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Abstract. Model Transformations have been called the “heart and soul”
of Model-Driven software development. However, they take a lot of effort
to build, verify, analyze, and debug. It is thus imperative to develop good
reuse strategies that address issues specific to model transformations.
Some of the effective reuse strategies are adopted from other domains,
specifically, programming languages. Others are custom developed for
models. In this paper, we survey techiques from both categories.
Specifically, we present two techniques adoped from the PL world: sub-
typing and mapping, and then two techniques, lifting and aggregating,
that are novel in the modeling world. Subtyping is a way to reuse a
transformation for different - but similar - input modelling languages.
Mapping a transformation designed for single models reuses it for model
collections, such as megamodels. Lifting a transformation reuses it for
aggregate representations of models, such as product lines. Aggregating
reuses both transformation fragments (during transformation creation)
and partial execution results (during transformation execution) across
multiple transformations.
We then point to potential new directions for research in reuse that draw
on the strengths of the programming and the modeling worlds.

1 Introduction

Model-Driven Engineering (MDE) is a powerful approach used in industry for
managing the complexity of large scale software development. MDE helps man-
age this complexity by using models to raise the level of abstraction at which
developers build and analyze software and transformations to automate the var-
ious engineering tasks that apply to models. Model Transformations have been
called the “heart and soul” of Model-Driven software development [30], and they
are used to perform various manipulations on models, such as adding detail,
refactoring, translating to a different formalism, generating code, etc. They have
certain particular characteristics: (1) They are aimed, at least in principle, to
accomplish a well-defined one-step “task” with a specific intent. Transformations
are often chained together to form more complex tasks, much like pipelining
processes in Unix. (2) They are also strongly typed, by the types of models they
take as input and produce as output. (3) Since models are essentially typed



graphs, transformations are often implemented using specialized languages that
allow easy manipulation of graphs.

Because transformations are central to success of MDE, it is imperative to
develop good reuse strategies for them. Since transformations are specialized
programs, any attempt to study transformation reuse must answer the question:
how is transformation reuse different from or similar to program reuse? This
implies two perspectives of model transformation reuse. On the one hand, we
can approach it as a problem of adapting, generalizing and/or “reinventing”
techniques already understood in the context of program reuse. On the other
hand, we can identify areas in which the MDE setting provides opportunities for
creating novel reuse techniques, specific to the kinds of abstractions and usage
scenarios found in modelling.

In this paper, we attempt to study transformation reuse from both of these
perspectives, by illustrating examples of reuse mechanisms in each one. We show
two examples of techniques, namely subtyping and mapping, that are adapted
from program reuse. Specifically: (1) subtyping is a way to reuse a transforma-
tion for different – but similar – input modelling languages; and (2) mapping a
transformation designed for single models reuses it for model collections, such as
specialized model collections used in MDE called megamodels. We then show two
MDE-specific reuse techniques, namely, lifting and aggregating that leverage the
the unique way in which MDE represents variability. Specifically: (3) lifting a
transformation reuses it for aggregate representations of models, such as product
lines; and (4) aggregating reuses both transformation fragments (during transfor-
mation creation) and partial execution results (during transformation execution)
across multiple transformations. To our best knowledge, these techniques do not
have any correspondences in programming.

A detailed survey of the state of the art in model transformation reuse can
be found in [16]. Our specific aim is to explore the different ways of approaching
the problem of transformation reuse and to study its differences and similar-
ities from well-understood approaches in program reuse. We assume that the
reader is familiar with standard MDE concepts such as models, meta-models
and transformations. For a good reference on these, please see [27].

The rest of this paper is organized as follows: In Sec. 2, we describe an exam-
ple transformation which will be used to illustrate the different reuse strategies.
In Sec. 3, we describe approaches that are adapted from program reuse. In Sec. 4,
we describe novel reuse approaches that arise from the unique characteristics of
MDE. We conclude in Sec. 5 with a discussion of how further progress can be
achieved in research on transformation reuse.

2 Example Transformation

We begin with the following example transformation called “Fold Entry Ac-
tion” [23] referring to it as FoldEntry. Fig. 1(a) shows the signature of the
transformation. It takes a state machine as input and refactors it by moving
common actions on incoming transitions to a state into the entry action for the
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Fig. 1. (a) The signature of transformation FoldEntry; (b) The signature of transfor-
mation SMmatch.
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Fig. 2. The rule implementing the FoldEntry transformation to refactor a state ma-
chine.

state to produce the output state machine. Fig. 2 shows a graph transformation
rule that implements FoldEntry. Specifically, the rule is applied to a state ma-
chine by attempting to match it to the location where some state, x, has two
incoming transitions with a common action, a, as depicted in the LHS of the
rule in the middle of Fig. 2. Then the matched portion is replaced with the RHS
of the rule (on the right of the figure) which deletes action a from the transitions
and makes it the entry action of state x. The negative application conditions
(NACs, on the left of Fig. 2) prevent the rule from being applied when state x
already has an entry action (NAC1) or when there are more than two incoming
transitions to it (NAC2)1. The transformation is executed by applying the rule
RF to the given state machine G until it can no longer be applied, resulting in
a new state machine H; we symbolize this as G RF=⇒ H.

FoldEntry is the simplest type of model transformation – it takes only a sin-
gle model and produces a single model; however, more complex transformation
signatures are possible. For example, Fig. 1(b) shows the signature of SMmatch
(implementation not shown) that takes two state machines as input as produces
a model relationship (i.e., a mapping) between them as output. In the rest of this
paper, we illustrate transformation reuse scenarios using these example trans-
formations.

1 The general case allows moving the action if it is present in all incoming transitions
but we limit it to two transitions for simplicity.
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3 Reuse from Programming Languages

In this section, we describe reuse mechanisms that are well understood for pro-
grams and were adapted for model transformations.

3.1 Subtyping

In this section, we discuss model transformation reuse through subtyping.
Subtyping is common a reuse mechanism defined through programming type

theory [19]. For example, Int is a subtype of Real, so any function written to
accept Reals should also work for Ints. The simplest form of subtyping seman-
tically defines a subset of values. This is the case with Int and Real. A more
sophisticated form of subtyping is called coercive subtyping. Here, one type can
count as a subtype of another if there exists an implicit type conversion func-
tion. For example, using an Int expression directly in a print statement may be
possible by coercing the Int into a String using a conversion.

The adaption of simple subset-based approaches for model subtyping to sup-
port transformation reuse has been studied. Given a transformation F : T → T ′,
if we know that another type S is a subtype of T then F should be reusable for
inputs of type S. Generally speaking, this works whenever an S model contains
all information that F relies on to operate correctly. Interestingly, S need not
be a subset of T and we illustrate this below. With model types, we require a
relation S <: T between metamodels (metamodel of a type is indicated by bold
font) that ensures that S is a subtype of T .

Kuehne [14,15] has studied the subtype relation from a theoretical perspec-
tive. Several works provide practical definitions for the subtype relation. Steel
[31] was the first to propose a set of syntactic matching rules between metamod-
els. To maximize reuse, Sen et al. [28,29] recognized the importance of identifying
the effective model type of a transformation: the minimal subset of the elements
of the input metamodel that is needed for the transformation to function cor-
rectly. They present an algorithm for deriving effective model types through
static analysis of a model transformation’s code. In later work, Guy et al, [12]
improved on Steel’s matching rules as well as defining a number of variants of
the subtype matching relationship (which they call isomorphic model subtyping).
Non-isomorphic sub-typing allows the definition of an explicit model adaptation
function to translate instances of S into instances of T. Of particular interest
are bi-directional model adaptations. The paper further distinguishes (on a sep-
arate dimension) total and partial sub-typing. Total subtyping corresponds to
the usual case. Partial subtyping allows the subtype to reuse only a subset of
transformations by satisfying the subtyping relation only for the effective model
types of these transformations.

To illustrate transformation reuse through simple subtyping, consider the
state machine metamodels shown in Fig. 3. We define subtyping matching rules
as follows: S <: T iff (1) all component (i.e., element, attribute and edge) types
in S are also found in T; and (2) the multiplicities on component types in S are
no less constraining than those in T.
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Fig. 3. A state machine metamodel M0 and three variants.

Rule (1) means that S models have all components of T models but may have
more. Rule (2) means that the number of occurrences of components in S models
conforms to the constraints on the number of occurrences of these components
allowable in T models. The intuition is that if S <: T and a transformation
written for T inputs is given an S model, it will still run since it has access to
all component types it expects (Rule 1) and the number of occurrences of these
components it expects (Rule 2).

If we check these rules on Fig. 3, we find that M1 is a valid subtype of M0 while
neither M2 (violates Rule (2) on number of transition actions) nor M3 (violates
Rule (2) on number of start states) are valid subtypes of M0. Indeed, our example
transformation FoldEntry (written for M0) works for M1 models but not for M2
models because the rule (see Fig. 2) assumes at most a single transition action
and will behave unpredictably when faced with multiple transition actions. In-
terestingly, FoldEntry would work correctly on an M3 model despite that fact
that it violates the subtyping rules. This is because it doesn’t “care” about the
number of start states. This points to a weakness of the simple subtyping ap-
proach – it is overly conservative and may disallow reuse for transformations
that can tolerate specific violations.

Coercive Model Subtyping The existing work on model subtyping focuses
on a simple notion of subtype in which the subtype can be directly substituted
for the supertype in a transformation. In our work [10], we have developed the
more general notion of coercive model subtyping.

Definition 1 (Coercive Model Typing System) A model typing system is
coercive iff it contains a distinguished subset of unary operators called conversion
operators satisfying the following properties:

1. For every type T , the identity operator idT : T → T defined as ∀x ∈ T ·
idT (x) = x is a conversion operator.
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FoldEntryM0

M1M2

subtypeComposeActions

Fig. 4. A coercive subtyping scenario.

2. For every pair F : T → T ′ and G : T ′ → T ′′ of conversion operators, the
sequential composition (F ;G) : T → T ′′ is a conversion operator.

In any coercive subtyping scheme, there may be different sequences of conver-
sions that can lead from one type to another. Thus, a set of conversion functions
is desired to be coherent, i.e., yielding the same outcome regardless of which con-
version sequence is taken. In general, coherence is defined for pairs F : T → T ′,
G : T → T ′ of conversion transformations, requiring that F is behaviorally
equivalent to G, that is, ∀x : T · F (x) = G(x).

For example, in Fig. 4 we show the three model types from Fig. 3. Type M1

is related to M0 by the subtyping relation discussed above, and FoldEntry is
shown as taking M0 both as input and output. In addition, the transformation
ComposeActions takes M2 models as input and produces M0 models. The trans-
formation composes the set of actions on each transition into a single combined
action. The dashed ovals are used to indicate that this is a designated conver-
sion transformation, to be used for type coercions. Specifically, this means that
FoldEntry can be used directly with inputs of type M2 because the coercion
system will precompose it with ComposeActions. Coherence is not an issue in
this small example since there is only one way coerce M2 into M0. This example
illustrates how coercive subtyping can allow for more transformation reuse op-
portunities than simple subtyping alone. In fact, simple subtyping can be viewed
as a special case of coercive subtyping where the conversion transformation is au-
tomatically generated from the subtyping relation. In the case of M1, this means
that the conversion retypes FinalState elements as State elements.

We have implemented a coercive model typing system within our type-
driven interactive model management tool called Model Management INTer-
active (MMINT ) [10]. The tool assists the user in reusing transformations by
providing a dynamically generated list of usable transformations for a given
input model by computing all possible coercions using conversion transforma-
tions. In addition, runtime checking for coherence is performed by ensuring that
all possible coercion paths produce the same output for the given input.

3.2 Mapping

In this section, we show how the map (sometimes called fold) operator provided
in many modern programming languages to reuse functions for collections such
as lists can also allow the reuse of transformations in MDE [24].
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Fig. 5. Mapping FoldEntry and then SMmatch over the megamodel CarControl of state
machines.

A megamodel [3] is a kind of model that is used to represent collections of
models and their relationships at a high level of abstraction. Here the nodes
represent models, and edges represent relationships between the models. For
example, the bottom left box in Fig. 5 is the megamodel CarControl of state
machine models in a hypothetical automotive system. Megamodels are used in
the activity of Model Management [2] – a field that has emerged to help deal with
the accidental complexity caused by the proliferation of models during software
development.

The usual behaviour of the map operation is to traverse a collection (e.g.,
list, tree, etc.) and apply a function to the value at each node in the collection.
The result is a collection with the same size and structure as the original with
the function output value at each node. For example, given the list of integers
L = [10, 13, 4, 5] and the function Double that takes an integer and doubles it,
applying map with Double to L yields the list [20, 26, 8, 10]. If the function has
more than one argument, the mapped version can take a collection (with the
same size and structure) for each argument, and the function is applied at a
given node in the collection using the value at that node in each argument in
the collection.

We have adapted this operator to allow model transformations to be reused
for megamodels [24]. Since a transformation signature is a graph, applying a
transformation to each node of a megamodel is not possible. Instead, the map

operator for megamodels applies the transformation for every possible binding
of the input part of the signature in the input megamodel(s). The collection of
outputs from these applications forms the output megamodel.

When the transformation signature consists of a single input and output
type and uses a single input megamodel which happens to be a set (i.e., no
relationships) of instances of the input type, then our map produces the same
result as a “programming language” map operator applied to a set.

However, in the general case, map is more complex and differs from the be-
haviour of the standard map. In particular,

(1) The output megamodel may not have the same structure as the input
megamodel since the structure is dependent on the output signature of the trans-
formation.
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(2) The size of the output may not be equal to the size of the input. For
example, if a transformation takes two models as input and produces one as its
output, applying map to it on a megamodel with n models will produce as many
as n × (n − 1) output models since each pair of input models may be matched
in a binding. At the other extreme, if no input models form a binding then the
output will be the empty megamodel.

(3) When there are multiple input megamodels, each binding of the input
signature is split across the input megamodels in a user-definable way.

(4) When the transformation is commutative (i.e., the order of inputs does
not affect the result), we want to avoid replication in the output due to isomor-
phic bindings.

Some of these principles are illustrated in Fig. 5 showing the use of map to
first apply FoldEntry and then SMmatch to megamodel CarControl. Mapping
FoldEntry binds to each of the four state machines in CarControl and produces
a new megamodel CarControl′ with corresponding refactored state machines.
Then mapping SMmatch over CarControl′ binds it to every pair of state machines
to produce CarControl′′. Although there are twelve possible ways to bind the
inputs of SMmatch to the content of CarControl′, the result shows only four
relationships. This is because SMmatch is commutative (eliminating six possible
bindings), and only four of the remaining six applications produced a non-empty
result.

We have implemented map for megamodels in our MMINT model manage-
ment tool [10] along with two other common operators: filter for extracting
subsets of a megamodel satisfying a given property and reduce for aggregat-
ing the models in a megamodel using a given model merge transformation. We
have shown that many common model management scenarios can be accom-
plished using these three operators in different combinations. The details are
given in [24].

3.3 Other Approaches

Generic programming [18] is a technique in which parts of a concrete algorithm
are abstracted as parameters to an abstract algorithm. This way, the same al-
gorithm can be reused in many contexts with minimal variation. A classical
example is an abstract Sort routine that can sort any type of object as long as
it implements a lessThan operator.

De Lara et al. [7] and Rose et al. [21] proposed an idea they call model
concepts. The idea of this model transformation reuse approach, inspired by
generic programming, is to first define an abstract version of a transformation
on a generic metamodel that represents the minimal context in which the trans-
formation could possibly be defined. Then the transformation can be reused
for specific concrete metamodels by mapping the concrete metamodel to the
generic metamodel and using this mapping to automatically specialize the ab-
stract transformation.
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Fig. 6. Example washing machine controller product line W .

4 Novel Reuse Mechanisms

In this section, we describe reuse mechanisms that were created specifically for
model transformations.

4.1 Lifting

In this section, we discuss the approach of reusing transformations for different
products within a software product line.

Software Product Line Engineering (SPLE) is an approach to manage large
sets of software product variants. This is done by modelling explicitly the vari-
ants’ commonalities and variabilities as a single conceptual unit [4]. Most existing
transformations (refactoring, code generation, etc.) are developed for individual
product models, not taking SPLE variability constructs into account.

Consider the example product lineW for washing machine controllers, shown
in Fig. 6. W is an annotative product line [5,13,22], defined using three parts:

(a) The feature model defines the set of features in W . Specifically, it defines
three optional features that can be added to a basic washing machine:Heat adds
hot water washing, Dry adds automatic drying, and Delay adds the ability to
delay the start time of the wash. In addition, the feature model defines relation-
ships between features, which determine the set of valid configurations ρ of W ,
denoted by Conf(W ). In W , Heat and Delay are mutually exclusive (shown
by the Excludes constraint), and so ρ1 ={Wash, Heat, Dry}, ρ2 ={Wash,
Dry} and ρ3 ={Wash} are some of its valid configurations. Formally, the se-
mantics of the feature model ofW is a propositional formula ΦW over the feature
variables [6], specifically the formula ΦW =Wash∧ ¬(Heat∧Delay).

(b) The domain model of W is a UML state machine which specifies that
after initiating and locking the washer, a basic wash begins or a waiting period
is initiated, either for heating the water or for a delayed wash. Then the washing
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takes place, followed, optionally, by drying. If drying or heating was used, the
clothes are cooled and the washer is unlocked, terminating the process.

(c) Depending on which of the features have been selected, only some parts
of this process are available. The propositional formulas in boxes throughout
the domain model indicate the presence conditions [5] for different model ele-
ments, i.e., the configurations of features under which the element is present in
a product. For example, the transition from Locking to Waiting is only present
if Heat or Delay is selected; it is guarded by heatingEnabled and has action
HeaterOn() only when Heat is selected, while it is guarded by delayEnabled

only if Delay is selected. A particular product can be derived from W by setting
the variables in the presence conditions according to some valid configuration
and discarding any elements for which the presence condition evaluates to false.
For example, the product derived using only the feature Wash will go through
the states Locking, Washing and Unlocking, while the product derived using the
features Wash and Dry will go through the states Locking, Washing, Drying
and Unlocking.

In [23], we proposed a method of lifting transformations, in order to make
them variability-aware. The method applies to arbitrary transformations and
model-based product lines. Adapting a transformation R, such as the one in
Fig. 2, so that it can be applied to product lines, such as W , results in its lifted
version, denoted by R↑. Applying R↑ to a source product line should result in a
target product line with the same set of products as it would if R were applied
separately to each product in the source product line. Formally:

Definition 2 (Correctness of lifting) Let a rule R and a product line P be

given. R↑ is a correct lifting of R iff (1) for all rule applications P R↑

=⇒ P ′,
Conf(P ′) = Conf(P ), and (2) for all configurations ρ in Conf(P ), M R

=⇒ M ′,
where M is derived from P , and M ′ is derived from P ′ under ρ.

Transformations are lifted automatically, i.e., no manual changes are required
to enable them to apply to entire product lines. Instead, we reinterpret the
semantics of the transformation engine. Lifting is described in detail in [23].
Here, we illustrate it by applying the lifted version R↑

F of the rule in Fig. 2
to the example product line W . The result is shown in Fig. 7, with shading
indicating changed presence conditions. There are two matching sites for the
rule: K1 is the match on the two incoming transitions to state Washing with
common action wash.Start() and K2 matches on the incoming transitions to
state UnLocking with common action QuickCool().

Given a matching site, the first step is to check the applicability condition,
i.e., to make sure that at least one product can be derived from W such that the
non-lifted transformation can be applied at K. For example, there is no valid
configuration of W that contains the entire matching site K2 since QuickCool()
cannot appear on both incoming transitions to Unlocking at once. Therefore,
even though there exists a match, the lifted rule is not applied.

For K1, the applicability condition is satisfied only in those products that
have Wash, Delay and not Heat. This is because when Heat is selected, the
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Fig. 7. The result of applying the lifted rule R↑
F from Fig. 2 to the product line W in

Fig. 6.

entry action TempCheck() occurs, and this triggers NAC1, so the rule is not ap-
plicable. Since Delay and Heat are mutually exclusive, the configurations of
W that satisfy the above condition are uniquely characterized by the formula
Φapply =Delay. In other words, the transformation is applicable for those con-
figurations where Φapply is true. Thus, elements added by the transformation,
i.e., the new entry action wash.Start() for state Washing, should have Φapply

as their presence condition, i.e., Delay. Conversely, elements deleted by the
transformation should only be deleted in configurations where Φapply is true and
kept for others. Thus, the presence condition of the action on the transition
out of Locking when Delay is changed to ¬Φapply, i.e., to ¬Delay. Similarly,
the presence condition of the one out of Waiting becomes Heat∧¬Φapply, i.e.,
Heat∧¬Delay. The resulting domain model is shown in Fig. 7.

Lifting has been implemented for transformations expressed in the Henshin
graph transformation language [1], using the Z3 SMT solver [9] to do the ap-
plicability condition checks. Moreover, we have lifted a subset of DSLTrans, a
full-fledged model transformation language that combines graph-rewriting with
advanced language constructs and is rich enough to implement real-world trans-
formations [17]. Using the lifted version of the DSLTrans engine, we were able
to execute an industrial-grade model transformation of product lines from the
automotive domain [11].

4.2 Aggregating

In this section, we discuss the approach of reusing transformation fragments to
create transformations with variability, and show how variability-based transfor-
mation can reuse intermediate execution artifacts [33,32].

While lifting addresses variability at the transformation’s inputs and out-
puts, aggregating helps capture and leverage variability in the transformation
itself. We distinguish two points in time where variability in transformations is
encountered: (a) during transformation creation, and (b) during transformation
execution.

When building large transformation systems to perform tasks such as refac-
toring and code generation, developers often end up creating rules that are sim-
ilar but different to each other. SPLE techniques offer a typical solution for
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Fig. 8. Variability-based transformation R̂F , encoding two refactoring variants:
foldEntry, shown in Fig. 2, and foldExit, shown in the bottom.

effectively managing and maintaining such sets of transformation rules, repre-
senting them in a single conceptual artifact. Individual variants can then be
obtained by configuring this artifact. We illustrate this using the example of a
team that wants to create a transformation system for refactoring UML state
machines. Among other refactorings, the team wants to create the transforma-
tion foldEntry, described in Sec. 2, that moves common actions on incoming
transitions to a state into the entry action for the state. The team also wants
to create the transformation foldExit, that moves common actions on outgoing
transitions from a state into the exit action for the state. The two transforma-
tions are similar enough to be considered variants of each other. In order to reuse
their common parts, the team can thus employ SPLE techniques to create the
transformation R̂F in Fig. 8, expressed using the annotative approach described
in Sec. 4.1. Its feature model defines two mutually exclusive features: foldEntry
and foldExit. The two variants are then encoded using presence conditions on
the elements of the domain model of R̂F . Configuring R̂F for ρ1 = {foldEntry}
results in the transformation foldEntry, shown in Fig. 2, whereas configuring
it for ρ2 = {foldExit} results in the transformation foldExit, shown at the
bottom of Fig. 8.

SPLE techniques thus allow developers to reuse model fragments across trans-
formation variants at creation time. For example, the pattern made up of the
states x, x1, x2 is reused in both variants encoded by R̂F . Transformations with
variability, such as R̂F , are called variability-based transformations.

However, variability can be also leveraged at transformation execution time.
To motivate the need for this, consider an aggregate rule such as R̂F used with
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an arbitrary input. In order to execute R̂F , each variant must be matched and
applied individually, using the classic graph-rewriting approach. Effectively, exe-
cuting an aggregate transformation requires configuring all variants and applying
them individually. “Plain” SPLE of transformations thus addresses the concern
of maintainability, without offering any benefits to performance.

In [33], we proposed a technique that lifts the execution of variability-based
transformations. The technique applies a variability-based transformation rule
R̂, such as R̂F , to an input model G without variability. The result should be
an output model H, also without variability, that would be the same as if the
variants encoded by R̂ had been individually applied to G, ordered from largest
to smallest. Formally:

Definition 3 (Correctness of Aggregation) Let a variability-based transfor-

mation rule R̂ and a model G be given. It holds that G R̂
=⇒ H is isomorphic to

Trans(Flat(R̂),G), where: (a) G R̂
=⇒ H is the set of direct applications of R̂ to

G, (b) Flat(R̂) is a function that produces the set R of classical rules that is
encoded by R̂, partially ordered based on the implication of their presence con-
ditions, and (c) Trans(R, G) is a function that applies a set of partially ordered
classical rules R to G.

The direct application of R̂F on an input state machine works in three steps.
First, application sites for the base rule are determined. The base rule comprises
all parts of R̂F without annotations, that is, nodes x1, x2, and x without their
adjacent edges. Consequently, all combinations of three states in the input state
machine are application sites for the base rule. Second, configurations are enu-
merated systematically, which allows augmenting the original application sites
with the variant-specific nodes and edges, yielding full matches. A full match for
the foldEntry variant would bind its two edges, in addition to the node bindings
of a base application site. Third, these full matches are filtered to yield largest
ones. Since both variants of R̂F are equally large, this set is trivial to obtain.
Applying R̂F at all of these largest matches yields the set of direct applications.
Note that the NACs of R̂F cannot be evaluated incrementally. Since their par-
tial checking would lead to false negatives, they have to be checked on the full
matches after the second step (systematic enumeration of configurations).

This application process can offer considerable performance savings since it
considers shared patterns just once. In the case of R̂F , first binding the state
nodes without considering their interrelating edges may produce a potentially
large set of base matches that have to be extended individually. In more sizable
examples, the benefit of considering large common patterns becomes more sig-
nificant. In our experiments on larger rule sets, we were able to show speed ups
between a factor of 4 and 158 [32].

Aggregate rules such as R̂F do not have to be created from scratch. They can
also be derived automatically, using a technique called rule merging. Rule merg-
ing takes a set of rules, identifies similar variants among these rules and unifies
each set of variants into an aggregate rule. In the example, R̂F is the result of
merging the FoldEntry and FoldExit rules. To create R̂F , the common state
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nodes from these rules are unified, whereas variant-specific edges and attributes
are annotated with presence conditions using names derived from the input rules.
The details for this process are described in [32].

We have implemented variability-based rules and their application as an ex-
tension to the Henshin model transformation language [1]. In addition, in our
recent work [34], we have devised a tool environment to address the usability of
variability-based rules. As known from the SPLE domain, the use of annotative
representations poses challenges at design time. Rules with annotations tend to
be larger and contain a greater amount of visual information, which may impair
their readability. Editing presence conditions manually might also give rise to
an increased proneness to errors. Inspired by the paradigm of virtual separation
of concerns [13], our tool environment allows users to view and edit the variants
expressed in an aggregate rule individually, allowing us to mitigate these issues.

4.3 Other Approaches

Some other novel approaches to model transformation reuse focus on composing
transformations either by chaining [36] or by weaving transformation specifica-
tions more invasively [37]. More recently, De Lara et al. [8] have defined a way
of reusing transformations across families of related domain-specific modeling
languages by specifying the transformation at the meta-modeling level used to
define these languages. Kusel et al. [16] provide a good overview and empirical
evaluation of some of these approaches.

5 Discussion and Future Directions

We have explored two perspectives on model transformation reuse: one the one
hand, program reuse techniques can be adapted for model transformations; on
the other hand, MDE offers opportunities for novel reuse techniques that leverage
the specific affordances of its higher level of abstraction. For each perspective,
we have discussed two such approaches: subtyping and mapping, and lifting and
aggregating, respectively.

How can these two perspectives guide research in the area of model transfor-
mation reuse, as well as program reuse in general? Reflection on the four reuse
approaches presented in this paper points us to some directions.

Transformation Intent. Since transformations are specialized programs, any
attempt to study transformation reuse must answer the question: how is trans-
formation reuse different from or similar to program reuse? Programs are clearly
more general and thus more complex. But transformations, being Unix-like in
the sense that they are typically intended for a one-step “task”, typically have
clearly identified intents. We observe that the preservation of intent is a common
and central concern for all reuse techniques presented here: (1) subtyping aims
to preserve intent when applied to subtypes of the original input/output model
types of the transformation, (2) mapping aims to have the same intended effect
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to a collection of models, (3) lifting affects a set of variants in the same way,
while (4) the main goal of aggregation is to preserve the intent of individual
sub-structures of transformations. In this last case, intent is in fact explicitly
captured in the aggregate rule’s feature model. We have investigated the effect
of intent for subtyping-based reuse in [26]. We are currently developing a general
strategy for analyzing the soundness and completeness of a given transformation
reuse mechanism with respect to the preservation of transformation intent [25].

Domain Specificity. Progress in model transformation reuse research can also
be achieved by considering the specific requirements for reuse in different soft-
ware engineering disciplines. The techniques presented earlier follow this pat-
tern. Specifically, subtyping and mapping are reuse techniques inspired by the
requirements for reuse in the field of model management [2]; lifting and aggre-
gating specifically tackle issues arising from the need to model variability and
make extensive use of software product line theory [20]. New reuse strategies can
therefore be identified by combining model transformations with the concerns
of other software engineering disciplines. An excellent recent work in this direc-
tion is from Juan De Lara et al. [8], where domain-specificity is used to reuse
transformations defined at the meta-modeling level.

Adapting MDE Techniques to Programs. Some of the special-purpose tech-
niques developed for model transformation reuse can be ported back to the world
of programming languages. For example, Christian Kästner and his colleagues
(see, e.g., [35]) extended static and dynamic program analysis techniques to
handle programs with variability. Yet correctness of the approach needs to be
established for each extension. It would be tremendously exciting to be able to
lift a variety of program analyses (with minimal modifications to their imple-
mentations!) developed for individual projects to apply to product families.

A Parting Thought. Interdisciplinary research can yield interesting insights
and we hope we have demonstrated it somewhat in the exciting field of model
transformation reuse.
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