26.06.2017 Wie Bakterien sich aus der Falle schrauben

Interdisziplinäres Team der Universitäten Gießen und Marburg entdeckt ungewöhnliche Bewegungsform von Bakterien in Sedimenten

Eine Vielzahl von Bakterien ist mobil und sucht sich gezielt Umgebungen mit besseren Lebensbedingungen. Häufig bewegen sie sich mit Hilfe von langen, korkenzieherförmigen, schnell rotierenden Proteinfilamenten, sogenannten Flagellen. Doch freies Schwimmen ist für viele Bakterien nicht möglich: Sie befinden sich in Sedimenten, im Boden oder müssen sich durch Schleime von Polysacchariden bewegen – zum Beispiel im Darm oder in Biofilmen. Wenn sie dort steckenbleiben, können sie sich mit verblüffenden Bewegungsmustern wieder befreien, wie ein interdisziplinäres Team von Wissenschaftlerinnen und Wissenschaftlern der Universitäten Gießen und Marburg durch Untersuchungen an einem Sedimentbakterium nun zeigt.
Flagellenschraube
Sitzt das Bakterium Shewanella putrefaciens im Sediment fest, befreit es sich selbst. (Abbildung: Ella Maru studio)

Das Team um den Mikrobiologen Prof. Dr. Kai Thormann, Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Gießen, konnte unter dem Mikroskop beobachten, wie sich das Bakterium Shewanella putrefaciens mit Hilfe seiner Flagelle quasi aus der Falle schraubte. Um die Flagelle sichtbar zu machen, hatten die Forscherinnen und Forscher das Flagellenfilament mit stark fluoreszierenden Molekülen gekoppelt. Die marinen Sedimente, in denen Shewanella putrefaciens lebt, simulierten sie durch Polysaccharidstränge. In diesem künstlichen Sediment steckte das Bakterium immer wieder fest und konnte sich nicht mehr durch Schieben oder Ziehen mit der Flagelle befreien. Die Zellen schalteten dann überraschenderweise auf eine andere Bewegungsform um: Sie wickelten die Flagelle um den Zellkörper und die Zelle schraubte sich durch den Kontakt mit der umgebenden Oberfläche rückwärts aus der Falle. Anschließend nahm die Flagelle wieder die ursprüngliche Form an, und das Bakterium bewegte sich wieder im normalen Modus.

Numerische Simulationen in der Arbeitsgruppe des Marburger Physikers Prof. Dr. Bruno Eckhardt, LOEWE-Zentrum SYNMIKRO und Fachbereich Physik der Philipps-Universität Marburg, konnten diese Bewegung des Flagellums reproduzieren und zur Aufklärung des Mechanismus beitragen. So setzt der Wechsel zu der um die Zelle aufgewickelten Form der Flagelle mit einer mechanischen Instabilität in der Nähe des Zellkörpers ein: Sobald die Kraft des Motors auf die Flagelle zu groß wird, knickt die Flagelle ab, nimmt eine andere molekulare Struktur an und bewegt sich in Richtung der Zelle.

Diese Bewegungsart erweitert das Spektrum der Motilität von Bakterien um eine weitere, mit der Mechanik des Flagellums zusammenhängende Bewegungsform. Da eine Vielzahl bakterieller Spezies sich durch strukturierte Lebensräume bewegen muss, gehen die Forscherinnen und Forscher davon aus, dass die nun entdeckte bakterielle Bewegungsforum weitverbreitet und gerade in den bislang wenig untersuchten strukturierten Umgebungen von großer Bedeutung ist.

Gießener und Marburger Wissenschaftlerinnen und Wissenschaftler kooperieren regelmäßig im Rahmen des Forschungscampus Mittelhessen, der gemeinsamen Einrichtung der Justus-Liebig-Universität Gießen, der Philipps-Universität Marburg und der Technischen Hochschule Mittelhessen zur Stärkung der regionalen Verbundbildung insbesondere in der Forschung und der Nachwuchsförderung.
(Pressetext: Caroline Link, JLU)

Originalpublikation: Marco J. Kühn & al.: Bacteria exploit a polymorphic instability of the flagellar filament to escape from traps, Proc Natl Acad Sci USA, online veröffentlicht am 30. Mai 2017; DOI: 10.1073/pnas.1701644114, URL: www.pnas.org/content/early/2017/05/24/1701644114

Kontakt