
Managing Model and Meta-Model Components
with Export and Import Interfaces

Daniel Strüber, Stefan Jurack, Tim Schäfer, Stefan Schulz, Gabriele Taentzer

Philipps-Universität Marburg, Germany,
{strueber,sjurack,timschaefer,schulzs,taentzer}

@informatik.uni-marburg.de

Abstract. Composite modeling provides a modularity mechanism for models. To
facilitate information hiding, it supports the declaration of export and import in-
terfaces at the meta-model and model levels. In this paper, we present a tool set of
wizards and editor extensions that makes composite modeling available to devel-
opers. The tool set is based on the Eclipse Modeling Framework. We demonstrate
its use during the model-driven management of data-oriented applications.

1 Introduction

As the requirements imposed on Model-Driven Engineering (MDE) tools and tech-
niques grow in complexity, so do the involved models, rendering their maintenance,
transformation, and overall management highly challenging. To support developers dur-
ing these tasks, appropriate modularity mechanisms are required [9]. Modularity is a
fundamental software engineering concept with well-established principles that should
ideally inform the design of such mechanisms. Two main principles are: (i) establishing
a separation of concerns into distinct modules, (ii) facilitating information hiding and
restricting visibility between modules by means of explicit interfaces.

In the MDE community, the Eclipse Modeling Framework (EMF) [12] is a widely
used base technology. In EMF, a separation of concerns can be established by distribut-
ing information over a set of related models. Consider the left part of Fig. 1 for a pair of
data models from operational systems for a tourism agency and an airline. The tourism
agency model contains a trip assigned to a flight from the airline model. The dashed
arrow denotes a remote reference: When the travel agency system loads the model, the
flight is represented as a proxy object. In the case of data accesses on the flight, the flight
model is loaded and added to the memory representation of travel model (right part).
All model contents, including critical data such as flight logs and pilots, become visible.

This example highlights a lack of information hiding at the model level in EMF,
in this case resulting in a situation that may compromise security and privacy. Other
affected concerns include performance, analyzability, and collaborative development:
During queries and transformations, considering a large set of models in union may be
inefficient. Since models are not self-contained units, checking static properties of the
individual models is prohibited unless certain restrictions are imposed [1]. A main issue
during collaboration is proneness to inconsistencies. As an example, consider a situation
where a developer deletes a model element from a model, unaware that this element is
referred to from another model. This deletion results in a broken model reference.



Fig. 1: Related models in EMF: before and after proxy resolution.

Fig. 2: Two model components with export and import interfaces.

A modularity mechanism addressing these issues is provided by composite model-
ing [6,16]. A composite model is a set of components where each component comprises
a model with a set of export and import interfaces. Export and import interfaces declare
subsets of model elements offered to and obtained from the environment. In Fig. 2, the
travel agency has an import interface; the airline component has an export interface.
Each model element in the import interface is mapped to a corresponding export ele-
ment (dotted lines). In comparison to Fig. 1, the travel agency component now maintains
the flight and its assigned airports as autonomous, but distinguished objects. We refer to
these objects as delegate objects. Similar to a proxy, a delegate object represents an ob-
ject stored somewhere else. But despite reflecting some of the remote object’s features,
a delegate object has an own identity. Consequently, as shown in our earlier work [16],
components are self-contained units amenable to analysis and collaborative editing.

In this paper, we introduce a tool set that makes composite models available to model
and meta-model developers. The tool set provides an implementation of composite
models that is generic in the sense that it is applicable to any EMF-based host language.
It comprises dedicated wizards plus a set of extensions of a visual meta-model editor,
a generic tree-based model editor, and a model transformation tool. We provide these
tools at http://www.informatik.uni-marburg.de/˜swt/compoemf/.

2 Overview

Consider Fig. 3 for an overview of our tool set. As a starting point, we assume a set of
related meta-models, e.g., for interacting systems or views on the same system. If these
meta-models have not been developed as a components from scratch, they need to be
extended with export and import interfaces (step 1). The resulting components can be

2

http://www.informatik.uni-marburg.de/~swt/compoemf/


subject to editing (step 2). Once their development converges, the meta-model compo-
nents are instantiated by model components (step 3). These components can be queried
and transformed in the same manner as models in typical MDE scenarios (step 4).

Meta-
models

Meta-model
components

Model
components

Model queries, 
transformations

are extended
with interfaces

to become

are edited

are applied
to

1

2

4

Wizards

Meta-
model
editor

Model editorTransformation tool

are edited

3

conform to

Fig. 3: Overview.

Fig. 4 shows two application
meta-models used to specify travel
agency and airline operative sys-
tems; colors and stereotypes can
be temporarily ignored. While these
meta-models share a subset of
common elements, such as classes
Flight and Airport and their at-
tributes, the specifications differ in
the level of detail: The airline meta-
model contains subclasses for char-
ter and scheduled flights as well as
additional attributes for airports. In
our approach, we address such mismatches by allowing individual references and at-
tributes to be exported and imported, and generalization to be flattened.

Fig. 4: Meta-models for travel agency (left half) and airline systems (right half).

(1) Extend meta-models. We provide a set of wizards to introduce export and im-
port interfaces in a set of meta-models. Our wizards, shown in Fig. 5, allow the spec-
ification of a set of classes and features from the input model. A selection of classes
and features to be exported or imported is specified using check-boxes. In the case of
import interfaces, corresponding classes from an export interface have to be selected. A
mapping from import to export elements is automatically derived using a name-based
heuristics; missing mappings can be set by using either drag and drop or buttons.

(2) Edit meta-model components. The meta-model components can be edited us-
ing an extension of EMF’s meta-model editor, the main part being shown in Fig. 4.
The assignment of classes, references, and attributes to interfaces is denoted visually,
using stereotypes and a custom color scheme. In addition, the editor provides dedi-
cated functionality for the manipulation of interfaces, e.g., the (re)assigning of ele-
ments or the creation of new additional interfaces from a selection of elements. In
our implementation of these features, we harnessed the view management of Sirius
(http://www.eclipse.org/sirius) to extend the EMF meta-model editor.

3

http://www.eclipse.org/sirius


Fig. 5: Export and import creation wizards.

(3) Edit model components. The meta-models can now be instantiated. Export and
import relationships can be edited using our extension of EMF’s generic tree-based ed-
itor as shown in Fig. 6. Export and import interfaces, denoted E and I, are displayed
as child nodes of their body models (B). Their included elements are shown as distinct
nodes; to help users trace their relationships, all elements related to the currently se-
lect one are highlighted. To edit the interfaces between models in an integrated visual
representation (see Fig. 2), a customization of the involved editors is required. In our
ongoing work, we develop a framework that allows to reduce the editor customization
overhead. The Sirius view management is a promising prerequisite for this framework.

Fig. 6: Tree-based editors in EMF.

(4) Apply queries and transformations. Existing model query and transformation
tools do not provide dedicated support for interfaces. Therefore, queries and transforma-
tions cannot consider export-import relations between models. To this end, we provide
CompoHenshin, a model transformation tool on top of Henshin, a graph-based model
transformation tool based on EMF. CompoHenshin comprises a visual editor for the

4



Fig. 7: CompoHenshin editor.

specification of composite rules [7] that can be applied to a set of model components.
A composite rule (see Fig. 7) comprises a network rule and a set of object rules. Each
object rule specifies the local change for one of the nodes in the overall set of models.

3 Discussion

Limitations. To support interoperability with existing tools, it is desirable to augment
meta-models and models in a transparent manner: Export and import interfaces should
be added on top of existing models, rather than changing them. In our approach, this is
only possible if the meta-models contain suitable reference classes, such as Flight and
Airport in our example. Otherwise, the meta-models need to be changed to contain
such classes. The potential performance savings during analysis and transformations
largely depend on the considered scenario. The most visible gain is to be expected if
the component of interest is small, while its context is huge. For example, an OCL
constraint can be expressed as a small model (the abstract syntax of the constraint)
referencing a much larger one (the OCL standard library with its operators and literals).
Related work. Kelsen and Ma propose a black-box model modularity mechanism based
on the fragmentation of a meta-model along some of its associations [8]. The approach
by Heidenreich et al. [5] uses a component model and a composition language to ex-
press components, interfaces, and composition steps. These works assume a mandatory
“weaving” step, whereas in our approach imported elements are self-contained objects
reflecting features of a remote counterpart. Other works consider interfaces at the meta-
model level only [17,18] or for particular DSLs [2]. Amálio et al. [1] provide a modu-
larity approach based on proxy nodes, a concept emulating EMF’s proxy mechanism.

A related line of work considers the splitting of a large model into multiple parts.
Garmendia et al. [3] propose a tool to introduce a package structure in a model based on
annotations in the meta-model. This tool can be used to explore large models [4]. Schei-
dgen et al. [10,11] provide a technique and tool for the fragmentation of large models
for fast persistence and loading. The technique is based on annotating fragmentation
points in the underlying meta-model. In our own work, we have applied clustering to
optimize cohesion during splitting [13] and information retrieval techniques to consider
the user intention during splitting by retrieving it from given text documents [14,15].

5



4 Conclusion

We have proposed a tool set that facilitates information hiding at the level of meta-
models and models. The distinguishing feature of our tool set is that model elements
imported from somewhere else are managed as distinct objects with their own identity.
By maintaining modules as self-contained units, our approach may facilitate efficient
static analysis, queries, and transformations, and developer independence during col-
laboration. In the future, we intend to evaluate this conjecture on large realistic models.

References
1. Amálio, N., de Lara, J., Guerra, E.: Fragmenta: A theory of fragmentation for MDE. In: Int.

Conf. on Model Driven Engineering, Languages and Systems. pp. 106–115. IEEE (2015)
2. Arifulina, S., Mohr, F., Engels, G., Platenius, M.C., Schafer, W.: Market-specific service

compositions: Specification and matching. In: Services (SERVICES), 2015 IEEE World
Congress on. pp. 333–340. IEEE (2015)

3. Garmendia, A., Guerra, E., Kolovos, D.S., de Lara, J.: EMF Splitter: A Structured Approach
to EMF Modularity. Workshop on Extreme Modeling pp. 22–31 (2014)

4. Garmendia, A., Jiménez-Pastor, A., de Lara, J.: Scalable model exploration through abstrac-
tion and fragmentation strategies. In: BigMDE Workshop on Scalability in Model Driven
Engineering. pp. 21–31. CEUR (2015)

5. Heidenreich, F., Henriksson, J., Johannes, J., Zschaler, S.: On Language-Independent Model
Modularisation. T. Aspect-Oriented Software Development VI pp. 39–82 (2009)

6. Jurack, S., Taentzer, G.: Towards Composite Model Transformations Using Distributed
Graph Transformation Concepts. In: Schürr, A., Selic, B. (eds.) Int. Conf. on Model Driven
Engineering Languages and Systems. pp. 226–240. Springer (2009)

7. Jurack, S., Taentzer, G.: Transformation of Typed Composite Graphs with Inheritance and
Containment Structures. Fundam. Inform. 118(1-2), 97–134 (2012)

8. Kelsen, P., Ma, Q.: A Modular Model Composition Technique. In: Int. Conf. on Fundamental
Approaches to Software Engineering. pp. 173–187. Springer (2010)

9. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara,
J., Ráth, I., Varró, D., Tisi, M., Cabot, J.: A Research Roadmap towards Achieving Scala-
bility in Model Driven Engineering. In: BigMDE Workshop on Scalability in Model Driven
Engineering. p. 2. ACM (2013)

10. Scheidgen, M.: Reference representation techniques for large models. In: BigMDE Work-
shop on Scalability in Model Driven Engineering. pp. 5:1–9. ACM (2013)

11. Scheidgen, M., Zubow, A., Fischer, J., Kolbe, T.H.: Automated and transparent model frag-
mentation for persisting large models. In: Int. Conf. on Model Driven Engineering Languages
and Systems. pp. 102–118. Springer (2012)

12. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling Framework.
Pearson Education (2008)

13. Strüber, D., Lukaszczyk, M., Taentzer, G.: Tool support for model splitting using information
retrieval and model crawling techniques. In: BigMDE Workshop on Scalability in Model
Driven Engineering. pp. 44–47. CEUR (2014)

14. Strüber, D., Rubin, J., Taentzer, G., Chechik, M.: Splitting models using information retrieval
and model crawling techniques. In: Int. Conf. on Fundamental Approaches to Software En-
gineering, pp. 47–62. Springer (2014)

15. Strüber, D., Selter, M., Taentzer, G.: Tool support for clustering large meta-models. In: Big-
MDE Workshop on Scalability in Model Driven Engineering. pp. 7:1–4. ACM (2013)

16. Strüber, D., Taentzer, G., Jurack, S., Schäfer, T.: Towards a distributed modeling process
based on composite models. In: Fundamental Approaches to Software Engineering, pp. 6–
20. Springer (2013)

17. Weisemöller, I., Schürr, A.: Formal definition of MOF 2.0 metamodel components and com-
position. In: Model Driven Engineering Languages and Systems, pp. 386–400. Springer
(2008)

18. Živković, S., Karagiannis, D.: Towards metamodelling-in-the-large: Interface-based compo-
sition for modular metamodel development. In: Enterprise, Business-Process and Informa-
tion Systems Modeling, pp. 413–428. Springer (2015)

6


	Managing Model and Meta-Model Components with Export and Import Interfaces

