All  Browse  … Save Finish)
und senden Sie dieses bitte per Email an arendt@mathematik.uni-marburg.de.

Anschließend schließen Sie bitte das Projekt (Rechtsklick auf Projekt  Close Project) und
beenden Sie bitte Eclipse.

Die zu bearbeitenden Aufgaben beinhalten die folgenden Refactorings:

• Pull Up Attribute: Bei diesem Refactoring wird ein Attribut von einer Klasse in eine seiner
direkten Superklassen verschoben. Voraussetzung ist, dass ALLE weiteren Unterklassen der
Superklasse ein solches Attribut (gleicher Name, Typ, Multiplizität, Sichtbarkeit 'public', etc.)
besitzen. Nach dem Refactoring besitzt die Superklasse nun dieses Attribut und die
entsprechenden Attribute in den Unterklassen sind verschwunden.

• Remove Superclass: Bei diesem Refactoring wird eine Superklasse aus dem Modell entfernt.
Voraussetzung ist, dass diese Klasse mindestens eine Unterklasse besitzt. Sämtliche Features
(Attribute, Operationen, etc.) der Klasse werden bei diesem Refactoring in ihre Unterklassen
verschoben bzw. kopiert, sodass anschließend alle Unterklassen diese Features besitzen. Danach
werden die Vererbungs-Beziehungen (Generalisierungen) zu der Klasse entfernt und letztendlich
die nun leere Klasse aus dem Modell gelöscht.

• Rename Class: Dieses Refactoring wird dazu benutzt, eine Klasse umzubenennen. Wichtig ist,
dass der neue Klassenname noch nicht im entsprechenden Namespace (meistens das enthaltende
Paket) vorhanden ist.

358

Gefundener Smell Involvierte Elemente Maßnahmen

Abstraktes Paket Paket Allgemeines ---
 Paket Angebote siehe Smell Spekulative Allgemeinheit
Diamond Problem Klassen Subunternehmer, Mitarbeiter,

Kunde und Person

Äquivalente
Attribute

Klasse LKW; Attribut leistung Refactoring Pull Up Attribute auf leistung

 Klasse LKW; Attribut hersteller Refactoring Pull Up Attribute auf hersteller
 Klasse LKW; Attribut kennzeichen Refactoring Pull Up Attribute auf kennzeichen
 Klasse Auto; Attribut leistung s.o.
 Klasse Auto; Attribut hersteller s.o.
 Klasse Auto; Attribut kennzeichen s.o.
 Klasse Motorrad; Attribut leistung s.o.
 Klasse Motorrad; Attribut hersteller s.o.
 Klasse Motorrad; Attribut kennzeichen s.o.
Gleiche
Klassennamen

Klassen Verleih::Fahrzeugverleih und
Angebote::Fahrzeugverleih

Refactoring Rename Class auf Angebote::
Fahrzeugverleih zu Fahrzeugvermietung

Große Klasse Klasse Verleih::Fahrzeugverleih ---
 Klasse Kunde ---
 Klasse Subunternehmer ---
Spekulative
Allgemeinheit

Klassen Angebote::Service und
Angebote::Fahrzeugverleih

Refactoring Remove Superclass auf
Angebote::Service

Unbenutzte Klasse Klasse Rechnung Manuelle Änderung: Hinzufügen eines neuen
öffentlichen Attributes rechnungen vom Typ
Rechnung mit Multiplizität 0..* zu Klasse
Verleih::Fahrzeugverleih

Frage 4.3.1
Wie empfanden Sie den Schwierigkeitsgrad dieses Aufgabenteils (Durchführen von Modell-
Refactorings)?

1 2 3 4 5

sehr einfach eher einfach angemessen eher schwer sehr schwer

Frage 4.3.2
Wie empfanden Sie die für diesen Aufgabenteil zur Verfügung stehende Zeit?

1 2 3 4 5

viel zu kurz eher zu kurz angemessen eher zu lang viel zu lang

359

4 Fragebogen

Um Abschluss des heutigen Tutoriums bitte ich Sie, die folgenden Fragen zu beantworten. Dabei geht es,
wie bei der Bearbeitung der vorhergehenden Aufgaben nicht darum, die Antworten im "Sinne des Tutors"
zu geben. Im Gegenteil: Für die Auswertung des Fragenbogens sind insbesondere ehrliche Antworten von
Interesse! (Auch hier noch einmal der Hinweis: Es erfolgt keine Benotung!!!)

Für die Beantwortung der Fragen haben Sie maximal 10 Minuten Zeit.

Frage 4.0.1
In welchem Studiengang und in welchem Semester studieren Sie?

Studiengang Semester

Frage 4.0.2
Welche Erfahrungen haben Sie mit der Modellierung mit UML, insbesondere mit Klassendiagrammen?

1 2 3 4 5

Anfänger Experte

Frage 4.0.3
Welche Erfahrungen haben Sie mit der Berechnung von Softwaremetriken, insbesondere Modellmetriken?

1 2 3 4 5

Anfänger Experte

Frage 4.0.4
Welche Erfahrungen haben Sie mit dem Auffinden von Bad Smells, insbesondere Model Smells?

1 2 3 4 5

Anfänger Experte

Frage 4.0.5
Welche Erfahrungen haben Sie mit der Durchführung von Refactorings, insbesondere Modell-
Refactorings?

1 2 3 4 5

Anfänger Experte

360

Frage 4.4.1
In wie weit war die von EMF Refactor bereitgestellte Funktionalität hilfreich bei der Berechnung der
Metriken in Aufgabenteil 1?

gar nicht hilfreich wenig hilfreich bedingt hilfreich hilfreich sehr hilfreich

Frage 4.4.2
In wie weit war die von EMF Refactor bereitgestellte Funktionalität hilfreich beim Auffinden von Model
Smells in Aufgabenteil 2?

gar nicht hilfreich wenig hilfreich bedingt hilfreich hilfreich sehr hilfreich

Frage 4.4.3
In wie weit war die von EMF Refactor bereitgestellte Funktionalität hilfreich beim Durchführen von
Refactorings in Aufgabenteil 3?

gar nicht hilfreich wenig hilfreich bedingt hilfreich hilfreich sehr hilfreich

Frage 4.5
Wie fanden Sie dieses Tutorium? Was hat Ihnen gefallen, was nicht? Was könnte verbessert werden?

361

H
S T U D Y M AT E R I A L E X P E R I M E N T E X _ S P E C

This appendix contains material of the experiment Ex_Spec used in
Chapter 14 of this thesis.

363

Prof. Dr. Gabriele Taentzer
Thorsten Arendt

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik

Wintersemester 13/14
Mittwoch, 11.12.2013
12.30Uhr - 16.00Uhr

Modellgetriebene Softwareentwicklung
Tutorium 07

Im Mittelpunkt dieses Tutoriums steht eine textuelle domänenspezifische Modellierungssprache für die
Spezifikation von einfachen Webanwendungen namens Simple Web Modeling Language (SWM). Die
Implementierung von SWM erfolgte mit Hilfe des im letzten Tutorium vorgestellten Frameworks Xtext
gemäß der auf der nächsten Seite aufgeführten Grammatik. Die folgende Abbildung zeigt das zugehörige
Ecore Metamodell:

Metamodell für SWM (Simple Web Modeling Language)

Im Rahmen dieses Tutoriums sollen Techniken für die Qualitätssicherung von Softwaremodellen
spezifiziert und implementiert werden. Diese Techniken sind Modellmetriken, Smells sowie Refactorings
und werden einerseits zur Analyse (Metriken und Smells) und andererseits zur Verbesserung der Qualität
(Refactorings) der Modelle verwendet. Für die Ausführung der Techniken sowie für die Generierung des
entsprechenden Codes wird die Werkzeugsammlung EMF Refactor verwendet. Spezifische
Implementierungen sollen in Java sowie mit Hilfe von OCL-Queries durchgeführt werden, so wie sie
bereits in der Vorlesung vorgestellt wurden.

Das Tutorium wird dabei zeitlich strukturiert unterteilt. Für jede Aufgabe wird eine Bearbeitungszeit von
40 Minuten eingeplant. Bitte notieren Sie die von Ihnen benötigte Bearbeitungszeit für jede
Teilaufgabe auf diesem Aufgabenblatt in den dafür vorgesehenen Kästchen und beantworten Sie
bitte die Frage bezüglich der empfundenen Schwierigkeit der jeweiligen Teilaufgabe! Die
Aufgabenblätter werden nach Ablauf der Bearbeitungszeit wieder eingesammelt. Für die Bearbeitung der
Aufgaben können die verteilten Handouts verwenden werden. In Ausnahmefällen können Sie auch den
Tutor um Rat fragen.

Im letzten Teil des Tutoriums wird Ihnen ein Fragebogen mit allgemeinen Fragen zu Ihren Beobachtungen
bzw. Erfahrungen, die Sie bei der Bearbeitung der Aufgaben gemacht haben, verteilt. Beantworten Sie
bitte die aufgeführten Fragen und geben Sie den Fragenbogen ausgefüllt an den Tutor zurück.

Bitte beachten Sie, dass die Ergebnisse dieses Tutoriums NICHT in die Benotung dieses Moduls
eingehen! Sie dienen lediglich einer Studie im Rahmen der Forschungstätigkeiten des Tutors.

Vielen Dank für Ihre Teilnahme!!!

Thorsten Arendt

364

grammar org.eclipse.emf.refactor.examples.SimpleWebModel with
 org.eclipse.xtext.common.Terminals

generate simpleWebModel "http://www.eclipse.org/SimpleWebModel/1.0"

WebModel:
 'webmodel' name=ID '{'
 dataLayer=DataLayer
 hypertextLayer=HypertextLayer
 '}' ;

DataLayer:
 'data {' {DataLayer}
 entities+=Entity*
 '}' ;

Entity:
 'entity' name=ID '{'
 attributes+=Attribute*
 references+=Reference*
 '}' ;

Attribute:
 'att' name=ID ':' type=SimpleType
;

enum SimpleType:
 Boolean | Email | Float | Integer | String
;

Reference:
 'ref' name=ID ':' type=[Entity]
;

HypertextLayer:
 'hypertext {'
 pages+=Page+
 'start page is' startPage=[StaticPage]
 '}' ;

Page: StaticPage | DynamicPage ;

StaticPage:
 'static page' name=ID '{'
 links+=Link*
 '}' ;

Link:
 'link to page' target=[Page]
;

DynamicPage: IndexPage | DataPage ;

IndexPage:
 'index page' name=ID ('shows entity' entity=[Entity])? '{'
 links+=Link*
 '}' ;

DataPage:
 'data page' name=ID ('shows entity' entity=[Entity])? '{'
 links+=Link*
 '}' ;

Xtext Grammatik für SWM (Simple Web Modeling Language)

365

0 Aufsetzen der Umgebung
Verwenden Sie auch heute bitte die bereits in den vergangenen Tutorien benutzte Eclipse Modeling Tools-
Distribution. Falls Sie diese noch nicht installiert haben, finden Sie den Download (Windows-Version)
sowie eine Beschreibung der enthaltenen Komponenten (zum Zusammenstellen für Mac/Linux-User)
unter http://www.mathematik.uni-marburg.de/~swt/downloads/mdd1314/. Führen Sie bitte
zusätzlich die folgenden Schritte durch:

• Installieren Sie bitte EMF Refactor sowie die Komponenten für SWM: Help  Install New
Software…  Work with: http://download.eclipse.org/emf-refactor/updatesite-mdd1314/ 
Select All  Finish  …

• Setzen Sie bitte einen neuen, leeren Workspace auf: File  Switch Workspace  Other… 
Browse  … OK  OK

• Downloaden Sie das Archiv http://www.eclipse.org/emf-refactor/downloads/mqa.zip und
importieren Sie die dort enthaltenen drei Eclipse-Projekte de.pum.swt.mdd.swm.metrics,
de.pum.swt.mdd.swm.smells und de.pum.swt.mdd.swm.refactorings in Ihren Workspace: File 
Import...  General  Existing Projects into Workspace  Next  Select archive file 
Browse  … Finish

• Starten Sie bitte eine neue Eclipse-Instanz (Laufzeitumgebung). Hier können später die
implementierten Qualitätssicherungstechniken getestet werden.

• Downloaden Sie das Archiv http://www.eclipse.org/emf-refactor/downloads/project.zip und
importieren Sie das dort enthaltene Eclipse-Projekt in den Workspace Ihrer Laufzeitumgebung:
File  Import...  General  Existing Projects into Workspace  Next  Select archive file 
Browse  … Finish

• Öffnen Sie dort das Beispiel-Modell Models/VehicleRentalCompany.swmt. Der Editor müsste bei
erfolgreicher Installation beispielsweise ein Highlighting der Schlüsselwörter webmodel, data,
entity etc. bereitstellen.

Wichtig ist, dass ALLE Teilnehmer nach diesen Schritten die gleiche Umgebung erfolgreich
aufgesetzt haben, um die folgenden Aufgaben zu bearbeiten!

Nach der Bearbeitung der Aufgaben exportieren Sie bitte die drei Projekte in ein zip-Archiv
(File  Export...  General  Archive File  Select All  Browse  … Save Finish)
und senden Sie dieses bitte per Email an arendt@mathematik.uni-marburg.de.

366

1 Spezifizieren und Implementieren von Metriken für SWM-Modelle
Ziel dieser Aufgabe ist es, Metriken für SWM-Modelle zu spezifizieren und mit Hilfe von EMF Refactor
zu implementieren. Gehen Sie dabei bitte gemäß der in der Vorlesung demonstrierten und der Ihnen in
dem Handout dargestellten Art und Weise vor. Für jede Metrik können Sie entscheiden, ob Sie eine
konkrete Implementierung mit Java oder OCL bevorzugen oder ob die zu implementierende Metrik als
Kombination aus bereits vorhandenen Metriken spezifiziert werden kann. Generieren Sie den Code bitte
jeweils in das Projekt de.pum.swt.mdd.swm.metrics und vergeben Sie für jede Metrik eine neue Id.

Zum Testen (siehe Handout) verwenden Sie bitte das Beispiel-Modell Models/VehicleRental
Company.swmt in der Laufzeitumgebung. (Metrik zunächst in den Projekteigenschaften aktivieren!)

Für die Bearbeitung dieser Aufgabe haben Sie insgesamt 40 Minuten Zeit.

Bitte notieren Sie die von Ihnen benötigte Bearbeitungszeit für jede Teilaufgabe auf diesem
Aufgabenblatt in den dafür vorgesehenen Kästchen und beantworten Sie bitte die Frage bezüglich
der empfundenen Schwierigkeit der jeweiligen Teilaufgabe!

Aufgabe 1.1
Implementieren Sie eine Metrik, die die Anzahl aller dynamischen Seiten im Modell ermittelt.

Bearbeitet
(J/N)

Benötigte Zeit
(Minuten)

Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 1.2
Implementieren Sie eine Metrik, die die Anzahl aller Referenzen von Entitäten im Modell ermittelt.

Bearbeitet
(J/N)

Benötigte Zeit
(Minuten)

Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 1.3
Implementieren Sie eine Metrik, die die durchschnittliche Anzahl der Attribute pro Entität im Modell
ermittelt.

Bearbeitet
(J/N)

Benötigte Zeit
(Minuten)

Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 1.4
Implementieren Sie eine Metrik, die die Anzahl der ausgehenden Referenzen einer Entität ermittelt.

Bearbeitet
(J/N)

Benötigte Zeit
(Minuten)

Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 1.5
Implementieren Sie eine Metrik, die die Anzahl derjenigen dynamischen Seiten ermittelt, die eine
gegebene Entität referenzieren.

Bearbeitet
(J/N)

Benötigte Zeit
(Minuten)

Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

367

2 Spezifizieren und Implementieren von Smells für SWM-Modelle
Ziel dieser Aufgabe ist es, Smells für SWM-Modelle zu spezifizieren und mit Hilfe von EMF Refactor zu
implementieren. Gehen Sie dabei bitte gemäß der in der Vorlesung demonstrierten und der Ihnen in dem
Handout dargestellten Art und Weise vor. Jeder Model Smell soll dabei in Java implementiert werden.
Generieren Sie den Code bitte jeweils in das Projekt de.pum.swt.mdd.swm.smells und vergeben Sie für
jeden Model Smell eine neue Id.

Zum Testen (siehe Handout) verwenden Sie bitte das Beispiel-Modell Models/VehicleRental
Company.swmt in der Laufzeitumgebung. (Smell zunächst in den Projekteigenschaften aktivieren!)

Für die Bearbeitung dieser Aufgabe haben Sie insgesamt 40 Minuten Zeit.

Bitte notieren Sie die von Ihnen benötigte Bearbeitungszeit für jede Teilaufgabe auf diesem
Aufgabenblatt in den dafür vorgesehenen Kästchen und beantworten Sie bitte die Frage bezüglich
der empfundenen Schwierigkeit der jeweiligen Teilaufgabe!

Aufgabe 2.1
Implementieren Sie einen Model Smell, der leere Entitäten, also Entitäten, die weder Attribute noch
ausgehende Referenzen besitzen, im Modell entdeckt.

Bearbeitet

(J/N)
Benötigte Zeit

(Minuten)
Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 2.2
Implementieren Sie einen Model Smell, der Paare von Hypertext-Seiten im Modell entdeckt, die den
gleichen Namen besitzen.

Bearbeitet

(J/N)
Benötigte Zeit

(Minuten)
Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 2.3
Implementieren Sie einen Model Smell, der Entitäten im Modell entdeckt, die von keiner dynamischen
Seite referenziert werden.

Bearbeitet

(J/N)
Benötigte Zeit

(Minuten)
Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 2.4
Implementieren Sie einen Model Smell, der redundante Links, also Links zwischen den gleichen
Hypertext-Seiten, im Modell entdeckt.

Bearbeitet

(J/N)
Benötigte Zeit

(Minuten)
Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

368

3 Spezifizieren und Implementieren von Refactorings für SWM-Modelle
Ziel dieser Aufgabe ist es, Refactorings für SWM-Modelle zu spezifizieren und mit Hilfe von EMF
Refactor zu implementieren. Gehen Sie dabei bitte gemäß der in der Vorlesung demonstrierten und der
Ihnen in dem Handout dargestellten Art und Weise vor. Die Teile eines jeden Model Refactoring sollen
dabei jeweils in Java implementiert werden. Generieren Sie den Code bitte jeweils in das Projekt
de.pum.swt.mdd.swm.refactorings und vergeben Sie für jedes Model Refactoring eine neue Id.

Zum Testen (siehe Handout) verwenden Sie bitte das Beispiel-Modell Models/VehicleRental
Company.swmt in der Laufzeitumgebung. (Refactoring zunächst in den Projekteigenschaften
aktivieren!)

Für die Bearbeitung dieser Aufgabe haben Sie insgesamt 40 Minuten Zeit.

Bitte notieren Sie die von Ihnen benötigte Bearbeitungszeit für jede Teilaufgabe auf diesem
Aufgabenblatt in den dafür vorgesehenen Kästchen und beantworten Sie bitte die Frage bezüglich
der empfundenen Schwierigkeit der jeweiligen Teilaufgabe!

Aufgabe 3.1
Implementieren Sie ein Model Refactoring, das eine Hypertext-Seite umbenennt. Dabei ist nach der
Eingabe des neuen Namens zu überprüfen, ob nicht schon eine Seite mit diesem Namen besteht.

Bearbeitet

(J/N)
Benötigte Zeit

(Minuten)
Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 3.2
Implementieren Sie ein Model Refactoring, das von einer Hypertext-Seite ausgehende redundante Links
entfernt.

Bearbeitet

(J/N)
Benötigte Zeit

(Minuten)
Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

Aufgabe 3.3
Implementieren Sie ein Model Refactoring, das zu einer bisher nicht von dynamischen Hypertext-Seiten
referenzierten Entität jeweils eine Index- und eine Daten-Seite erstellt, die diese Entität dann
referenzieren. Weiterhin soll von der neuen Index-Seite ein Link zu der neuen Daten-Seite erstellt werden.

Bearbeitet

(J/N)
Benötigte Zeit

(Minuten)
Diese Aufgabe empfand ich als …

sehr schwer eher schwer angemessen eher leicht sehr leicht

369

4 Fragebogen
Um Abschluss des heutigen Tutoriums bitte ich Sie, die folgenden Fragen zu beantworten. Dabei geht es,
wie bei der Bearbeitung der vorhergehenden Aufgaben nicht darum, die Antworten im "Sinne des Tutors"
zu geben. Im Gegenteil: Für die Auswertung des Fragenbogens sind insbesondere ehrliche Antworten von
Interesse! (Auch hier noch einmal der Hinweis: Es erfolgt keine Benotung!!!)

Für die Beantwortung der Fragen haben Sie maximal 30 Minuten Zeit.

Frage 4.0.1
Wie schätzen Sie Ihre Qualifikation bezüglich der Programmierung mit Java ein?

Anfänger Experte

Frage 4.0.2
Wie schätzen Sie Ihre Qualifikation hinsichtlich der Verwendung von OCL ein?

Anfänger Experte

Frage 4.0.3
Wie schätzen Sie Ihre Qualifikation bezüglich hinsichtlich des Umgangs mit EMF ein?

Anfänger Experte

Frage 4.1.1
Wie beurteilen Sie den Schwierigkeitsgrad des ersten Aufgabenteils (Implementierung von Metriken)?

sehr
einfach sehr

schwer

Frage 4.1.2
In wie weit war die von EMF Refactor bereitgestellte Codegenerierung hilfreich für die Implementierung
der Metriken?

gar nicht
hilfreich sehr

hilfreich

Frage 4.1.3
War die Auswahlmöglichkeit der Implementierungssprache (Java oder OCL) hilfreich bei der
Implementierung der Metriken?

gar nicht
hilfreich sehr

hilfreich

370

Frage 4.2.1
Wie beurteilen Sie den Schwierigkeitsgrad des zweiten Aufgabenteils (Implementierung von Model
Smells)?

sehr
einfach sehr

schwer

Frage 4.2.2
In wie weit war die von EMF Refactor bereitgestellte Codegenerierung hilfreich für die Implementierung
der Model Smells?

gar nicht
hilfreich sehr

hilfreich

Frage 4.3.1
Wie beurteilen Sie den Schwierigkeitsgrad des dritten Aufgabenteils (Implementierung von Model
Refactorings)?

sehr
einfach sehr

schwer

Frage 4.3.2
In wie weit war die von EMF Refactor bereitgestellte Codegenerierung hilfreich für die Implementierung
der Model Refactorings?

gar nicht
hilfreich sehr

hilfreich

Frage 4.4
Wie beurteilen Sie den Schwierigkeitsgrad der Aufgaben des heutigen Tutoriums insgesamt?

sehr
einfach sehr

schwer

Frage 4.4.1
Warum haben Sie den Schwierigkeitsgrad der Aufgaben des heutigen Tutoriums so bewertet?

371

B I B L I O G R A P H Y

[1] SDMetrics, 2014. URL http://www.sdmetrics.com/.

[2] SPES 2020. Software Plattform Embedded Systems, 2014. URL
http://spes2020.informatik.tu-muenchen.de/home.html.

[3] Scott W. Ambler. The Elements of UML Style. Cambridge Uni-
versity Press, 2002.

[4] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian
Krause, and Gabriele Taentzer. Henshin: Advanced Concepts
and Tools for In-Place EMF Model Transformations. In Model
Driven Engineering Languages and Systems (MoDELS), volume
6394 of LNCS, pages 121–135, 2010.

[5] Dave Astels. Refactoring with UML. In Proc. 3rd International
Conference on eXtreme Programming and Flexible Processes in Soft-
ware Engineering, pages 67–70, 2002.

[6] J. Bansiya and C.G. Davis. A Hierarchical Model for Object-
Oriented Design Quality Assessment. IEEE Transactions on Soft-
ware Engineering, 28(1):4–17, 2002.

[7] Gabriel Barbier, Hugo Brunelière, Frédéric Jouault, Yves
Lennon, and Frédéric Madiot. MoDisco, a Model-Driven Plat-
form to Support Real Legacy Modernization Use Cases. In In-
formation Systems Transformation: Architecture-Driven Moderniza-
tion Case Studies, pages 365–400. The Morgan Kaufmann/OMG
Press, 2010.

[8] Aline Lúcia Baroni and Fernando Brito e Abreu. An OCL-Based
Formalization of the MOOSE Metric Suite. In Proceedings of
the 7th ECOOP Workshop on Quantitative Approaches in Object-
Orietend Software Engineering, 2003.

[9] V. Basili, G. Caldiera, and H. D. Rombach. Goal question metric
approach. In J. C. Marciniak, editor, Encyclopedia of Software
Engineering, pages 528–532. John Wiley & Sons, Inc., 1994.

[10] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change (2nd Edition). Addison-Wesley Professional,
2004.

[11] Kent Beck and Martin Fowler. Bad Smells in Code. In Martin
Fowler, editor, Refactoring: Improving the Design of Existing Code,
pages 75–88. Addison-Wesley Professional, 1999.

373

http://www.sdmetrics.com/
http://spes2020.informatik.tu-muenchen.de/home.html

[12] Technische Universität Berlin. AGG: The Attributed Graph
Grammar System, 2014. URL http://user.cs.tu-berlin.de/

~gragra/agg/.

[13] Technische Universität Berlin. Tiger EMF Transforma-
tion Project, 2014. URL http://user.cs.tu-berlin.de/

~emftrans/.

[14] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and
E. Weiss. EMF Model Refactoring based on Graph Transforma-
tion Concepts. ECEASST, 3, 2006.

[15] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and
E. Weiss. Graphical Definition of In-Place Transformations in
the Eclipse Modeling Framework. In Model Driven Engineer-
ing Languages and Systems, MoDELS 2006, LNCS, pages 425–439.
Springer, 2006.

[16] E. Biermann, C. Ermel, and G. Taentzer. Precise Semantics
of EMF Model Transformations by Graph Transformation. In
Model Driven Engineering Languages and Systems, MoDELS 2008,
volume 5301 of LNCS, pages 53–67. Springer, 2008.

[17] D. Binkley, M. Davis, D. Lawrie, and C. Morrell. To camelcase
or under_score. In IEEE 17th International Conference on Program
Comprehension (ICPC), pages 158–167. IEEE, 2009.

[18] Barry W. Boehm. A Spiral Model of Software Development and
Enhancement. Computer, 21(5):61–72, 1988.

[19] Barry W Boehm, John R Brown, Hans Kaspar, and Myron
Lipow. Characteristics of Software Quality. North-Holland, Ams-
terdam, 1978.

[20] Marko Boger, Thorsten Sturm, and Per Fragemann. Refactoring
Browser for UML. In Objects, Components, Architectures, Services,
and Applications for a Networked World, volume 2591 of LNCS,
pages 366–377. Springer, 2003.

[21] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-
Driven Software Engineering in Practice. Morgan & Claypool,
2012.

[22] Lionel Briand, Prem Devanbu, and Walcelio Melo. An Inves-
tigation into Coupling Measures for C++. In Proceedings of
the 19th International Conference on Software Engineering (ICSE),
pages 412–421, New York, NY, USA, 1997. ACM.

[23] F. Brito e Abreu and W. Melo. Evaluating the Impact of Object-
Oriented Design on Software Quality. In Proceedings of the 3rd
International Software Metrics Symposium, pages 90–99, 1996.

374

http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~emftrans/
http://user.cs.tu-berlin.de/~emftrans/

[24] S.R. Chidamber and C.F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20
(6):476–493, 1994.

[25] Carnegy Mellon University Software Engineering Institute
(CMU/SEI). Capability Maturity Model Integration (CMMI),
2014. URL http://cmmiinstitute.com/.

[26] International Electrotechnical Commission. IEC, 2014. URL
http://www.iec.ch/.

[27] Inc. Cunningham & Cunningham. Model Smell, 2014. URL
http://c2.com/cgi/wiki?ModelSmell.

[28] Krzysztof Czarnecki and Simon Helsen. Feature-based survey
of model transformation approaches. IBM Systems Journal, 45
(3):621–646, 2006.

[29] Brian Dobing and Jeffrey Parsons. How UML is Used. Commu-
nications of the ACM, 49(5):109–113, 2006.

[30] Lukasz Dobrzański. UML Model Refactoring - Support for
Maintenance of Executable UML Models. Master’s thesis, De-
partment of Systems and Software Engineering, Blekinge Insti-
tute of Technology, 2005.

[31] Technische Universität Dresden. JaMoPP, 2014. URL http://

www.jamopp.org.

[32] Technische Universität Dresden. Refactory, 2014. URL http:

//www.modelrefactoring.org/index.php/Refactoring.

[33] Alexander Egyed. Instant Consistency Checking for the UML.
In Proceedings of the 28th international conference on Software engi-
neering, ICSE ’06, pages 381–390. ACM, 2006.

[34] Alexander Egyed. Automatically Detecting and Tracking In-
consistencies in Software Design Models. Software Engineering,
IEEE Transactions on, 37(2):188–204, 2011.

[35] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Fundamentals of Algebraic Graph Transformation. EATCS
Monographs in Theoretical Computer Science. Springer, 2006.

[36] Hartmut Ehrig, Claudia Ermel, and Karsten Ehrig. Refactor-
ing of Model Transformations. Electronic Communications of the
EASST, 18, 2009.

[37] Claudia Ermel, Frank Hermann, Jürgen Gall, and Daniel Bi-
nanzer. Visual Modeling and Analysis of EMF Model Trans-
formations Based on Triple Graph Grammars. Electronic Com-
munications of the EASST, 54:1–14, 2012.

375

http://cmmiinstitute.com/
http://www.iec.ch/
http://c2.com/cgi/wiki ?ModelSmell
http://www.jamopp.org
http://www.jamopp.org
http://www.modelrefactoring.org/index.php/Refactoring
http://www.modelrefactoring.org/index.php/Refactoring

[38] Florian Fieber, Michaela Huhn, and Bernhard Rumpe. Modell-
qualität als Indikator für Softwarequalität: eine Taxonomie.
Informatik-Spektrum, 31(5):408–424, 2008.

[39] International Organization for Standardization / International
Electrotechnical Commission. IEC 62304:2006 – Medical device
software – Software life cycle processes, 2014. URL http://www.

iso.org/iso/catalogue_detail.htm?csnumber=38421.

[40] International Organization for Standardization / Interna-
tional Electrotechnical Commission. ISO/IEC 25010:2011
– Systems and software engineering – Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE)
– System and software quality models, 2014. URL
http://www.iso.org/iso/home/store/catalogue_ics/

catalogue_detail_ics.htm?csnumber=35733.

[41] International Organization for Standardization / International
Electrotechnical Commission. ISO/IEC 9126-1:2001 – Software
engineering – Product quality – Part 1: Quality model, 2014.
URL http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=22749.

[42] International Organization for Standardization. ISO, 2014. URL
http://www.iso.org/iso/home.html.

[43] The Eclipse Foundation. Business Intelligence and Reporting
Tools (BIRT), 2014. URL http://www.eclipse.org/birt/.

[44] The Eclipse Foundation. Eclipse Modeling Framework Project
(EMF), 2014. URL http://www.eclipse.org/modeling/emf/.

[45] The Eclipse Foundation. EMF Compare, 2014. URL http://

eclipse.org/emf/compare/.

[46] The Eclipse Foundation. EMF Query, 2014. URL http://www.

eclipse.org/projects/project.php?id=modeling.emf.query.

[47] The Eclipse Foundation. EMF Refactor, 2014. URL http://www.

eclipse.org/emf-refactor/.

[48] The Eclipse Foundation. EMF Validation, 2014. URL
http://www.eclipse.org/projects/project.php?id=

modeling.emf.validation.

[49] The Eclipse Foundation. Eclipse Modeling Project, 2014. URL
http://www.eclipse.org/modeling/.

[50] The Eclipse Foundation. Eclipse, 2014. URL http://www.

eclipse.org/.

376

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38421
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38421
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35733
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=35733
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749
http://www.iso.org/iso/home.html
http://www.eclipse.org/birt/
http://www.eclipse.org/modeling/emf/
http://eclipse.org/emf/compare/
http://eclipse.org/emf/compare/
http://www.eclipse.org/projects/project.php?id=modeling.emf.query
http://www.eclipse.org/projects/project.php?id=modeling.emf.query
http://www.eclipse.org/emf-refactor/
http://www.eclipse.org/emf-refactor/
http://www.eclipse.org/projects/project.php?id=modeling.emf.validation
http://www.eclipse.org/projects/project.php?id=modeling.emf.validation
http://www.eclipse.org/modeling/
http://www.eclipse.org/
http://www.eclipse.org/

[51] The Eclipse Foundation. Epsilon, 2014. URL http://www.

eclipse.org/epsilon/.

[52] The Eclipse Foundation. EuGENia, 2014. URL http://www.

eclipse.org/epsilon/doc/eugenia/.

[53] The Eclipse Foundation. Graphical Modeling Project (GMP),
2014. URL http://www.eclipse.org/modeling/gmp/.

[54] The Eclipse Foundation. Henshin, 2014. URL http://www.

eclipse.org/henshin/.

[55] The Eclipse Foundation. Java Development Tools (JDT), 2014.
URL http://www.eclipse.org/jdt/.

[56] The Eclipse Foundation. Java Emitter Templates (JET), 2014.
URL http://www.eclipse.org/modeling/m2t/?project=jet.

[57] The Eclipse Foundation. MoDisco, 2014. URL http://www.

eclipse.org/MoDisco/.

[58] The Eclipse Foundation. Automating Eclipse PDE Unit Tests
using Ant, 2014. URL http://www.eclipse.org/resources/

resource.php?id=424.

[59] The Eclipse Foundation. Papyrus, 2014. URL http://www.

eclipse.org/papyrus/.

[60] The Eclipse Foundation. Sirius, 2014. URL http://eclipse.

org/sirius/.

[61] The Eclipse Foundation. ViaTra, 2014. URL http://www.

eclipse.org/viatra2/.

[62] The Eclipse Foundation. Xtext, 2014. URL http://www.eclipse.

org/Xtext/.

[63] The Eclipse Foundation. ATL Transformation Language, 2014.
URL http://www.eclipse.org/atl/.

[64] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[65] Martin Fowler. Code Smell, 2014. URL http://martinfowler.

com/bliki/CodeSmell.html.

[66] David S. Frankel. Model Driven Architecture Applying MDA. John
Wiley & Sons, 2003.

[67] Leif Frenzel. The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs. Eclipse Magazin, 5, 2006.

377

http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/henshin/
http://www.eclipse.org/henshin/
http://www.eclipse.org/jdt/
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/MoDisco/
http://www.eclipse.org/MoDisco/
http://www.eclipse.org/resources/resource.php?id=424
http://www.eclipse.org/resources/resource.php?id=424
http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/
http://eclipse.org/sirius/
http://eclipse.org/sirius/
http://www.eclipse.org/viatra2/
http://www.eclipse.org/viatra2/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/atl/
http://martinfowler.com/bliki/CodeSmell.html
http://martinfowler.com/bliki/CodeSmell.html

[68] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: Elements of Reusable Object-Oriented soft-
ware. Addison-Wesley Longman Publishing Co., Inc., 1995.

[69] Marcela Genero. Defining and Validating Metrics for Conceptual
Models. PhD thesis, University of Castilla-La-Mancha, Ciudad
Real, Spain, 2002.

[70] Marcela Genero, Mario Piattini, and Coral Calero. Early Mea-
sures for UML Class Diagrams. L’Objet, 6(4):489–515, 2000.

[71] Marcela Genero, M. Esperanza Manso, Mario Piattini, and Fran-
cisco Garcia. Early Metrics for Object Oriented Information Sys-
tems. In Dilip Patel, Islam Choudhury, Shushma Patel, and Ser-
gio Cesare, editors, OOIS 2000, pages 414–425. Springer, 2001.

[72] Marcela Genero, Mario Piattini, and Coral Calero. A Survey of
Metrics for UML Class Diagrams. Journal of Object Technology, 4
(9):59–92, 2005.

[73] Marcela Genero, Ana M Fernández-Saez, H James Nelson,
Geert Poels, and Mario Piattini. Research Review: A System-
atic Literature Review on the Quality of UML Models. Journal
of Database Management (JDM), 22(3):46–70, 2011.

[74] J. Ghayathri and E. Mohana Priya. Software Quality Models:
A Comparative Study. International Journal of Advanced Research
in Computer Science and Electronics Engineering (IJARCSEE), 2(1):
42–51, 2013.

[75] SparxSystems Software GmbH. Enterprise Architect, 2014. URL
http://www.sparxsystems.de/.

[76] Robert B. Grady. Practical Software Metrics for Project Manage-
ment and Process Improvement. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[77] Robert B. Grady and Deborah L. Caswell. Software Metrics: Es-
tablishing a Company-Wide Program. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1987.

[78] Groove. GRaphs for Object-Oriented VErification, 2014. URL
http://groove.cs.utwente.nl/.

[79] Maurice H. Halstead. Elements of Software Science (Operating and
Programming Systems Series). Elsevier Science Inc., New York,
NY, USA, 1977.

[80] David Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):321–274, 1987.

378

http://www.sparxsystems.de/
http://groove.cs.utwente.nl/

[81] R. Harrison, S. Counsell, and R. Nithi. Coupling Metrics for
Object-Oriented Design. In Proceedings of the Fifth International
Software Metrics Symposium, pages 150–157, 1998.

[82] IBM. Rational Software Architect (RSA), 2014. URL http://

www-03.ibm.com/software/products/us/en/ratisoftarch.

[83] CollabNet Inc. ArgoUML, 2014. URL http://argouml.tigris.

org/.

[84] Ralf Reißing. Towards a Model for Object-Oriented Design
Measurement. In ECOOP Workshop on Quantative Approaches
in Object-Oriented Software Engineering (QAOOSE), pages 71–84,
2001.

[85] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley, 2004.

[86] Hyoseob Kim and Cornelia Boldyreff. Developing Software
Metrics Applicable to UML Models. In ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering
(QAOOSE), 2002.

[87] Barbara Kitchenham and Stuart Charters. Guidelines for per-
forming Systematic Literature Reviews in Software Engineer-
ing. Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

[88] Reinhold Achatz Manfred Broy Klaus Pohl, Harald Hönninger.
Model-Based Engineering of Embedded Systems – The SPES 2020
Methodology. Springer, 2012.

[89] Günter Kniesel and Helge Koch. Static Composition of Refac-
torings. Science of Computer Programming, 52:9–51, 2004.

[90] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The
Epsilon Object Language (EOL). In Model Driven Architecture
- Foundations and Applications, LNCS, pages 128–142. Springer,
2006.

[91] Dimitrios S. Kolovos, Richard F. Paige, Fiona Polack, and
Louis M. Rose. Update Transformations in the Small with the
Epsilon Wizard Language. Journal of Object Technology, 6(9):53–
69, 2007.

[92] Rainer Koschke. Survey of Research on Software Clones.
In Duplication, Redundancy, and Similarity in Software, num-
ber 06301 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007.

[93] Piotr Kosiuczenko. Redesign of UML Class Diagrams: A For-
mal Approach. Software & Systems Modeling, 8(2):165–183, 2009.

379

http://www-03.ibm.com/software/products/us/en/ratisoftarch
http://www-03.ibm.com/software/products/us/en/ratisoftarch
http://argouml.tigris.org/
http://argouml.tigris.org/

[94] Al Lake and Curtis Cook. Use of Factor Analysis to Develop
OOP Software Complexity Metrics. In Proceedings of the 6th An-
nual Oregon Workshop on Software Metrics. Citeseer, 1994.

[95] Christian F. J. Lange. Improving the Quality of UML Models
in Practice. In Proceedings of the 28th international conference on
Software engineering, ICSE ’06, pages 993–996, New York, NY,
USA, 2006. ACM.

[96] Christian F.J. Lange. Empirical investigations in software
architecture completeness. Master’s thesis, Department of
Mathematics and Computing Science, Technical University
Eindhoven, The Netherlands, 2003. http://www.win.tue.nl/

~clange/papers/Thesis_CLange.pdf.

[97] Christian F.J. Lange. Assessing and Improving the Quality of Mod-
eling: A series of Empirical Studies about the UML. PhD thesis,
Department of Mathematics and Computing Science, Techni-
cal University Eindhoven, The Netherlands, 2007. http://www.

langomat.de/research/thesis/thesis.pdf.

[98] Christian F.J. Lange, Bart DuBois, Michel R.V. Chaudron, and
Serge Demeyer. An Experimental Investigation of UML Mod-
eling Conventions. In Oscar Nierstrasz, Jon Whittle, David
Harel, and Gianna Reggio, editors, Model Driven Engineering
Languages and Systems (MoDELS), volume 4199 of LNCS, pages
27–41. Springer, 2006.

[99] Wei Li and Sallie Henry. Object-Oriented Metrics that Predict
Maintainability. Journal of Systems and Software, 23(2):111 – 122,
1993.

[100] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A
Practical Guide. Prentice-Hall, Inc., 1994.

[101] Francisca Losavio, Ledis Chirinos, Nicole Lévy, and Amar
Ramdane-Cherif. Quality Characteristics for Software Archi-
tecture. Journal of Object Technology, 2(2):133–150, 2003.

[102] Francisco J. Lucas, Fernando Molina, and Ambrosio Toval. A
systematic review of UML model consistency management . In-
formation and Software Technology, 51(12):1631–1645, 2009.

[103] No Magic. MagicDraw, 2014. URL http://www.nomagic.com/

products/magicdraw.html.

[104] Florian Mantz. Syntactic Quality Assurance Techniques for
Software Models. Master’s thesis, Department of Mathemat-
ics and Computing Science, Philipps-University Marburg, Ger-
many, 2009.

380

http://www.win.tue.nl/~clange/papers/Thesis_CLange.pdf
http://www.win.tue.nl/~clange/papers/Thesis_CLange.pdf
http://www.langomat.de/research/thesis/thesis.pdf
http://www.langomat.de/research/thesis/thesis.pdf
http://www.nomagic.com/products/magicdraw.html
http://www.nomagic.com/products/magicdraw.html

[105] M. Marchesi. OOA Metrics for the Unified Modeling Lan-
guage. In Proceedings of the Second Euromicro Conference on Soft-
ware Maintenance and Reengineering, pages 67–73, 1998.

[106] Slavisa Marković. Composition of UML Described Refactoring
Rules. In OCL and Model Driven Engineering, UML 2004 Confer-
ence Workshop, pages 45–59, 2004.

[107] Slaviša Marković and Thomas Baar. Refactoring OCL Anno-
tated UML Class Diagrams. Software and Systems Modeling, 7:
25–47, 2008.

[108] R.C. Martin. OO Design Quality Metrics: An Analysis of De-
pendencies. In Workshop Pragmatic and Theoretical Directions in
Object-Oriented Software Metrics, 1994.

[109] Robert Cecil Martin. Designing Object-Oriented C++ Applications.
Prentice Hall, 1995.

[110] Robert Cecil Martin. Agile Software Development, Principles, Pat-
terns, and Practices. Prentice Hall, 2003.

[111] T.J. McCabe. A Complexity Measure. Software Engineering, IEEE
Transactions on, SE-2(4):308–320, Dec 1976.

[112] Jim A. McCall, Paul K. Richards, and Gene F. Walters. Factors
in Software Quality. Volume I. Concepts and Definitions of Soft-
ware Quality. Technical Report ADA049014, General Electric
Co. Sunnyvale California, 1977.

[113] Jacqueline A. McQuillan and James F. Power. On the Applica-
tion of Software Metrics to UML Models. In Thomas Kühne, ed-
itor, Models in Software Engineering, volume 4364 of LNCS, pages
217–226. Springer, 2007.

[114] Tom Mens, Gabriele Taentzer, and Dirk Müller. Model-Driven
Software Refactoring. In J. Rech and C. Bunse, editors,
Model-Driven Software Development: Integrating Quality Assur-
ance, pages 170–203. IGI Global, Hershey, 2008.

[115] David Miranda, Marcela Genero, and Mario Piattini. Empirical
Validation of Metrics for UML Statechart Diagrams. In Olivier
Camp, JoaquimB.L. Filipe, Slimane Hammoudi, and Mario Pi-
attini, editors, International Conference on Enterprise Information
Systems (ICEIS), pages 101–108. Springer Netherlands, 2005.

[116] Parastoo Mohagheghi, Vegard Dehlen, and Tor Neple. Defini-
tions and Approaches to Model Quality in Model-Based Soft-
ware Development - A Review of Literature. Information and
Software Technology, 51(12):1646–1669, 2009.

381

[117] G.C. Murphy, D. Notkin, and K.J. Sullivan. Software Reflexion
Models: Bridging the Gap Between Design and Implementation.
Software Engineering, IEEE Transactions on, 27(4):364–380, 2001.

[118] Mel O’Cinneide and Paddy Nixon. Composite Refactorings for
Java Programs. In Proc. of Workshop on Formal Techniques for Java
Programs at ECOOP 2000, pages 129–135, 2000.

[119] Bernd Oestereich. Die UML 2.0 Kurzreferenz für die Praxis. Old-
enbourg Verlag, 2004.

[120] OMG. Meta-Object Facility (MOF), 2014. URL http://www.omg.

org/mof/.

[121] OMG. Object Constraint Language (OCL), 2014. URL http:

//www.omg.org/spec/OCL/.

[122] OMG. Object Management Group, 2014. URL http://www.omg.

org/.

[123] OMG. Unified Modeling Language (UML), 2014. URL http:

//www.uml.org/.

[124] OMG. UML 2.4.1 Superstructure, 2014. URL http://www.omg.

org/spec/UML/2.4.1/.

[125] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, Champaign,
IL, USA, 1992.

[126] Oracle. Java, 2014. URL http://www.java.com/.

[127] Jan Philipps and Bernhard Rumpe. Roots of Refactoring. In
Kenneth Baclavski and Haim Kilov, editors, Proc. 10th OOPSLA
Workshop on Behavioral Semantics, pages 187–199. Northeastern
University, 2001.

[128] Damien Pollet, Didier Vojtisek, and Jean-Marc Jézéquel. OCL as
a Core UML Transformation Language. In WITUML: Workshop
on Integration and Transformation of UML models (held at ECOOP
2002), Malaga, Spain, 2002.

[129] Ivan Porres. Model Refactorings as Rule-Based Update Trans-
formations. In Proc. UML 2003: 6th International Conference on the
Unified Modeling Language, volume 2863 of LNCS, pages 159–174.
Springer, 2003.

[130] Alexander Pretschner and Wolfgang Prenninger. Computing
refactorings of state machines. Software and Systems Modeling, 6
(4):381–399, 2007.

382

http://www.omg.org/mof/
http://www.omg.org/mof/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.omg.org/
http://www.omg.org/
http://www.uml.org/
http://www.uml.org/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.java.com/

[131] Jörg Rech and Sebastian Weber. Werkzeuge zur Ermittlung
von Software-Produktmetriken und Qualitätsdefekten. Techni-
cal Report 108.05/D, Fraunhofer Institut Experimentelles Soft-
ware Engineering, 2005.

[132] Jan Reimann, Mirko Seifert, and Uwe Aßmann. Role-Based
Generic Model Refactoring. In Model Driven Engineering Lan-
guages and Systems, 13th International Conference, MoDELS 2010,
LNCS, pages 78–92. Springer, 2010.

[133] Arthur J Riel. Object-Oriented Design Heuristics. Addison-Wesley
Longman Publishing Co., Inc., 1996.

[134] Donald B Roberts. Practical Analysis for Refactoring. PhD the-
sis, University of Illinois at Urbana-Champaign, Champaign, IL,
USA, 1999.

[135] Emmad I. M. Saadeh. Fine-grained Transformations for Refactoring.
PhD thesis, University of Pretoria, South Africa, 2009.

[136] Markku Sakkinen. Disciplined Inheritance. In ECOOP, vol-
ume 89, pages 39–56, 1989.

[137] Hans Schippers, Pieter Van Gorp, and Dirk Janssens. Lever-
aging UML Profiles to Generate Plugins From Visual Model
Transformations. Electronic Notes in Theoretical Computer Science,
127(3):5 – 16, 2005.

[138] Lars Schneider. Development of a Refactoring Plug-in for the
Eclipse Modeling Framework. Master’s thesis, Department of
Mathematics and Computing Science, Philipps-University Mar-
burg, Germany, 2009.

[139] Ken Schwaber and Mike Beedle. Agile Software Development with
Scrum. Prentice Hall, 2001.

[140] Bran Selic. A Systematic Approach to Domain-Specific Lan-
guage Design Using UML. In 10th IEEE International Symposium
on Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC), pages 2–9, 2007.

[141] Philipp Seuring. Design and Implementation of a UML Model
Refactoring Tool. Master’s thesis, Hasso Plattner Institute for
Software Systems Engineering at the University of Potsdam,
2005.

[142] Siemens. Siemens Corporate Technology (CT), 2014. URL http:

//www.ct.siemens.de.

[143] Ian Sommerville. Software Engineering, 9th Edition. Addison-
Wesley, 2010.

383

http://www.ct.siemens.de
http://www.ct.siemens.de

[144] Dave Steinberg, Frank Budinsky, Marcelo Patenostro, and
Ed Merks. EMF: Eclipse Modeling Framework, 2nd Edition. Addi-
son Wesley, 2008.

[145] Harald Störrle. On the Impact of Layout Quality to Under-
standing UML Diagrams. In Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 135–142, 2011.

[146] Harald Störrle. Towards clone detection in UML domain mod-
els. Software & Systems Modeling, 12(2):307–329, 2013.

[147] G. Sunyé, D. Pollet, Y. Le Traon, and J. Jézéquel. Refactoring
UML models. In Proc. UML 2001: 4th International Conference
on the Unified Modeling Language, volume 2185 of LNCS, pages
134–148. Springer, 2001.

[148] Gabriele Taentzer. AGG: A Tool Environment for Algebraic
Graph Transformation. In Manfred Nagl, Andreas Schürr, and
Manfred Münch, editors, Applications of Graph Transformations
with Industrial Relevance, volume 1779 of LNCS, pages 481–488.
Springer Berlin Heidelberg, 2000.

[149] Gabriele Taentzer. Towards Generating Domain-Specific Model
Editors with Complex Editing Commands. In In Proc. Intern.
Workshop Eclipse Technology eXchange(eTX), 2006.

[150] Mathupayas Thongmak and Pornsiri Muenchaisri. Using UML
Metamodel to Specify Patterns of Design Refactorings. In Pro-
ceedings of the 8th National Computer Science and Engineering Con-
ference (NCSEC), 2004.

[151] Bhuvan Unhelkar. Verification and Validation for Quality of UML
2.0 Models. Wiley-Interscience, 2005.

[152] Carnegy Mellon University. Software Engineering Institute
(CMU/SEI), 2014. URL http://www.sei.cmu.edu/.

[153] Marcel van Amstel, Mark van den Brand, and Phu H.
Nguyen. Metrics for Model Transformations. In Ninth Belgian-
Netherlands Software Evolution Workshop (BENEVOL), 2010.

[154] Heiko van Elsuwe and Doris Schmedding. Metriken für UML-
Modelle. Informatik Forschung und Entwicklung, 18(1):22–31,
2003.

[155] Norman G. Vinson and Janice A. Singer. A Practical Guide
to Ethical Research Involving Humans. In Forrest Shull, Dag
Sjøberg, and Janice A. Singer, editors, Guide to Advanced Empiri-
cal Software Engineering, pages 229–256. Springer, 2008.

384

http://www.sei.cmu.edu/

[156] Markus Völter, Thomas Stahl, Jorn Bettin, Arno Haase, and Si-
mon Helsen. Model-Driven Software Development: Technology, En-
gineering, Management. John Wiley, 2006.

[157] Yair Wand and Ron Weber. Research Commentary: Information
Systems and Conceptual Modeling–A Research Agenda. Infor-
mation Systems Research, 13(4):363–376, 2002.

[158] Manuel Wimmer, Salvador Martínez, Frédéric Jouault, and
Jordi Cabot. A Catalogue of Refactorings for Model-to-Model
Transformations. Journal of Object Technology, 11(2):21–40, 2012.

[159] Niklaus Wirth. What Can We Do about the Unnecessary Diver-
sity of Notation for Syntactic Definitions? Communications of the
ACM, 20(11):822–823, 1977.

[160] Jing Zhang, Yuehua Lin, and Jeff Gray. Generic and Domain-
Specific Model Refactoring Using a Model Transformation
Engine. In Sami Beydeda, Matthias Book, and Volker
Gruhn, editors, Model-driven Software Development, pages 199–
217. Springer, 2005.

[161] Min Zhang, Nathan Baddoo, Paul Wernick, and Tracy Hall. Im-
proving the Precision of Fowler’s Definitions of Bad Smells. In
Software Engineering Workshop 2008, pages 161–166. IEEE, 2008.

385

	Citation
	Dedication
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	1 Introduction
	A Structured Quality Assurance Process for Software Models
	2 Introduction to Part I
	3 A Structured Model Quality Assurance Process
	4 Model Quality and Model Quality Aspects
	5 Selected Model Quality Assurance Techniques
	6 Example Application Cases
	7 Composite Model Refactoring
	8 Conclusion and Future Work

	A Flexible Tool Environment for Quality Assurance in the Eclipse Modeling Project
	9 Introduction to Part II
	10 Basic technologies and state-of-the-art
	11 Requirements, design and architecture
	12 Example Applications
	13 Example Specifications
	14 Tool Evaluation
	15 Conclusion and Future Work

	16 Thesis Conclusion
	Appendices
	A A catalog on UML class model metrics
	B A catalog on UML class model smells
	C A catalog on UML class model refactorings
	D Specifications of UML class model smells
	E Specifications of UML class model refactorings
	F Implementations of UML model refactorings
	G Study material experiment Ex_App
	H Study material experiment Ex_Spec

