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James Hamilton put doubt on the quality of the HP filter estimates, and proposed an alternative regression 

approach to decompose trend and cycle of time series (H filter). We investigate the new H filter in detail 

and compare it to the HP filter. We apply both to German GDP time series. We find that in times of huge 

shocks the regular H filter produces unreliable trends. Its Quast-Wolters modification (QWH filter), in 

contrast, does not suffer from this issue. Checking expert benchmark congruency, we find that this 

modification outperforms all parameter constellations of the standard H filter. With a benchmark-specific 

adequate choice of the smoothing factor, in turn, the HP filter outperforms the H filter. The H filter, however, 

outperforms the HP filter with regard to correlation with expert benchmark recession dating. And the H 

filter uniquely outperforms the HP filter in capturing the gap-inflation link, an issue especially important 

for central banks. Overall, our results suggest using the QWH filter among the H filter options, and a 

smoothing factor of 38 for the HP filter. 
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1 Introduction 

The valuation of the position within a business cycle is crucial in many economic contexts. The 

Keynesian idea of stabilising the economy via counter-cyclical economic policy, for instance, 

requires knowledge of whether the economy produces above or below its potential, typically 

captured by positive or negative output gaps. Misjudgement regularly causes harmful cyclical 

interventions.1 The challenge is that potential output is unobservable and has to be estimated. There 

are many heterogeneous methods developed from different perspectives on the problem, 

consequently estimating different levels of trend or potential output by nature. If a researcher 

simply wants to de-trend a variable for econometric reasons, for instance to prevent spurious 

regression, this may not be of too much concern. But if the estimates are used to estimate gaps 

which are applied for evaluating and planning the public budget, a meaningful annual estimate is 

important, for it can have crucial consequences for economic policy decisions. Based on Keynes’ 

idea of deficit spending, debt brakes and regulations of public debt have been established in public 

finance, for, in practice, politics regularly increased expenditures in downturns without decreasing 

them in upswings – with the consequence of accumulating public debt from business cycle to 

business cycle (for Germany, see e.g. GCEE 2007). In this context, the output gap of a particular 

year determines the structural financial position of a budget, mainly measured as cyclically-adjusted 

budget balance (CAB), for instance, in the context of the medium-term budget objectives (MTOs) 

in the European Union (EU), or the German federal (as well as many states’) debt regulation. 

Given tense cyclically-adjusted budget positions require tough consolidations, in democracy the 

process of how such an evaluation is determined must be transparent, traceable, and, at least for 

economists, reproducible in a relatively easy way. Therefore, there is always a trade-off between 

precision (requiring complicated methods and high input of resources) and sufficient plainness. The 

Swiss government, for instance, therefore decided to use a simple, modified Hodrick-Prescott (HP) 

filter (Hodrick and Prescott 1981, 1997) when they introduced the Swiss debt brake (Bruchez 

2003). In the EU debt regulation, in contrast, the more complex EU production function approach 

(EUPF) is chosen. In the context of the European debt crisis in the aftermath of the Great Financial 

Crisis, EU member states (with the exception of UK and Czech Republic) decided that each 

member has to implement a mandatory balanced-budget rule aiming at annual structural balance, so 

a cyclically-adjusted version of the budget (ECB 2012, Treaty on Stability, Coordination and 

                                                 

1 Galí and Perotti (2003) and Lane (2003) discuss cyclical properties of fiscal policy in OECD countries. Mohr (2001), 

for instance, cites pro-cyclical fiscal policy in Germany in the 1990s. In developing economies, pro-cyclical fiscal 

policy is widespread (Alesina et al. 2008; Gavin and Perotti 1997; Kaminski et al. 2004; Talvi and Vegh 2005). 
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Governance in the Economic and Monetary Union) was necessary. The federal German government 

chose the EUPF especially for reasons of consistency with EU regulation; but many German states, 

in contrast, introduced simpler regulations. Following the idea of the plainness requirement, many 

EU members may also follow the strategy of using simpler methods such as the HP filter, as the 

Swiss government did. While drawbacks of the HP filter are well-known, at least some of these 

have been healed by some modifications, which means it is still used intensively. But Hamilton 

(2018) again put conceivable doubt on the reliability of the HP filter, and started a Hamilton-HP 

filter controversy. We scrutinise Hamilton’s suggestion not to use the HP filter to estimate GDP 

trend and output gap, but instead to use a simple autoregression to estimate the cyclical and trend 

component of GDP development (H filter). We compare several estimates of trend and cyclical 

component via H and HP filters, rooted in different filter parameters used in practice or determined 

by different perspectives from theory. Since potential output is unobservable even ex post, we 

cannot compare the estimates with true ex post values as is possible in forecast issues. We try to 

overcome this problem by comparing the results of these simple filters with those of more complex 

methods, which do not only rely on univariate GDP development but on a variety of relevant macro 

variables and theory – and are provided by institutions with a lot of reputation and expertise in this 

task. This allows the deduction of the reliability of the simple methods vis-à-vis those more 

complex benchmarks, but especially the comparison of the competing H and HP filters. We 

contribute several new insights to the Hamilton-HP controversy. 

2 Relation to the Literature 

Our research is especially related to two strands of literature: the business-cycle and filter literature, 

as well as the general literature on how to define “natural,” or potential output.  

2.1 Business-Cycle Literature 

In the tradition of Burns and Mitchell (Mitchell 1913; Burns and Mitchell 1936, 1946) and, for 

instance, Harding and Pagan (2002), we estimate potential output, cyclical component as well as 

output gaps to identify cycles based on patterns of aggregate economic activity. Burns and Mitchell 

(1946) defined oscillations in business data with recurring periods of between 1.5 and 8 years as 

business-cycle fluctuations – this definition became the commonly applied one. That is, business 

cycles are only those that occur at this range of duration. Each method separating the trend (or 

structural) and cyclical components of an economic time-series ought to capture all fluctuations 

outside this range by its trend component, and all others within the range by its cyclical component. 

Focusing on the H versus HP filter controversy, we restrict ourselves to those univariate approaches. 
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2.1.1 The HP Filter Literature 

Regarding the HP filter, it is well known that it suffers from a (start- as well as) end-point bias.2 

Kaiser and Maravall (1999) hence suggest including proper forecasts and backcasts, and Bruchez 

(2003) modifies the weights for the final three years to reduce the end-point bias. There is particular 

controversy about the correct value of the smoothing parameter, labelled  𝜆. Hodrick and Prescott 

(1997) state the assumption that the development of cyclical component and economic growth can 

be described as two independent random processes that have a certain relationship in size; based on 

these premises, they show that their HP filter is an optimal filter if √𝜆 equals the assumed relation 

in sizes. They assume that a cyclical component of 5% is “moderately large”, in the order of ⅛ of a 

1% rate of economic growth in a quarter. Consequently, with quarterly data, they suggest 𝜆 = 

[5
(1 8)⁄⁄ ]

2

 = 1600. For annual data, in turn, they suggest a value of 100. However, the premises the 

inventors stated did not reach a consensus at all, and the factor for annual data, though used 

widespread in practice (e.g. Backus and Kehoe 1992),3 turned out to be inconsistent with the 

premises of Hodrick and Precott themselves. Based on Hodrick and Prescott’s (1997) value for 

quarterly data (1600), Ravn and Uhlig (2002) analytically deduce that the optimal filter requires a 

value of only 1600
256⁄ = 6.25 for annual data. However, Reeves et al. (2000) also cast doubt on the 

plausibility of Hodrick and Prescott’s premises and the resulting quarterly value of 1600 in practice, 

for it is only shown to be applicable for white-noise cyclical components, and the empirical sample 

estimate of the parameter deviates from their prior belief. Alternatively, if applying spectral analysis 

to macroeconomic time series (cf. e.g. Granger 1966; Iacobucci 2005), the researcher has to choose 

a length for the reference cycle. In line with Mitchell (1913) as well as Burns and Mitchell (1936, 

1946) a typical business-cycle length of eight years is assumed. Kaiser and Maravall (1999) 

establish the theoretical relationship of reference cycle length and smoothing parameter 𝜆. They 

confirm the value of 1600 for quarterly data and a reference length of eight years, but deduce, in 

line with Ravn and Uhlig (2002), a value of 𝜆 = 7 for annual data, instead of 100, which is found to 

be consistent with a longer reference cycle of 16 years. Baxter and King (1999) show, in contrast, 

that for a reference cycle length of eight years an HP smoothing value of 𝜆 = 10 is consistent with 

their high-pass filter. In spectral analysis (e.g., Polock 2000), it is stated that filter parameters ought 

                                                 

2 In early years, the HP filter was criticised for generating artificial cycles (Cogley and Nason 1995; Harvey and Jaeger 

1993; King and Rebelo 1993). These distortions, however, are unavoidable and a feature of even any optimal filter 

(Ehlgen 1998). 
3 Cooley and Ohanian (1991) as well as Correia et al. (1992) suggest a higher value of 400 (Ravn and Uhlig 2002). 
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to be set as functions of the cut-off frequency, and that at the cut-off frequency the parameter(s) 

should produce a gain function value of ½. When this rule is applied, the required smoothing 

parameter 𝜆 is 677.13 for quarterly data when we, as usual, assume a cut-off frequency rooted in 

cycles of a length of eight years; this also challenges the quarterly data parameter of 1600. Yet 

another spectral theory study of Pedersen (2001) deduces optimal values for quarterly data in a 

range of 1007 to 1269, depending on assumptions, but argues that 1600 is close to the optimal value 

for cycles shorter than nine years; the annual counterpart range is 3.73 to 5.03. Given the conclusion 

regarding 1600, we conclude that the Ravn-Uhlig counterpart of 6.25 is at least close to optimal. 

Mohr (2001) emphasises, however, that the correct reference cycle length (directly related to the 

cut-off frequency4) depends on the specific issue analysed. While eight years might be a proper 

choice in the context of pure business cycle analyses, for other issues shorter or longer cycle length 

can be more appropriate. Aiming at structural budget positions, the goal is for there to be a balance 

of positive and negative business cycle effects. In the EU treaties, it is stated that these are 

measured via output gaps, that potential special year effects ought to be accounted for, and that the 

balance ought to be established over an unspecific “medium term.” A structural budget position is 

directly linked to the structural or trend component of (price-adjusted) GDP. Cycle-driven deficits 

ought to be balanced by cycle-based surpluses within a manageable period of time; this would ask 

for a comparatively short reference cycle length, and thus a relatively low HP smoothing factor 

(Mohr 2001: 25). This, however, involves the risk of a pro-cyclically fiscal rule, because automatic 

stabilisers may not function effectively in such a setting. Hence, there is a trade-off between 

effective automatic stabilisers and structural balanced budget in a reasonable period of time. Kaiser 

and Maravall (1999) determine the value of 𝜆 such that for the predetermined frequency of the 

chosen reference cycle length it maximises the estimated sample spectral. As a result, the variance 

of the cyclical component is especially determined by frequencies in the range predetermined by the 

reference length. Mohr (2001) argues that this method implicitly assumes an equality of theoretical 

and actually estimated spectral – which is known to be only true for the fictional case of infinitely 

long time series. Therefore, Mohr (2001) chooses the smoothing factor by maximising the actually 

estimated spectral (instead of the theoretical) via 𝜆. For the German nominal GDP he derives 𝜆 =

20: the maximum is reached for a frequency of 0.76, roughly in line with the targeted eight years 

                                                 

4 Spectral analysis is rooted in periodic movements and wave theory, where an object or wave performs a periodic 

movement and reaches its original state again after T periods. The periodic ups and downs of waves are used as a model 

for business cycles. The frequency of waves is in an inverted relationship to duration T and can be described with 

trigonometric functions, which are determined by frequency 2 ∙ 𝜋 𝑇⁄ . The duration, in turn, is stated in the unit of time 

measurement. Assuming a reference cycle length of eight years, T is 8 (annual data) or 32 (quarterly data) (cf., e.g., 

Granger 1966; Iacobucci 2005). 
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reference length.5 Within the harmonised method of the European System of Central Banks 

(ESCB), which considers the aggregate of the EU member states as a whole, the chosen 𝜆 for price-

adjusted time series is 30 (Bouthevillain et al. 2001). In contrast, Swiss law determined the 

modified HP filter with 𝜆 =100 for the Swiss debt brake. 

An often ignored issue is the time horizon the estimates lean on. In most cases authors simply use 

the time span available, though this choice may also affect the result. An exception to this rule is the 

Swiss modified HP filter, where Swiss law determined a time horizon of 30 years, i.e. a moving 

window. Overall, therefore, the HP filter approach involves a high degree of haziness: there is a 

high degree of freedom in choosing the smoothing factor, the time frame included, and whether and 

how many future periods to include as forecasted values. We hence focus on a comparison of 

common practice as well as theoretical requirements from the different perspectives of statistics and 

spectral theory, and analyse the HP filter for many different smoothing parameters in order to 

contribute to this literature. Additionally, we add forecasts as well as backcasts to address the start-

and end-point bias issue. Those HP filter results are then used in a comparison to the results of the H 

filter. 

2.1.2 The H Filter Literature 

Hamilton (2018) puts considerable doubt on the reliability of the HP filter. He argues that the 

common practice of setting the smoothing parameter for the HP filter cannot obtain optimal 

decompositions into trend and cycle – even worse, the HP filter is generally not based on the 

respective true data-generating processes and hence generates spurious results for the statistical 

trend. He demonstrates that the HP filter results for the cycle can be shown to be identical to 

assuming white noise cyclical components in a state-space model – that is, that they would be 

random and exhibit no discernible pattern. His conclusion is that the estimated cyclical pattern does 

not reflect any true dynamics at all but is an entirely spurious feature of the applied HP filter. 

Hamilton offers an alternative approach to deducing reliable estimates of the cyclical component. 

He demonstrates that a comparably simple regression of a variable’s value vector in a period t+h, 

labelled yt+h, on a constant and the p most recent realization vectors of that variable as of date t (so 

lags yt, yt-1, …, up to yt-p) allows the consistent estimation of the cyclical component reasonably well 

for a wide range of non-stationary data-generating processes. The choice of h and p depends on the 

kind of data used (monthly, quarterly, or annual observations) and the kind of cycles interested in 

                                                 

5 For 𝜆 = 100, reference cycle lasts about 13 years (frequency 0.48), and with 𝜆 = 8, e.g., this cycle would last only 

about six years.  
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(business cycles or longer cycles such as financial crises cycles in the context of early warning 

indicators), that is, again on the length of the reference cycle.  

However, the Hamilton approach may also suffer from weaknesses. Following Quast and Wolters 

(2022) as well as Schüler (2018) it amplifies long, medium-term cycles, while muting short cycles 

of two years or below in length in the context of business-cycle analysis. Schüler (2018) finds that it 

also generates artificial cycles, suffers from small-sample bias, smooths structural breaks – as the 

HP filter does – and the choice of the lag structure via parameters h and p is similarly ad hoc as the 

choice of 𝜆. Based on Monte-Carlo simulations, Jönsson (2020a) demonstrates that even if the data 

are generated without any cyclical dynamics, the Hamilton regression produces cyclical component 

dynamics. That is, the Hamilton filter modifies the original cyclical structure of the data as well (as 

the HP filter). In contrast to Schüler (2018), Quast and Wolters (2022) find that the trend estimates 

are not smooth, and thus hardly can be interpreted as a measure of potential output, which is found 

to be rooted in remaining high-frequency noise, which is not associated with business fluctuations. 

We find that this is an issue in the German context in times of great crisis. Overall, the Hamilton 

regression approach is found to be weaker for business cycle analysis due to overemphasising 

cycles longer than typical business cycles.6 In line, Hall and Thomson (2021) did not find any 

advantage in using the Hamilton regression in comparison to HP or Baxter-King filters for New 

Zealand macro data. Schüler as well as Quast and Wolters, however, reveal that the H filter suffers 

much less from bias at the tails of the time series (cf. also Jönsson 2020b), which is a highly 

important advantage for economic policy in practice, where data revision often changes recent gap 

estimates significantly – a major challenge for budget planning, especially when being forced to 

behave in line with a debt brake, as in Germany. To benefit from this advantage without suffering 

from the above mentioned problem of still unreliable cycle-trend decomposition, Quast and Wolters 

(2022) suggest a modification of the H filter. They recommend checking the properties of the H 

filter and modifying it if needed. We provide evidence that their modification is very helpful for 

trend-cycle decomposition of German GDP. 

In our analysis, we consider huge GDP shocks that provide a very similar challenge for the filters as 

structural breaks. In such situations we find, in contrast to Schüler (2018), evidence that the 

Hamilton regression may not smooth structural breaks, as the HP filters do; this is in line with Quast 

and Wolters (2022), who find that Hamilton gaps are rather robust in checking for structural breaks. 

                                                 

6 Schüler (2018) states that the h=5 Hamilton regression (annual data) outperforms the Basel-III credit-to-GDP gap 

(based on HP filtering) in identifying imbalances in the financial markets, where longer cycles are to be considered. In 

contrast, Drehmann and Yetman (2018) find that the Hamilton filter can be outperformed by the HP filter referring the 

credit-to-GDP gap in predicting crises in financial markets.  
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We find, however, that the H filter turns out to suffer from unreliable properties in times of huge 

shock for the German GDP – and thus probably also in the context of structural breaks. We show 

that this problem can be healed by the modification suggested by Quast and Wolters (2022). In line 

with Hall and Thomson (2021), we also find that the Hamilton regression involves, in comparison, 

very volatile output gaps.  

In the H versus HP filter controversy it is also interesting to note that in the COVID-19 pandemic 

the Swiss mHP filter produced instable trend values that shrank relatively sharply with a time lag, 

with problematic pro-cyclical estimates of the business-cycle factor of the Swiss debt brake in 2022 

(Schmassmann and Wiedmer 2022). The conclusion of Swiss authorities was that smoothing 

methods like the (m)HP filter fail in times of huge crisis. We add that the H filter also fails in such 

times. The Swiss system now substituted the mHP filter with the EU production function approach 

(EUPF). Therefore, we also use the official EU approach (see below) as a benchmark method in 

evaluating both the H and HP filter. Moreover, we compare several different results of the methods 

on the basis of some additional benchmark indicators, which, to the best of our knowledge, has not 

been done so far. While Quast and Wolters (2022), Schüler (2018), and Hall and Thomson (2021) 

alike compare Hamilton’s regression only with the HP filter with the standard smoothing parameter 

of 100, we include further values suggested in the literature, and we not only investigate the regular 

H filter but additional versions of it. Using two different expert benchmarks (like the EU method) 

and an inflation indicator, we find that the HP filter with a parameter of 100 may not be the best 

choice for the smoothing factor. Simulations show that, depending on the targeted benchmark, 

lower or higher values are optimal. We show that the conclusion on whether the H or HP filter is 

preferred is highly conditional on the smoothing factor. 

2.1.3 The Benchmark Methods: Production Function Approach 

Within the European Union (EU) system the trend-cycle decomposition is especially important in 

evaluating the general economic situation and the public finances of the member states. GDP 

potential and output gaps are estimated within the EU by a production function method (EUPF, 

Havik et al. 2014). This method is applied by the European Commission for all member states. The 

EU method is also exactly required for all national stability reports of the member states. The 

German federal as well as many regional state governments (Bundeslaender) apply it in the context 

of the constitutional German debt brake. Within the context of the Swiss debt brake, the government 

used, until very recently, the Swiss modified HP filter (mHP, Bruchez 2003), but it has now been 

substituted with a national production function approach exactly in line with this EU method. Other 

versions of a production function approach are internationally used by the OECD and IMF, by the 
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Congressional Budget Office (CBO 1997) or other US organisations (Stiroh 1998), or by other 

OECD countries (Gern et al. 2008). Especially for Germany, it is applied by the German Central 

Bank (Bundesbank 1973, 1981, 1995), the German research institutes in the context of the biannual 

joint report for the German federal government (JEF 2024: 60–65), or the German Council of 

Economic Experts (Breuer et al. 2022). While the HP and H filters represent purely data-driven 

statistical methods, the production-function approach is more theory-driven and is rooted in a 

supply-side perspective. Based on macroeconomic theory, it estimates the unobservable theoretical 

variable of potential or natural output (see also below) by assuming total output can be caught by 

the theoretical concept of a macroeconomic production function, with the inputs of capital, labour, 

and technical progress (cf., e.g., Denis et al. 2002; Denis et al. 2006; D’Auria et al. 2010; Havik et 

al. 2014). In doing so, the “normal” level of capital, labour, and total factor productivity is again 

estimated with statistical filter methods.7 The EU approach explicitly assumes that the output gap is 

zero in the final period forecast, which is the year five years in advance. Mohr (2001) argues that an 

advantage of the HP filter vis-à-vis production function approaches is that HP filters, in contrast to 

the production function method, have the property that positive and negative gaps are balanced in a 

relatively short time segment. He considers this feature to be especially important for using gaps to 

cyclically adjust the fiscal budget position.  

2.1.4 Alternative Decomposition Methods 

Generally, potential output can be estimated using (i) smoothing and de-trending methods such as 

the HP filter, the split-time trend method, the log-linear time trend method, or the moving-average 

method, (ii) econometric estimates such as the Okun-law regression (Okun 1962; CBO 2004), the 

production function method or Hamilton’s regression (H filter), or (iii) survey data on capacity 

utilisation (see, e.g., Fisher et al. 1997). Although we focus on univariate filter methods and restrict 

ourselves to the H-HP controversy, we briefly want to embed our study in the broader literature and 

discuss alternative methods. In spectral analysis, ideal filters involve weighting frequencies 

depending on cut-off frequencies. There is a range of frequencies that is considered to cover the 

cycles looked for. These frequencies ought to be weighted by unity while other frequencies should 

be weighted by zero. Within the range, the cycle frequencies are assigned to the cyclical component, 

the others to the trend component. Such ideal characteristics are, however, only possible in 

infinitely long time-series. In practice, with a finite number of observations over time, filters try to 

                                                 

7 The used potential of capital input is the stock of capital, measured by the perpetual inventory method, the potential of 

labour input involves application of an HP filter and estimating NAWRU, and the trend of the efficiency of the factor 

inputs (total factor productivity) involves a bivariate Kalman filter model (since 2010, before also the HP filter was 

applied). 
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fulfil the ideal filter properties as precisely as possible. There is a low and high cut-off frequency, 

identifying the minimum and maximum length of typical business cycles; for business cycles the 

standard range is 1.5 to 8 years. Low-pass filters only account for the low cut-off frequency, trying 

to weight only below it by zero; band-pass filters, in contrast, try to account for both thresholds. 

There are many methods to estimate potential output / trend and output gaps, e.g., the BK filter 

(Baxter and King 1999), the Beveridge and Nelson (1981) decomposition, the CF filter (Christiano 

and Fitzgerald 2003), or univariate time-series models of unobserved components (Harvey 1989). 

While the Beveridge-Nelson decomposition is criticised for producing implausible implications (Mc 

Morrow and Roeger 2001), the BK filter and the models of unobserved components, being more 

complex and easier to manipulate, generate quite similar results to the HP filter (Mc Morrow and 

Roeger 2001; Mohr 2001). The BK and CF filters are both band-pass filters, but its properties are 

very much the same (Pedersen 2001). In fact, the HP filter is equivalent to a high-pass filter and 

comparable with such band-pass filters (King and Rebelo 1993). We refrain from adding the more 

complicated multivariate filter methods, such as the Kalman filter (e.g., Kálmán 1960; Kálmán and 

Bucy 1961; Stratonovich 1959), which takes a broader economic context into account. Similarly to 

the production function method these perform potentially better than the simple univariate methods 

investigated, and hence also qualify to function as a benchmark. In contrast to the production 

function methods, however, there are no official estimates published by reputable expert 

institutions. Therefore, our own estimations applying these techniques would be less convincing 

benchmarks. 

2.2 Literature on Natural Output and Other Related Issues 

Theoretically the decomposition of trend and cycle is a decomposition of economic growth and the 

business cycle. In a static macro model the structural component is the unobservable potential 

output, i.e. the situation when there is – given all market frictions and constraints – “full” 

employment of all production factors. It represents the long-term equilibrium, labelled “natural” 

output, to which economic activity (GDP) returns to after fluctuations (business cycle).8 That is, the 

stated qualification of existing frictions, constraints, and asymmetric information – causing 

involuntary and search unemployment etc. – causes an ordinary economic-capacity use of the 

economy that is deployed. This level of output is supply-determined and often modelled, for 

instance in the (new) neoclassical synthesis, as if it is independent of the price level or inflation. 

                                                 

8 Other long-term equilibrium levels, such as unemployment or interest rate, are also labelled as being at its natural rate. 

This idea of a natural long-term equilibrium goes at least back to Wicksell (1898, 1907) who discussed economic 

fluctuations rooting in a temporary deviation of money interest rate and the ordinary natural rate of interest (marginal 

productivity of capital). 
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Hence, it is related to a situation where there is no inflation pressure. This aspect is captured within 

the EUPF by estimating the non-accelerating wage rate of unemployment (NAWRU), that is, the 

level of wages that does not generate any effect on inflation (wage-inflation spiral), when 

estimating the “natural” level of labour input. Hence, the ordinary level of resource use and 

inflation stability are the two core indicators for potential output. In this perspective, the dynamics 

of potential output is rooted in growth which is driven by investment, including innovations, as well 

as effective labour resources – and considered to develop smoothly. Woodford (2009) challenges 

this perspective, and emphasises that modern empirical DSGE models, such as Smets and Wouters 

(2007), involve short-term deviations from the “natural” rate of GDP where these business-cycle 

movements typically also shift the natural rate of economic activity, with the consequence that the 

potential output dynamics does not at all necessarily involve a smooth trend. As Quast and Wolters 

(2022) argue, these volatile natural output estimates may in fact be rooted in mark-up shocks tightly 

linked to measurement error (Chari et al. 2009; Justiniano and Primiceri 2008). Recent results 

addressing this issue indeed find much more smoothing development of potential output (de 

Loecker et al. 2020). Overall, this literature suggests that potential output is related to an ordinary, 

normal, and therefore natural level of capacity use and stable inflation. The ideas of a 

macroeconomic production function and NAWRU, followed by the EUPF method, are exactly in 

line with this insight. Therefore, we use institutional production function estimates as benchmarks 

to evaluate the quality of the analysed filter methods. Moreover, we investigate the link between 

estimated output gaps and the change in inflation as a further criterion to evaluate the quality of 

analysed H and HP filter methods. 

Finally, we also contribute to the literature of business-cycle dating for Germany. Schirwitz (2009) 

presents a comprehensive German classical business cycle dating from 1970 to 2006, and Breuer et 

al. (2022) recently provided a business cycle dating back to 1950. In contrast to Breuer et al. (2022), 

we focus on the much simpler univariate GDP-based approaches of H and HP filter methods used in 

practice on the basis of annual data – and apply a new five-requirement dating rule. Comparing our 

results with those of Breuer et al. (2022), based on a much more sophisticated multidimensional set 

of indicators, allows us to learn about the loss of quality when applying those simpler techniques. 

This is an important task, given the trade-off of precision and simplicity required for traceability for 

the public in a democracy – an issue that led Swiss authorities to prefer the simple HP filter, in 

modified form. In line with Schirwitz (2009: 290), we believe that the advantages of methods like 

the H and HP filters are clearly simplicity, higher transparency, long-term uniformity, and 

(international) comparability vis-á-vis expert committee or complicated institutional approaches. 
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3 Modus Operandi and Data 

3.1 Approach 

We provide a comprehensive evaluation of several kinds of H and HP filters over the years 1980-

2023, based on several statistical indicators that are benchmark anchored. Along the lines of Quast 

and Wolters (2022), we use output gap estimations of institutions that invest a lot of manpower, 

expert knowledge and other resources as benchmarks. These institutions apply a much more 

sophisticated method than univariate filters do.9 In Germany, two benchmarks in particular are 

available:10 (i) the EUPF estimates by the experts of the Federal Ministries of Finance and 

Economics; (ii) the expert estimates of the German Council of Economic Experts (GCEE), which is 

a comparatively independent council of five economics professors, equipped with a staff of 18 

further economists, and institutionalised support from the Federal Statistical Office, the Central 

Bank (Bundesbank), and further institutions. The GCEE also applies a production function method 

(Breuer and Elstner 2020; Ochsner et al. 2024). All benchmark indicators are rooted in the same 

general idea: potential output reflects a situation in which an economy deploys its capacity at its 

“normal” rate. As a widely used theory-driven approach to directly estimating potential output in a 

structural model, the EUPF and GCEE production function results are used as an important 

benchmark for comparison with the H and HP filters in practice. The benchmark comparison allows 

the evaluation of the extent to which these benchmark movements of potential output are captured 

by the H and HP filters. Our major focus in doing so will be the estimated output gaps. 

At first we compare the all-time standard deviation and the all-time mean of absolute gaps. Both are 

indicators for the dispersion of the gaps of the respective filter. The absolute value mean provides 

additional information about the mean size of positive or negative gaps of the respective filter. Both 

statistics are also deduced for the benchmarks for comparison. We then apply a benchmark 

congruency analysis where we check to what extent the filter gap estimates are in line with those of 

the benchmarks. The term “in line with” is operationalised by comparing (i) the sign of the filter 

and benchmark gaps, (ii) Pearson’s correlation coefficient of the filter and benchmark gaps, and (iii) 

the root mean squared error (RMSE), given by 

                                                 

9 We exclude international institutions, because those suffer from distance and less national expert knowledge. This 

premise is confirmed by the results of Quast and Wolters (2022) for the US. 
10 We also checked the latest estimates of the experts of the German research institutes (including some Austrian 

partners) in the context of their Joint Economic Forecast (project group Gemeinschaftsdiagnose, spring forecast JEF 

2024). These data are only internally available. They also cover EUPF estimates, but additionally the modified version 

MODEM. It turns out that the MODEM and official EUPF estimates are so highly correlated that including it was not 

adding value. 
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 𝑅𝑀𝑆𝐸𝑓𝑖𝑙𝑡𝑒𝑟(𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘) = √1

𝑇
∑ (𝑔𝑎𝑝𝑡

𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 − 𝑔𝑎𝑝𝑡
𝑓𝑖𝑙𝑡𝑒𝑟

)
2

𝑇
𝑡=1 , (1) 

where t is the respective observed year and T the number of observed years. Additionally, we check 

the adequacy of the filter gaps to predict the benchmark gap by the following regression 

(unbiasedness test): 

 𝑔𝑎𝑝𝑡
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 = 𝛼 + 𝛽 ∙ 𝑔𝑎𝑝𝑡

𝑓𝑖𝑙𝑡𝑒𝑟
+ 𝜀 (2) 

If 𝑔𝑎𝑝𝑡
𝑓𝑖𝑙𝑡𝑒𝑟

 is a good predictor for the 𝑔𝑎𝑝𝑡
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 we will find 𝛼 = 0 and  𝛽 = 1. This is 

checked via an F-test. 

All these quality indicators are standard techniques used to evaluate the quality of forecasts (cf. 

Fildes and Steckler 2002). But in our context we have to substitute the true realized value, which 

was estimated in advance, with the envisaged 𝑔𝑎𝑝𝑡
𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘. The term “error” in the context of 

RMSE has to be interpreted in this sense. Additionally, theory and the definition of natural output 

requires that there is no change in inflation when the economy produces at normal capacity (gap of 

zero). In times of positive gaps, inflation is expected to rise, and vice versa. We check this property 

for the competing H and HP filters again via comparing sign congruency and Pearson’s correlation 

coefficient of the competing filters with the change in inflation of consumer prices, measured by the 

deflator of private consumption (first difference of deflator). We also estimate regression model (2) 

for this indicator. However, in contrast to the test with respect to benchmarks EUPF and GCEE, 

left-hand and right-hand side variables of equation (2) do not measure the same indicator “output 

gap” – we regress change in inflation on the respective output gap. Therefore, the unbiasedness F-

test is inadequate and we instead focus on R2, root mean squared error (MSE), and the slope 

coefficient 𝛽. The first two indicators inform about how much of the variation of the change in 

inflation is explained by the respective estimated gap (R2) and the modified standard deviation of 

the residuals (root MSE), that is, how close the estimated relationship between gap and change in 

inflation is. If the expected link between gap and inflation is covered coefficient 𝛽 got to be positive 

and statistically significant.  

Following the idea of Quast and Wolters (2022), we also investigate the correlation of the gap 

estimates with the recession dating of a benchmark institution that invests a substantial amount of 

expert knowledge as well as substantial resources – and is thus not solely based on statistical 

models such as the investigated filters. We choose the GCEE dating published in 2022 and generate 

expansion dummies that equal unity in all dated expansion periods and zero in dated recessions. The 

premise here is that the external expert dating provides the most convincing dating. To evaluate the 
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consistency of the gap estimates we compute Pearson’s correlation coefficient of the change of the 

respective filter gaps with our expansion period dummy. It is expected that in times of expansion 

the gap rises, while it decreases in recession periods. We then also determine our own dating rule, 

based on observed output gaps. Following this rule, we deduce the respective turning points (peaks 

and troughs), and the resulting business-cycle dating for the second benchmark EUPF. Given this 

EUPF dating, we again generate an expansion dummy and calculate the respective correlation 

coefficients for this second benchmark. Given we focus on univariate GDP time-series methods, our 

goal is explicitly not to identify the turning points in the best possible way, which would require the 

inclusion of additional cycle indicators such as investment, unemployment etc. Hence, we follow a 

simple but not simplistic rule-based identification for comparison, based on the estimated gaps. We 

deploy a five-requirement approach: we identify a business-cycle peak if (1) the gap is positive, (2) 

higher than 1%, (3) the highest since the preceding peak, (4) since the preceding peak there has 

been a negative gap in between, that is, in absolute terms, at least higher than 1%, too, and (5) it is 

followed by another trough, that is, a negative gap below –1%. Correspondingly, a trough requires 

the following: (1) the gap is negative, (2) lower than –1%, (3) is the lowest since the preceding 

trough, (4) since the preceding trough there has been a positive gap in between that is at least higher 

than 1%, too, and (5) it is followed by another peak, that is, a positive gap bigger than 1%. 

Applying this dating rule to the official EUPF gaps, we date recession periods as years running 

from peak to trough turning points, and expansion periods in the residual years.  

Applying our dating rule also to the investigated H and HP filter gaps, we also determine the 

resulting business cycles in order to compare average cycle lengths. Given average cycle length is 

not identical to what is typically meant by the length of a filter’s reference cycle, we deduce it, as 

usual, via spectral analysis. We determine each filter’s spectral density and cumulative spectral 

distribution, and investigate to what degree natural frequencies that are in line with typical business 

cycles are covered. This allows the comparison of the specific filters’ range of sensibility for 

business-cycle frequencies. Finally, we also put a special focus on the filters’ crisis resilience, that 

is, we evaluate how convincingly the estimated output gaps and trends behave in times of huge 

shocks. 

In detail, we investigate four different kinds of H filters in comparison to four different HP filters. 

The general H filter idea, developed in Hamilton (2018), is the following autoregression model: 

 𝑦𝑡+ℎ = 𝛽0 + 𝛽1 ∙ 𝑦𝑡 + 𝛽2 ∙ 𝑦𝑡−1 + ⋯ + 𝛽𝑝+1 ∙ 𝑦𝑡−𝑝 + 𝜀𝑡+ℎ (3) 
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Variable of interest y in a period h periods ahead from t ought to be explained by an autoregression 

on its value in t and, from t on, p additional lags. He states the general rule that h and p has to be 

integer multiples of the number of observations per year, and argues that within a period of two 

years macro data such as GDP are still affected by cyclical factors and the timing of recovery 

processes. For business-cycle analysis, Hamilton (2018: 838) thus recommends, applied to annual 

data, combining h=2 (distance to lags) with p=1 (number of lags). The regular annual-data H filter 

regression model is therefore as follows: 

 𝑦𝑡+2 = 𝛽0 + 𝛽1 ∙ 𝑦𝑡 + 𝛽2 ∙ 𝑦𝑡−1 + 𝜀𝑡+2, (4) 

with 𝑦 being price-adjusted GDP. Quast and Wolters (2022) criticize that this H filter does not cover 

typical business-cycle frequencies evenly and that the trend still transports high-frequency noise, so 

that it cannot be interpreted as potential output. Hence, we also estimate their modified H filter 

(QWH), and estimate the three general H(h, p) filters H(1,1), H(2,1), and H(3,1). The QWH trend 

and QWH cycle component is then determined by the average of these three trend and cycle 

estimates; Quast and Wolters (2022: 157) state that their modification (i) produces a more even 

coverage of the typical cycle frequencies and (ii) less dependence on the starting point.11 Hamilton 

(2018) states that a higher value of h means aiming for longer cycle length. While the H filter 

implicitly excludes trend changes within the chosen two-year window (h), the QWH modification 

allows for trend changes within one year, weighted by a relatively high fraction of ⅓. 

For the HP filter we use, based on our literature review, four different smoothing factors: (a) 

2.914235, applying the rule of Pollock (2000) that filter parameters ought to be chosen such that the 

value of the gain function of the filter is 0.5 at the cut-off frequency (here, as usual for business 

cycles, 8 years); (b) the Ravn and Uhlig (2002) value of 6.25 (which implicitly assumes that 1600 is 

the correct value for quarterly data); (c) the value of 20 deduced especially for Germany by the 

Bundesbank (Mohr 2001);12 and (d) the widespread standard annual-data value of 100 (Hodrick and 

Prescott 1981, 1997). Finally, we determine four optimal smoothing factors λ in simulations. The 

objective is: (i) maximising Pearson’s correlation coefficient (PCC) of the HP gap with the two 

                                                 

11 In Quast and Wolter (2022) it seems that they suggest to (1) do the H-filter regression, to estimate the, in our 

application, three forecast errors, (2) calculate the average of the forecast errors, and (3) then to determine the H-trend 

by the difference of observed GDP and this average error as estimated cycle component. We deviate slightly from this 

by directly averaging estimated cycle components (error) and the respective trend terms. This may generate a possibly 

even better smoothing of the average H-filter. 
12 The harmonized value of 30, agreed on within the European System of Central Banks, is very close to 20 and thus 

producing very similar results, which would not add much insight in comparison. 
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different benchmark gaps; (ii) minimising the respective RMSE of the HP gap. As stated, the 

benchmarks are the EUPF and GCEE gaps. 

3.2 Data 

3.2.1 Data Base of the Study 

For our core evaluation analysis, we use the spring 2024 economic forecast of the German federal 

government (FedGov 2024). The government data include the official estimates of potential output, 

cycle component, and output gap, required in the context of the fiscal surveillance procedure of the 

EU. Those values determine the officially estimated cyclically-adjusted budget position within the 

EU system as well as for the German constitutional debt brake. In both procedures the EUPF 

method must be applied. The EUPF estimates for German potential GDP, cycle component, and 

output gap are provided from 1980 until 2023 and prolonged by their forecasted values up to 2028. 

This is our EUPF benchmark data, and we directly use them without any adjustment in order to 

compare the results with their H and HP filter counterparts. The data also cover price-adjusted GDP 

(2015=100) for the years 1980-2023, based on the Federal Statistical Office, and the government’s 

forecast GDP values for the current year and the future years up to 2028, which were used for the 

government’s EUPF estimates. The forecasted numbers are important, for they are required to be 

included to overcome the end-point problem of the HP filter. Given this problem, in fact, also 

involves a starting-point problem, we additionally imputed GDP data for the three years before 

1980, which, to the best of our knowledge, has not been done so far in the literature. For reasons of 

autoregression within the H filter, this method also loses the first three years at the beginning, i.e. 

trend and cycle for 1980 to 1982. To overcome this issue, it is required to impute three additional 

former years as well (1977-1979). As we also use the Quast-Wolters modification of the H filter, 

which involves alternative variations of parameters h and p, it is necessary to add GDP data up to 

1976. We take these data from exactly the same National Account data that the government’s data 

come from (NA 2024) in order to prevent a lack of comparability. For this reason, we also only 

include those observations that are really required to estimate trend and cycle starting from 1980, 

but not additional pre-years. Therefore, our comparisons are not biased by comparing different time 

windows or by the start-end-point bias of the HP filter, which might have biased the comparisons in 

former studies. Using exactly these GDP data also for our H and HP filter estimates guarantees the 

comparability of our results with the EUPF. 
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The GCEE benchmark data on potential output and output gap are publicly available on the 

institution’s homepage.13 Both variables are available for the complete years investigated. The 

GCEE turning point and recession benchmark dating is rooted in Breuer et al. (2022: table 1). For 

the GCEE data it is important to recognise that the recession dating in Breuer et al. (2022) and the 

used up-to-date gap estimates are not fully comparable, since the GCEE production function 

method was adjusted recently.14 The years investigated, 1980–2023, allow the evaluation of how the 

filters perform in times of huge shocks. It covers the German reunification on 3 October 1990,15 

which provides a significant positive economic shock, because East Germans were, for the first 

time, able to consume the complete range of Western goods, and their wealth in East German marks 

was exchanged for West German DM at a quite beneficial exchange rate. This caused an 

extraordinary boom, especially for the West German economy. Additionally, there were the Great 

Financial Crisis (in Germany especially in 2009) and the COVID-19 pandemic with massive 

lockdowns. 

3.2.2 Annual versus Quarterly Data 

Business-cycle researchers, rather interested in evaluating the position in the business cycle in 

progress and recognizing turning points as soon as possible, for good reasons typically identify 

business cycles on the basis of multiple monthly or quarterly business-cycle indicators, i.e. a system 

of indicators more sophisticated than even the production function approach (e.g. Breuer et al. 

2022; GCEE 2017, Chapt. 3: 133-34; Gehringer and Mayer 2021; RWI 2017).16 Without dispute, 

using quarterly or even monthly data allows the identification of peaks and troughs more precisely 

within a year. GDP values of two consecutive quarters are linked by significant autocorrelation, 

which qualifies quarterly GDP data to forecast future values via its own former development. This 

autocorrelation link mostly disappears for two consecutive annual observations (Schröder et al. 

2008: 223).17 In our ex post analysis without forecasting issues, this aspect poses no problems. On 

the contrary, this is even an advantage since, when using annual data, distorting issues like seasonal 

and calendar effects as well as autocorrelation are of much less relevance. The choice of data 

frequency thus depends on the aim of an investigation. As stated by Schirwitz (2009), for ex post 

                                                 

13 Data homepage: https://www.sachverstaendigenrat-wirtschaft.de/en/publications/data.html (Economic Growth data) 
14 While the former method is published in Breuer and Elstner (2020), the new is still not published but stated as 

forthcoming working paper on the homepage; a probably fitting description is given in Ochsner et al. (2024). 
15 Statistically it was implemented for the year 1991. The two time-series of West-Germany and reunified Germany 

were chained via the 1991 annual average. Hence there ought to be no statistical structural break. 
16 Pioneering works in the field of cycle indicators are, e.g., Hamilton (1989) as well as Stock and Watson (1989,1991). 

A further recent contribution is, e.g., Kyo et al. (2022). Krüger (2021) investigates the performance of leading indicators 

of the German business cycle, Pažický (2021) the yield curve in Germany and the US. 
17 Consequently, Hamilton (2018) suggests ℎ = 2 for annual data. 

https://www.sachverstaendigenrat-wirtschaft.de/en/publications/data.html
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business-cycle analysis as well as comparison, which is our focus, aggregated GDP data is an 

adequate candidate, while the evaluation of the current cycle and forecasting requires multivariable 

approaches and cycle indicators, published monthly or at least quarterly and before GDP.  

The focus of our study is not on forecasting issues, but rather on issues based on ex-post data, 

which allows the historical determination of the cycle position of specific years as a whole and, for 

instance, the calculation of cyclically adjusted values of macroeconomic variables such as public 

budget balances. For the EU MTO and German debt brake the annual budget numbers are combined 

with annual output gaps estimated via EUPF. That is, in public finance as well as other contexts, 

annual business-cycle data are required. Another application in the context of the EU and German 

debt regulation is a suggestion made by Gebhard and Siemers (2020). They criticise the official EU 

approach for using real-time interest rates. When there are abnormal levels of interest rates, e.g. in 

low-interest-rate periods, EUPF-based estimates of the structural budget position are, as a 

consequence, biased by unusual interest payments, in addition to business-cycle distortions. Hence, 

they propose an extension of the rules by substituting abnormal interest rates with non-distorted 

cyclically-adjusted annual interest rates. This requires the use of average annual interest rates over 

former business cycles – a task only possible to accomplish knowing the former completed business 

cycles on an annual basis. Furthermore, our evaluation approach involves a comparison with the 

benchmarks EUPF and GCEE. Those are available only on an annual basis – research institutions, 

governments, and central banks typically publish potential GDP estimates on an annual basis.18,19,20 

4 Results 

Figure 1 shows that our two benchmarks follow a similar cycle pattern. The gap estimates are very 

close to each other in the 1990s, in the second half of the 2000s, and since 2020. The GCEE gaps, 

however, produce considerably lower gaps in the 1980s, and also in the 2010s, though to a lower 

extent; in 1999 and the first half of the 2000s, in contrast, the GCEE gaps are estimated to be higher 

than those of its EUPF counterparts. Figure 2 shows GDP and estimated trend development for the 

                                                 

18 For the US investigation in Quast and Wolters (2022) there were only quarterly data from the central bank (Fed) and 

the Congressional Budget Office (CBO) available. The other used international benchmarks in their study were all 

published at annual basis. 
19 Gebhardt and Siemers (2020) find that using ex post annual gap data and identifying peaks and troughs (and thus 

business cycles) simply via gap peaks and troughs – so a less sophisticated dating rule than our five-requirement 

approach – produces similar results referring the years of turning points and length of business cycles, compared to 

more sophisticated approaches based on monthly or quarterly data. 
20 Being historically interested on annual basis whether a year suffered from economic problems or not, monthly or 

quarterly downturns that last only for a short period of time do not necessarily signal a year of economic, fiscal, or 

social pressure if it is smoothed by much better business activity in the rest of the year. Thus troughs and peaks based on 

quarterly data can be misleading in such an investigation. 
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three different H filters H(1,1), H(2,1), and H(3,1). It shows that the H filter, given it is based on 

autoregression, is producing phase-delayed trends of GDP development by construction, and 

parameter h is determining the degree of delay. The H(1,1) trend follows GDP relatively closely and 

delays GDP ups and downs by one year, the regular H(2,1) trend by two years, and the H(3,1) trend 

by three years. The delayed ups and downs, in turn, become smaller with increasing parameter h, 

that is, the trend is smoothed to a higher degree. Therefore, the smoothing property is rooted in 

phase delay. This suggests that the h parameter is qualitatively related to the HP smoothing factor λ. 

The QWH filter modifies the regular H filter H(2,1) by using the average across those three H filters 

– so the QWH trend (see Figure 3) is simply a horizontal equally weighted linear combination of 

the three trend values in each year, similarly to expected utility being a weighted average of the 

single potential utility outcomes.21 

4.1 Statistical Comparison and Evaluation 

Table 1 reports all numeric results of our investigation for the H filters, and Table 2 for the HP 

filters, including the benchmark results, respectively. As already seen in Figure 1, the GCEE gaps 

involve the higher volatility among the two benchmarks: the GCEE standard deviation (SD) is 2.3 

versus 1.7 for the EUPF gaps. The latter is not only the lower SD among the two benchmarks but is 

also the lowest compared to all investigated H filters. Accordingly, the absolute average gap size of 

EUPF (1.3) is the lowest in Table 1. Both the regular H(2,1) and H(3,1) display higher dispersion 

than the GCEE benchmark, the QWH modification about the same dispersion as GCEE. It turns out 

that both statistical indicators, SD as well as gap size, rise in parameter h for the H filters. While the 

H(1,1) indicators are closest to the EUPF values, the QWH indicator results are very close to the 

GCEE values. 

Comparing these H filter results with those of the HP filters in Table 2, we find that the H filters 

generate higher gap SDs as well as average gap sizes than the HP filters, on average. While the H 

filter SD values range from 2.0 (H(1,1) filter) to 3.2 (H(3,1) filter), the HP values are located in 

bracket 1.2 to 1.8 only. The H filters’ average absolute gap sizes, in turn, move within a range of 1.4 

to 2.5, whereas the HP values’ range is 0.9 to 1.4. As with parameter h in the H filter context, the HP 

filters involve a rising SD as well as average gap size for higher λ, as expected: 1.2 for λ=2.91 and 

1.8 for λ=100 (SD), and 0.9 for λ=2.91 and 1.4 for λ=100. That is, for both species of filter alike we 

find that both indicators rise in the respective smoothing factor, i.e. in h for the H filter and in λ for 

the HP filter. 

                                                 

21 Table A.1, in the appendix, reports all detailed gap estimates by year (H-filters and HP filters), plus the turning points 

based on our dating rule above (marked by bold numbers), including those of the benchmark indicators.  
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On analysing congruency of the H filter gaps with the benchmarks EUPF gap and GCEE gap 

(second section of Table 1) it turns out that sign congruency is best among the two benchmarks 

themselves (86%); it is lowest for the H(1,1) (70% for both benchmarks alike), followed by H(3,3) 

with 75% for the EUPF and 77% for GCEE. The regular H(2,1) and the QWH filters both have 80% 

sign congruency, with both benchmarks. There is no systematic linear relationship between 

parameter h and the sign congruency with the benchmarks. Comparing these results to the HP filter 

results in Table 2, we find that the regular and the QWH filters can only outperform the HP2.91 and 

HP6.25; the latter is still equally good for the EUPF benchmark. The HP2.91 is similarly congruent 

to H(3,1), the H(1,1) sign congruency is lower than even the worst HP filter’s. In line with our 

finding with regard to parameter h, we do not find a systematic linear relationship between the HP 

filter’s sign-congruency and its smoothing factor λ. We find the highest sign congruency for the 

HP20, and the second-best HP100 outperforms the best-performing H filters (the regular and the 

QWH), too.  

Turning to RMSE, we find that the benchmarks reveal a value of 1.61 to each other. With regard to 

EUPF, all but H(3,1) can outperform the GCEE benchmark: we find the lowest RMSE(EUPF) 

among the H filters for QWH, at only 1.12; the regular H(2,1) displays 1.55, which is similar to 

H(1,1) (1.54). With regard to RMSE(GCEE), in contrast, none of the H filters can outperform EUPF 

(1.61). The best value is again QWH (1.71), followed by the regular H filter (2.03). Turning to the 

HP filter results (Table 2) for benchmark EUPF, we see that all HP filters involve an RMSE(EUPF) 

that is below unity, i.e. better than the GCEE’s RMSE(EUPF). HP2.91 is clearly the worst among 

the HP filters, but with an RMSE(EUPF) of 0.91 it is still better than any H filter. We find the 

lowest RMSE(EUPF) for HP20, at only 0.61, followed by HP100 with 0.66. Turning to 

RMSE(GCEE), the highest error is again found for HP2.91 with 1.98. This high value, however, is 

again still lower than any of the RMSE(GCEE) of the three standard H filters, i.e. the HP filters 

clearly outperform the regular H filters for this indicator. But the QWH (1.71) is able to outperform 

all HP filters but HP100 (1.47) with regard to RMSE(GCEE). It turns out that RMSE(GCEE) is 

decreasing in smoothing factor λ; we do not find this pattern among the H filters for parameter h. 

Evaluating the next part of the summary tables (correlation indicator), we find that all analysed 

filters are statistically significantly correlated with each other, albeit to different degrees. With 

benchmark EUPF all H filters but H(1,1) are more highly correlated than the alternative benchmark 

GCEE (0.80), though both benchmarks are rooted in the production function approach. We find the 

highest correlation for QWH (0.90) and the regular H filter (0.88). For the GCEE benchmark, the 

correlations of the H(1,1) as well as of the regular H filter (0.76) are lower than that of EUPF (0.8), 

but the other two H filters, H(3,1) and QWH, also reveal a correlation of 0.8. The correlation with 
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GCEE increases with parameter h. Checking these H filters’ EUPF correlations against those of the 

HP filters (Table 2), we see that only the regular H (0.88) and the QWH filter (0.9) can outperform 

the worst HP filter, so HP2.91 (0.86). HP20 (0.94) and HP100 (0.93) outperform the best H filter 

QWH (0.90); the latter is equally highly correlated as the HP6.25. Turning to the GCEE 

correlations, we find a similar pattern with respect to λ to that we found for h: the correlation with 

benchmark GCEE rises with growing smoothing parameter. The regular H filter is equally highly 

correlated with GCEE as HP20, but higher than the HP filter with lower λ. QWH and H(3,1) are 

correlated even more strongly with GCEE, but less than HP100, which has the highest correlation 

with GCEE of all (0.85). 

Evaluating the correlations of the H and HP filters among each other (Table 3), we find, as 

expected, that the H(1,1) is closest to HP2.91, the regular H(2,1) closest to HP20 (but there are no 

noteworthy differences to the other HP filters), and the H(3,1) with the standard HP100. 

Interestingly, the QWH filter has highest correlation with the standard HP100, but the differences, 

especially to HP20, are not big. The correlation between regular and modified QWH filter is very 

high (0.97). 

4.2 Evaluation of Gap-Inflation Link 

Turning to the important link of output gap and inflation change (fourth part of Table 1), we find 

that H(1,1) and QWH display the highest sign congruency among the H filters: 66% and 64%; the 

regular H filter is third with 61%. Compared to the HP filters (fourth part of Table 2), the regular H 

filter is as good as the best HP filter (HP20) with regard to sign congruency to inflation change 

(0.61); H(1,1) and QWH are better. The standard HP100 performs worse (59%); the worst 

congruency among the filters we find for HP2.91 and HP6.25 with 0.5 and below. Comparing the 

filter results with that of the EUPF benchmark, we find that the best H filter H(1,1) displays equally 

high sign congruency as EUPF (both 0.66), while all HP filters perform worse. The GCEE 

benchmark (0.59), in contrast, is outperformed by all H filters but H(3,1); among the HP filters, 

HP100 is equally good and HP20 better (0.61). Turning to Pearson’s correlation coefficient of 

output gap and the change in inflation (next line in tables), we find that it is statistically significant 

for all H filters but H(3,1), while only HP100 displays a significant correlation coefficient among 

the HP filters (0.26). We find the by far best indicator value for H(1,1) with 0.42, followed by QWH 

(0.33), and regular H(2,1) with 0.30. For comparison, the PCCs of both production-function 

benchmarks are statistically significant; but the EUPF displays only 0.29, and GCEE 0.33. Thus the 

QWH filter performs equally good as the GCEE benchmark (both 0.33) but better than the EUPF 

(only 0.29), which is still better than any of the HP filters. That is, while all H filters but H(3,1) and 
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both benchmarks are able to capture the theoretically predicted link of output gap and change in 

inflation, only the standard HP100 filter is able to do so. With only 26% of perfect positive 

correlation, however, it performs worse than all H filters but H(3,1). Therefore, all HP filters alike 

are worse in capturing the gap-inflation link than the two benchmarks, or than H(1,1), H(2,1), and 

QWH. All H filters but H(3,1) are better at capturing the gap-inflation link than the EUPF method. 

The GCEE (0.33), however, is better at doing so than the regular H filter (0.30). Interestingly, both 

sign congruency and PCC decrease in parameter h, and we find that the H(1,1) is the best estimator 

for capturing the gap-inflation link. This finding is especially important for central banks. Within 

HP filters, the best choice is smoothing factor 20 (sign congruency) and 100 (correlation). Overall, 

we find that the gap-inflation link is clearly better captured by the H filters. 

4.3 Unbiased Benchmark Predictor Test and Inflation Link Regression 

Our tests for unbiased prediction of the benchmark indicators suggest that the H filters are no unbiased 

predictors of the two benchmarks (Table 1, last but two section): the p values of the F test are for both 

benchmarks all below any standard significance level, so that we reject the null of unbiased predictor. 

Turning to the HP filters (Table 2), we find that this also holds for the GCEE benchmark. Looking at 

the EUPF results of the HP filters, in contrast, we obtain a mixed result. Demanding a confidence 

level of only 90%, we reject the null of unbiased predictor for the HP20 and HP100 filters, but we 

cannot reject the null that HP2.91 and HP6.25 are unbiased predictors of the EUPF benchmark. 

Demanding the standard confidence level of 95%, however, we have to reject this null for HP6.25, 

too; and demanding even high confidence of 99%, we even have to reject the null for HP2.91, too – 

that is, at significance level 1% we reject each null that states that the considered HP filters are 

unbiased predictors. Based on the marginal significance level (p value) ranking, the best predictor is 

HP20: with a p value of 0.48 it is relatively clear that the null can be accepted. All other p values are 

below 12%, in contrast. That is, none of the considered H and HP filters are unbiased predictors of 

the GCEE benchmark, but HP20 in particular is an unbiased predictor of the EUPF benchmark, while 

none of the H filters are. Evaluating the p values of the two benchmarks EUPF and GCEE themselves, 

we find that both p values are more or less zero: we can reject the null of unbiased predictor of EUPF 

for GCEE, and vice versa. In the remaining block on the regression of the change in inflation on the 

output gap (Diff(Inflation)) we report R2, root MSE, the slope coefficient 𝛽 and the p-value of the t-

test for statistical significance of this coefficient, respectively (Tables 1 and 2). We find that 

benchmark GCEE explains more of the inflation variation than EUPF (R2 of 0.11 versus 0.085) and 

that the root MSE of GCEE is smaller, too (1.139 vs. 1.154). Both slope terms are positive and 

statistically different from zero, as required. An increase of the EUPF gap has a stronger effect on 
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inflation. Comparing those benchmark results with the H filter values (Table 1), we find that all H 

filter gaps but H(3,1) explain more inflation variation than EUPF, and that H(1,1) as well as QWH 

also explain more inflation variation than GCEE. The same holds pertaining to the root MSE results. 

All H filter coefficients 𝛽  are positive and significant at the 7.8% significance level. The highest 

coefficient is found for H(1,1), followed by EUPF and QWH. Moreover, while EUPF and GCEE are 

significant at levels of 1.5% and 1.2% QWH and H(1,1) are significant at levels of 0.9% and even 

0.0%. Thus QWH and especially H(1,1) outperform the benchmarks with respect to the gap-inflation 

link; the regular H filter has slightly higher R2 and slightly lower root MSE than EUPF, but 𝛽 is 

significant at a higher significance level. We also find that R2 as well as 𝛽 decrease and root MSE as 

well as the t-test p-values increase in parameter h. Comparing these findings with the HP filter results 

in Table 2 it turns out that the HP filters can capture the gap-inflation link worse than the benchmarks 

and all H filters but H(3,1). All R2 are lower, all root MSE are higher than those of the benchmarks 

or these H filters. Nonetheless, all 𝛽 are positive and weakly significant; none of the 𝛽 is significant 

at the 5% level, however. The best performance we find for the conventional HP100 filter. Overall, 

the gap-inflation link is best captured by the H(1,1) and QWH, closely followed by GCEE. 

Consequently, the H filter outperforms the HP filter in capturing the gap-inflation link. 

4.4 Business Cycles Adequacy 

Turning to the correlations between the change of the gap and the series of benchmark expansion 

dummies, these are positive and significant for all methods, as required. The correlation with the 

official recession dating of the GCEE increases with parameter h for the H filters, ranging from 0.36 

for H(1,1) and 0.52 for H(3,1); interestingly, averaging those three filters, the QWH filter performs 

even slightly better (0.53). Again, the HP filter reveals the same pattern with λ: the PCC increases 

from 0.357 (HP2.91) to 0.429 (HP100). But the coefficients are lower, and even HP100 can only 

outperform H(1,1), which means the H filters perform better. Turning to the expansion-phase 

dummies based on our own dating rule for benchmark EUPF, 22 we find exactly the same pattern: 

                                                 

22 Besides the benchmark dating of the GCEE (Breuer et al. 2022), there are, of course, other dating results available, 

though less up-to-date, partly also discussed by Breuer et al. (2022). Gebhardt and Siemers (2020: Appendix B) 

evaluate several business-cycle dating results, respectively based on monthly and quarterly multidimensional business 

data, in a kind of meta-analysis. They conclude that much simpler univariate filter methods applied to more aggregated 

annual GDP data, may produce more or less similar ex post business cycle dating. A crucial point is the treatment of 

intermediate cycles in between main cycles. An instance is that the GCEE (Breuer et al. 2022) does not consider 

2011/12 as an end of the business cycle starting in 2008; they also reject identifying a recession in 2012 to 2013; as 

others, they also find a cycle in this period, but, based on other indicators, they draw the conclusion that this period 

represents only an interruption of the business cycle which continues afterwards. Applying our dating rule, requiring 

five conditions to hold, include the precondition that turning points are only sufficient to be identified as main turning 

point if there are in advance and afterwards gaps of at least 1% in absolute terms. With our rule, only H(1,1), the regular 

H(2,1), and HP2.91 do identify in 2011 a main peak that ends a short cycle after the Great Financial Crisis; all other 

dating results are in accord with the GCEE opinion. That is, our five-requirement dating rule may represent a simple 

substitute for more complicated rules for researchers that do not have resources and men-power comparable to GCEE. 
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the correlation increases in h and λ, and the H filters outperform HP. The regular H filter (0.58) 

performs better than all HP filters but HP100 (0.60), which is only slightly better; but QWH (0.64) 

and H(3,1), at 0.71, display the highest correlation and are more highly correlated with the EUPF 

expansion-phase dummies. This suggests that recession-dating adequacy increases with higher 

sensibility for longer cycles. Eventually analysing the recession-dating adequacy among the two 

benchmarks, we find that the correlation between the official dating of GCEE and the change in gap 

of the EUPF is 0.484, and that that of the GCEE gaps used in our analysis is 0.485. This is a bit less 

than that of the regular H filter H(2,1), and higher than any of the HP filter’s correlations. Turning 

to the adequacy of dating with the EUPF benchmark dating with its own gaps changes, we find a 

PCC of 0.621, and the GCEE gap changes reveal a PCC of 0.642, which is the highest PCC of all 

methods analysed. Both benchmarks are more highly correlated than any HP filter. The highest PCC 

with the EUPF dating is found for H(3,1), followed by GCEE, QWH, and EUPF itself. 

4.5 Spectral Analysis 

Our results so far suggest that both a rising parameter h and a rising smoothing factor λ do increase 

the sensibility for longer cycles. While the latter is well known, we use spectral analysis to prove 

this for the H filters as well. Spectral analysis allows the deduction of the “typical” cycle length and 

cycle-length sensibility of our H and HP filters. In a first step, as a reference point to our spectral 

analysis, we computed for each considered method all corresponding average cycle lengths, based 

on our dating rule (final row of Table 1 and 2). We find similar average cycle lengths among the H 

filters (Table 1), ranging from 7 (regular H filter) to 9 (H(3,1) and QWH) – and in line with our 

finding that QWH may be more sensitive to longer cycles than the regular H filter. This is also in 

accord with the benchmark results of 9 (EUPF) and 8 (GCEE). While the comparison of H(1,1) and 

H(3,1) fits to the hypothesis that the reference cycles rise in h, the shortest length of the regular H 

filter with h=2 falls a bit out of this pattern. Turning to the HP filter results (Table 2), however, we 

find respective lengths in accord of the hypothesis with regard to the smoothing factor: the length 

weakly increases in λ, from 7 (HP2.91) to 9 (HP20), and to an extraordinary 14 years of HP100.23 

The latter confirms the results of Mohr (2001), who argues that smoothing factor 100 involves 

unusually short frequencies, or conversely an unusually long reference cycle of about 13 years.  

Turning to our spectral analysis, we calculated the respective cumulative spectral distribution (CSD) 

and the corresponding spectral density functions (SDF) for all analysed filters (cf. Figures 4 to 7). In 

all figures we mark the lower cut-off frequency for the typical business-cycle length of 8 years – 

                                                 

23 Kufenko and Geiger (2017) found for the OECD a range of 4.2 to 7.4 years. This would be more in line with the 

regular H- and the HP2.91 filters (7 years). 
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i.e. a natural frequency of 1/8 – by a red vertical line.24 Turning to Figure 4 (H filters), we find that 

the CSD starts steeper the higher parameter h is; consequently, the H(1,1) CSD accumulates 15.9%, 

regular H(2,1) 37%, and H(3,1) 57% of the distribution already at the lower cut-off frequency 1/8. 

That is, the higher we choose h the more sensitive the H filter is for longer cycle durations. This is 

also confirmed by the SDF in Figure 5: the H(1,1) and H(2,1) peaks are both at 0. 18̅̅̅̅  (5½ years), 

but for lower frequencies the densities of the regular H(2,1) are higher, and for higher frequencies 

the H(1,1) densities are relatively evenly distributed, whereas the H(2,1) densities decrease step by 

step. That is, the sensibility of the regular H(2,1) for longer cycle durations is higher. The H(3,1), in 

contrast, has its peak more or less at 0.045̅̅̅̅  (22 years) and 0. 18̅̅̅̅  (5½ years) alike, and for 

frequencies above 0.2 (or below 5 years) the densities decrease markedly. Therefore, the reference 

cycle length increases with parameter h, as is already known for the HP smoothing factor λ. The 

latter known result is reproduced for our German sample in Figures 6 and 7. While the CSD for 

HP2.91 and HP6.25 remains more or less zero up to frequency 0.09, it already rises at frequency 

0.068 for HP20, and for HP100 already at frequency 0.045 (Figure 6). At the 8-years threshold, 

HP2.91 accumulates only about 10%, the HP6.25 about 13%, rising to 25% for HP20 and as high as 

about 40% of the distribution for HP100. All HP filters have their respective density peak at 0. 18̅̅̅̅  

(5½ years), but obviously the densities decrease in λ (Figure 7). For lower frequencies, densities rise 

in λ, and vice versa.  

Finally, the CSD of the modified H filter (QWH in Figure 4) is similar to the regular H filter’s, but 

accumulates a higher part of the distribution at the 8-years threshold, that is, QWH is more sensitive 

for longer cycles (Figure 4). Accordingly, in Figure 5, the peak at 0.045̅̅̅̅  (22 years) is more 

pronounced in comparison, and that at 0. 18̅̅̅̅  (5½ years) is lower. We can thus confirm the critique of 

Quast and Wolters (2022) that the regular H filter distributes the typical cycle frequencies above 1/8 

less evenly than the QWH for our German sample, but, as demonstrated, it also covers more cycles 

with durations above 8 years. So the finding in Quast and Wolters (2022) as well as Schüler (2018), 

that the regular H filter amplifies longer and mutes short cycles, is to be qualified: the QWH indeed 

has higher densities for shorter cycles, but, as we show, also for longer cycles; the cumulative 

density distribution reveals that the mass of distribution on cycles longer than 8 years is higher for 

the QWH in comparison to the regular H filter. This is rooted in the less even distribution – the 

regular H filter is more centred around medium-long cycles. 

 

                                                 

24 Based on Burns and Mitchell (1946) or Stock and Watson (1999), typical business-cycle frequencies are located in the 

range of 1.5 to 8 years. 
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4.6 Crisis Resilience 

The sample time-frame includes three significant shocks for the German economy: the German 

reunification (1989 to 1991) was a positive consumption demand shock, while the Great Financial 

Crisis (in Germany in 2009) and the recent COVID-19 pandemic were negative shocks. Figure 3 

shows GDP as well as H and QWH trends in these crises in comparison. In combination with Figure 

2, we see that the H filter produces non-reliable trend patterns in times of crisis. In the reunification 

years from 1989 to 1991, German economic growth rates were extraordinarily high and increased 

from an already high 3.9% in 1989 to 5.3 (1990) and 5.1 (1991), because the East German 

consumers were able to consume all the West German goods for the first time in their lives, and 

enjoyed an income and wealth effect due to a very beneficial fixed exchange rate between the East 

German Mark and the West German Deutschmark (DM).25 In 1992 and especially 1993, this 

overheating resulted in a drop of economic growth, down to –1.0% in 1993. This GDP pattern is, 

delayed by two years, followed by the regular H filter, that is, there is a rise in trend up to 1994, 

followed by a drop in 1995, which is not a convincing development of potential output (Figure 3). 

Turning to the big financial crisis, the regular H filter, as a lagged-dependent-variable regression, 

also produces an instable up and down of potential output in the years 2003 to 2012, and suggests 

that the slope of the potential-output curve even increases during the financial crisis, which is odd – 

so (i) a small boom around the millennium causes an implausible rise of trend in the years 2003 to 

2004, though the economy experiences a weak sideward movement of GDP; and (ii) potential 

output increases markedly just in the global crisis years 2007 to 2010. The QWH trend, in contrast, 

more smoothly follows GDP, with a much less curious rise and drop. The Great Financial Crisis and 

COVID-19 pandemic both hit the German economy in times of an expansion in 2008 and a 

weakened expansion in 2019 respectively, so that, due to two years’ delay via autoregression, the H 

trend continues to grow until 2010 and 2021 respectively, despite severe crisis; and as a delayed 

echo of the crises the trend drops severely after a duration of two years in 2011 and 2022. That is, 

by construction of the autoregression, estimated potential output levels increase in significant crisis 

and decrease in the aftermath in times of recovery; the opposite happens in times of significant 

booms followed by significant consolidation. Therefore, the H filter causes odd results when an 

economy is hit by a positive or negative shock, that is, experiencing a significant ad-hoc boom with 

                                                 

25 The DM became de facto the unofficial medium of exchange directly after the Fall of the Berlin Wall and the 

unofficial end of the inner border in 1989. These days the exchange rate was about 1:20. Beginning at January 1990, 

East-Germans were able to open DM accounts; the official fixed exchange rate was 1:5. In May 1990, an economic and 

currency union was determined. Wages, pensions, rent payments etc. are now even exchanged 1:1. Accounts and cash is 

exchanged at rates between 1:1 and 1:2. Obviously, these exchange rates were determined politically, and not by the 

market. 
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a consolidation to normal including a period of weak and negative growth, and vice versa. Again the 

QWH trend suffers much less from this odd characteristic in both the Great Financial Crisis and 

pandemic period, but smooths the development of the potential output proxy much more 

realistically, as intended by Quast and Wolters (2022) with their modification. That is, the QWH 

filter demonstrates its advantage in full strength especially in years of crisis and huge turning points 

of GDP. The QWH trend is a much more reasonable description of the true development. 

 

Figure 8 shows the results of the two most extreme HP filters analysed for the same crises; HP2.91 

has the smallest smoothing factor and HP100 the greatest. Given HP0 would be the GDP 

development itself and HP∞ the linear trend, HP2.91 follows GDP relatively closely and HP100 a 

linear trend relatively closely. Consequently, the other two HP filters run in between the two 

illustrated trends, HP20 closer to HP100, HP6.25 closer to HP2.91. That is, the HP trend, as an 

estimate for potential output, is quite elastic to current GDP movements for low smoothing factors, 

medium elastic for factors like 20, and least elastic for 100 and higher. The consequence is that in 

situations of massive shocks potential output is assumed to be quite stable in the short and medium 

run for high 𝜆. With a factor of only 2.91 or 6.25, accordingly, this involves the odd assumption that 

potential output increases quite elastically upwards in times of massive booms and downwards in 

huge contractions. Beyond this property, Figure 8 reveals that the criticised smoothing of statistical 

structural breaks also causes additional trouble in times of strong ups and downs: the higher λ is, the 

more this up and down (reunification) or down and up (Great Financial Crisis and COVID-19) 

causes smoothing of the trend before and after the shock. In the upper part of Figure 8 we observe 

that the HP100 already responds to the boom in 1989-1991 in the pre-years by an increase of the 

trend: as far back as 1982 the trend starts to increase and runs above the observed GDP 

development: there are continuously negative gaps until 1989, which is odd, most of all for 1989; in 

these pre-boom years the trend growth is increasing continuously, which does not make sense. The 

counter effect of this “pre-smoothing” is a “post-smoothing” in the following years, where the trend 

growth, despite massive boom, now already begins to decrease in 1990, before the downturn in 

1993; the gap remains, as a consequence, positive even in the contraction. We observe something 

similar in the two negative shocks with inverted sign: despite boom time before the Great Financial 

Crisis and, at a weaker degree, also before the recent pandemic, the trend is not rising. This is 

caused by the later recovery afterward, where the GDP returns to normal level: the recovery is also 

smoothed. So it is like laying a thread over a hill or over a hole and then stretching it from both 

sides: the result is a more and more straight line, depending on how tightly you stretch. In the HP 

analogy, the strength of stretching is determined by λ. So this characteristic is rooted in the HP 
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filter, which is a two-sided filter, and the effect is stronger the higher smoothing factor λ is. The 

user, therefore, has to evaluate the trade-off between smoothing and odd behaviour in times of huge 

shocks: the higher λ the more convincing the annual trend development in times of crisis but the 

less convincing the trend development in pre- and post-years due to pre- and post-smoothing. In this 

challenge, a smoothing factor of about 20 to 40 seems to represent an adequate compromise 

between the two extremes illustrated. In comparison, the H filter benefits from its one-sided filter 

property: there is no pre- and post-smoothing; but the regular H filters, in contrast to HP, suffers 

from the autoregression-immanent construction of delayed developments. This drawback, however, 

is overcome by the modified version of QWH, which means that this is the preferred filter in times 

of huge shocks. 

4.7 Simulations: Optimising the HP filter via Smoothing Factor 

Our results suggest a preference for QWH among the single Hamilton filter variants. Among the 

investigated HP filters, however, the conclusion depends on the preference regarding the 

benchmark: for EUPF the preferred one is HP20, while it is HP100 for GCEE. The HP filters allow 

more flexibility due to smoothing factor 𝜆 ϵ (0, ∞). We therefore also simulated Pearson’s 

correlation coefficient and RMSE for the two benchmarks (the results are illustrated in Figures A.1 

to A.4 in the appendix) and deduce the optimal 𝜆 ϵ [1,2000]. Regarding the EUPF benchmark, we 

find that the optimal 𝜆 is 38 for both maximizing PCC(EUPF) and minimizing RMSE(EUPF). That 

is, neither the German-specific value of 20 (Mohr 2001) nor that chosen for the harmonized value 

within ESCB (30) is the optimal choice if the EUPF is the desired benchmark and correlation or 

RMSE with it the objective – but both values are close to it. Comparing the overall gain in 

correlation with EUPF we find that it is economically insignificant: PCC(HP20)=0.935, 

PCC(HP30)=0.940, and PCC(HP38)=0.941. Regarding RMSE(EUPF), it is 0.610 (HP20) versus 

0.584 (HP30) and 0.579 (HP38). For the GCEE benchmark, in contrast, we find the upper limit of 

our analysed bracket, i.e. the highest simulated value 2000, for both indicators PCC(GCEE) and 

RMSE(GCEE) to perform best. Believing the GCEE estimates are the best benchmark, researchers 

ought to use very high smoothing factors far beyond 100, even for annual data. Analysing Figures 

A.3 and A.4 we find that the marginal gain of increasing the smoothing factor diminishes 

significantly in a range of about 400 to 500. PCC(GCEE) is 0.765 for HP20, 0.788 (HP30), and 

0.852 (HP100) versus 0.890 (HP400), 0.893 (HP500), and 0.909 (HP2000). The RMSE(GCEE) 

diminishes from 1.739 (HP20) to 1.677 (HP30) to 1.468 (HP100), versus 1.301 (HP400) to 1.290 

(HP500) to 1.248 (HP2000). Nonetheless, high values such as 2000 produce trends that are already 

close to linear trend estimations. Moreover, Mohr (2001) notes that there is a trade-off between 
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including too low frequencies (passband problem) and having too low spectral densities for relevant 

business-cycle frequencies (compression problem). Accounting for this insight, spectral analysis 

suggests that the GCEE result of extremely high optimal smoothing factor for the HP filter is 

problematic. Higher 𝜆 moves the spectral transfer function to lower frequencies (longer cycles) and 

hence increases the passband problem (while diminishing the compression problem). Accordingly, 

we found the reference cycle length of HP100 to be already far beyond the conventional upper limit 

of eight years. In the context of restricting public debt, for instance, deficits and surpluses ought to 

balance over the cycles. Being strict would require setting a relatively short reference cycle, i.e. low 

values of 𝜆. On the other hand, too low reference cycle length involves the risk of not allowing 

automatic stabilisers to function effectively in practice. This discussion causes Mohr (2002) to 

suggest 𝜆 = 20 for Germany. In combination with our findings we suggest using higher values, 

even a little bit higher than the harmonised European value of 30 for Germany. 

5 Conclusion 

The Hamilton autoregression (H filter) generates smoothing by delaying the development of the 

considered dependent variable. Hence, the smoothing factor of the H filter is the h parameter, i.e. 

the amount of forward periods used in autoregression. The H filter’s degree of smoothing turns out 

to be insufficient in times of huge shocks: the Quast-Wolters modification (QWH filter) solves this 

H filter problem and produces a convincing estimate of potential output development – in contrast 

to the Hodrick-Prescott method (HP filter). The latter is found to pre- and post-smooth huge shocks. 

This generates unreliable trend developments in times of big boom and contraction periods; this is 

directly related to the known HP problem of smoothing structural breaks, and there is no available 

modification for HP filters to address the issue. An adequate second-best compromise could be a 

choice of the smoothing factor at around 20 or 40. In times of huge GDP shocks, the QWH filter is 

the preferred choice. 

Compared to expert institutions’ benchmarks, it turns out that the QWH is also the preferred H 

filter: it outperforms the regular H filter, or other versions of the H filter, at least in the context of 

estimating output gaps and potential output. Among the HP filters we find that HP38, i.e. the use of 

smoothing factor 38, is optimal for accomplishing a maximum congruency with the EU production 

function approach (EUPF). However, aiming at being as close as possible to the estimates of the 

German Council of Economic Experts (GCEE), we find that it is optimal to choose very high 

values, such as 2000. It turns out that, in comparison, the HP filters outperform even the QWH filter 

for both benchmarks with respect to sign congruency, statistical correlation, and root mean squared 
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error – but with different smoothing factors. The H filters can only outperform HP filters with very 

low factors (e.g. 3) for the EUPF benchmark; with typically used factors like 6.25, 20, or 100 the 

benchmark congruency of the HP filter is better. Regarding similarity with the second benchmark, 

QWH can slightly outperform HP20, but is also beaten by higher smoothing factors of the HP filter. 

However, we find that the H filter gaps are more highly correlated with official recession dating 

results from expert institutions than the HP filters. Our spectral analysis proves a significant degree 

of similarity between H filter’s parameter h and HP’s smoothing factor λ. Their sensibilities 

increase similarly for longer cycles. We confirm the finding that the QWH filter distributes typical 

business-cycle lengths more evenly than the regular H filter. The latter indeed mutes shorter cycles 

in comparison. But we also find that the QWH is more sensitive to longer cycles in comparison to 

the regular H filter. The regular H filter is more centred and hence more sensitive to medium cycle 

lengths. We add another important finding: the H filter method is the better alternative vis-à-vis the 

HP filter in terms of capturing the link between output gap and change in inflation, an aspect 

especially relevant for central banks in controlling inflation. While the benchmark gap estimates of 

EUPF as well as GCEE perform better than all analysed HP filter versions, the regular H filter 

performs slightly better than EUPF and only slightly worse than GCEE. The QWH filter performs 

better than the EUPF benchmark and the regular H filter, and just as well as the GCEE benchmark. 

The best performance of all is found for H(1,1), that is, the H filter with only one year forward 

instead of two. 

The overall conclusion is that the answer to the Hamilton-HP filter controversy is complex. The 

better method depends greatly on what exactly the researcher’s focus is. In the context of estimating 

potential GDP and output gaps, researchers ought to choose the Quast-Wolters modification of the 

Hamilton filter among the H filter options, or HP38 among the HP filters. While the QWH filter 

will produce gaps that are more highly correlated with official recession dating, the HP38 filter will 

produce higher gap congruency with expert institutions’ estimates based on EUPF. With a focus on 

the link between output gaps and inflation, the preferred choice is definitely the H(1,1)-filter, 

followed by QWH. In times of huge GDP shocks, again the QWH filter is best. Regarding external 

validity, our findings are primarily conditional on Germany. Future research has to investigate 

whether our findings are valid for other regions as well.  
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Figure 1: Gaps of the two benchmark indicators (EUPF and GCEE) 

 

 

Figure 2: Price-adjusted GDP in comparison to the three estimated Hamilton-filter trends 
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Figure 3: Comparison of regular H filter and modified QWH filter 
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Table 1: Results table for the Hamilton filters in comparison 

  
Source: Our own calculations of H filter based on price-adjusted GDP (FedGov 2024); EU approach numbers directly 

taken from FedGov (2024); GCEE (German Council of Economic Experts) gaps directly taken from GCEE homepage. 

– a average cycle length based on our dating rule and starting in 1991.  

indicator EUPF GCEE H(1,1) H H(3,1) QWH

SD 1.7 2.3 2.0 2.8 3.2 2.4

av. gap size 1.3 1.9 1.4 2.2 2.5 1.8

sign congr.(EUPF) 1 0.86 0.70 0.80 0.75 0.80

sign congr.(GCEE) 0.86 1 0.70 0.80 0.77 0.80

RMSE(EUPF) 0 1.61 1.54 1.55 1.91 1.12

RMSE(GCEE) 1.61 0 2.24 2.03 2.08 1.71

EUPF 1

GCEE 0.80* 1

H(1,1) 0.65* 0.53* 1

H 0.88* 0.76* 0.70* 1

H(3,1) 0.85* 0.80* 0.50* 0.88* 1

QWH 0.90* 0.80* 0.77* 0.97* 0.92* 1

sign[Diff(inflation)] 0.66 0.59 0.66 0.61 0.57 0.64

Diff(inflation) 0.29* 0.33* 0.42* 0.30* 0.23 0.33*

EUPF 1 0.000 0.000 0.000 0.000 0.000

GCEE 0.003 1 0.002 0.000 0.000 0.000

Diff(inflation)

R
2

0.085 0.110 0.175 0.091 0.054 0.112

root MSE 1.154 1.139 1.096 1.151 1.173 1.137

β 0.202 0.064 0.255 0.127 0.087 0.166

p -value test β=0 0.015 0.012 0.000 0.038 0.078 0.009

GCEE (Breuer et al. 2022) 0.484* 0.485* 0.360* 0.494* 0.521* 0.529*

EUPF (own dating) 0.621* 0.642* 0.361* 0.582* 0.713* 0.635*

Average cycle length
a

9 8 8 7 9 9

correlation matrix of gaps (PCC)

gap-inflation link

Unbiasedness Test Regressions (p -value of F -test H0: α=0 and β=1)

PCC of 1
st
 difference of gap with expansion-phase dummy

congruancy with benchmark indicators
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Table 2: Results table for the Hodrick-Prescott filters in comparison 

 
Source: Our own calculations of H filter based on price-adjusted GDP (FedGov 2024); EU approach numbers directly 

taken from FedGov (2024); GCEE (German Council of Economic Experts) gaps directly taken from GCEE homepage. 

– a average cycle length based on our dating rule and starting in 1990, for comparability. 

 

 

 

 

 

Table 3: Correlations between Hamilton and Hodrick-Prescott filters 

 
Source: Our own calculations of H and HP filters based on price-adjusted GDP (FedGov 2024). 

 

indicator EUPF GCEE HP2.91 HP6.25 HP20 HP100

SD 1.7 2.3 1.2 1.3 1.5 1.8

av. gap size 1.3 1.9 0.9 1.0 1.2 1.4

sign congr.(EUPF) 1 0.86 0.77 0.80 0.91 0.89

sign congr.(GCEE) 0.86 1 0.75 0.77 0.84 0.82

RMSE(EUPF) 0 1.61 0.91 0.77 0.61 0.66

RMSE(GCEE) 1.61 0 1.98 1.89 1.74 1.47

EUPF 1

GCEE 0.80* 1

HP2.91 0.86* 0.66* 1

HP6.25 0.90* 0.70* 0.99* 1

HP20 0.94* 0.76* 0.95* 0.98* 1

HP100 0.93* 0.85* 0.86* 0.91* 0.97* 1

sign[Diff(inflation)] 0.66 0.59 0.48 0.50 0.61 0.59

PCC with Diff(inflation) 0.29* 0.33* 0.24 0.23 0.24 0.26*

EUPF 1 0.000 0.016 0.053 0.483 0.116

GCEE 0.003 1 0.002 0.002 0.002 0.000

Diff(inflation)

R
2

0.085 0.110 0.056 0.055 0.057 0.066

root MSE 1.154 1.139 1.172 1.173 1.172 1.166

β 0.202 0.064 0.241 0.213 0.189 0.170

p -value test β=0 0.015 0.012 0.052 0.055 0.057 0.067

GCEE (Breuer et al. 2022) 0.484* 0.485* 0.357* 0.380* 0.403* 0.429*

EUPF (own dating) 0.621* 0.642* 0.472* 0.511* 0.558* 0.600*

Average cycle length
a

9 8 7 9 9 14

congruancy with benchmark indicators

correlation matrix of gaps (PCC)

gap-inflation link

Unbiasedness Test Regressions (p -value of F -test H0: α=0 and β=1)

PCC of 1
st

 difference of gap with expansion-phase dummy

H(1,1) gap H gap H(3,1) gap QWH gap HP2.91 gap HP6.25 gap HP20 gap HP100 gap

H(1,1) gap 1

H gap 0.70* 1

H(3,1) gap 0.50* 0.88* 1

QWH gap 0.77* 0.97* 0.92* 1

HP2.91 gap 0.63* 0.74* 0.61* 0.73* 1

HP6.25 gap 0.60* 0.76* 0.66* 0.75* 0.99* 1

HP20 gap 0.56* 0.77* 0.72* 0.77* 0.95* 0.98* 1

HP100 gap 0.51* 0.76* 0.78* 0.78* 0.86* 0.91* 0.97* 1
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Figure 4: Cumulative spectral distribution of the four Hamilton filters. Red vertical lines at 8-years 

natural frequency 1

8
=0.125. 

 

Figure 5: Spectral density function of the four Hamilton filters. Red vertical lines at 8-years natural 

frequency 1

8
=0.125. 
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Figure 6: Cumulative spectral distribution of the four Hodrick-Prescott filters. Red vertical lines at 

8-years natural frequency 1

8
=0.125. 

 

 

Figure 7: Spectral density function of the four Hodrick-Prescott filters. Red vertical lines at 8-years 

natural frequency 1

8
=0.125. 
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Figure 8: Comparison of HP2.91 and HP100 in times of shocks 
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Appendix 

Table A.1: Estimated output gaps of benchmarks, H filters, and HP filters in %, 1980-2023 

 
Source: Our own calculations of filters based on price-adjusted GDP (FedGov 2024); EU approach numbers directly 

taken from FedGov (2024); GCEE (German Council of Economic Experts) gaps directly taken from GCEE homepage. 

Numbers in bold mark turning points of the business cycle, based on our five-requirement dating rule.  

year EUPF GCEE H(1,1) H H(3,1) QWH HP2.91 HP6.25 HP20 HP100

1980 1.8 -0.6 -1.3 -0.2 -0.1 -0.5 1.0 1.3 1.9 2.2

1981 0.3 -2.7 -2.1 -3.0 -2.2 -2.5 0.3 0.5 0.9 0.8

1982 -1.8 -5.4 -3.0 -5.4 -5.6 -4.7 -1.0 -1.0 -1.1 -1.5

1983 -1.9 -5.8 -1.2 -4.6 -6.3 -4.1 -0.8 -0.9 -1.2 -2.0

1984 -1.0 -4.8 0.2 -1.8 -4.4 -2.1 0.3 0.1 -0.3 -1.5

1985 -0.6 -4.1 -0.2 -0.4 -2.2 -0.9 0.5 0.3 -0.3 -1.5

1986 -0.5 -3.7 -0.2 -0.3 -0.6 -0.4 0.4 0.1 -0.6 -1.8

1987 -1.4 -4.1 -1.0 -1.2 -1.2 -1.1 -1.0 -1.4 -2.0 -3.0

1988 -0.3 -2.7 1.3 0.4 0.2 0.6 -0.8 -1.1 -1.5 -2.1

1989 0.6 -1.2 1.7 2.7 2.0 2.1 -0.9 -0.9 -0.9 -1.0

1990 2.6 1.7 3.1 5.2 5.7 4.7 0.3 0.5 1.0 1.4

1991 4.3 4.5 3.2 6.8 8.5 6.1 1.9 2.4 3.1 3.9

1992 3.0 3.2 0.2 4.1 6.9 3.7 1.4 1.8 2.5 3.4

1993 -0.7 -0.4 -2.7 -1.6 1.6 -0.9 -1.2 -1.0 -0.6 0.1

1994 -0.5 -0.1 0.6 -1.9 -0.6 -0.7 -0.1 -0.2 -0.1 0.4

1995 -0.6 -0.4 -0.1 -0.4 -2.0 -0.8 0.1 -0.1 -0.3 0.1

1996 -1.3 -1.1 -0.8 -0.8 -1.5 -1.0 -0.5 -0.8 -1.1 -0.9

1997 -0.8 -0.7 0.2 -0.7 -0.5 -0.4 -0.4 -0.6 -0.9 -0.8

1998 0.0 0.1 0.4 0.3 -0.3 0.2 -0.3 -0.3 -0.5 -0.4

1999 0.4 0.7 0.4 0.8 0.6 0.6 -0.3 -0.2 -0.1 0.0

2000 1.7 2.6 1.4 1.9 2.2 1.9 0.8 1.1 1.3 1.5

2001 1.8 2.8 0.3 1.8 2.2 1.4 1.2 1.5 1.7 1.9

2002 0.1 1.3 -1.5 -0.9 0.2 -0.7 0.3 0.3 0.4 0.5

2003 -1.8 -0.6 -2.1 -3.4 -2.7 -2.7 -1.0 -1.2 -1.3 -1.4

2004 -1.8 -0.7 -0.3 -2.7 -3.5 -2.2 -0.8 -1.0 -1.2 -1.4

2005 -2.2 -1.5 -0.6 -1.5 -3.4 -1.8 -1.4 -1.6 -1.6 -1.8

2006 0.3 0.5 2.4 1.8 0.7 1.6 0.6 0.7 0.9 0.8

2007 2.1 1.6 1.8 3.9 3.4 3.0 2.1 2.4 2.7 2.6

2008 1.8 1.4 -0.2 2.2 3.5 1.8 2.3 2.5 2.6 2.3

2009 -4.8 -5.4 -6.8 -6.5 -4.5 -5.9 -3.8 -4.0 -4.2 -4.6

2010 -1.8 -2.6 2.7 -4.0 -3.5 -1.7 -0.8 -1.0 -1.4 -1.9

2011 0.9 0.1 2.8 3.2 -1.4 1.5 1.5 1.4 1.1 0.6

2012 -0.1 -1.0 -0.6 2.8 1.6 1.2 0.4 0.3 0.1 -0.3

2013 -1.0 -1.9 -0.7 -0.5 2.4 0.4 -0.7 -0.8 -1.0 -1.2

2014 -0.3 -1.1 1.1 0.2 0.9 0.7 -0.2 -0.3 -0.4 -0.4

2015 -0.3 -1.6 0.5 1.3 0.6 0.8 -0.5 -0.5 -0.5 -0.2

2016 0.6 -0.6 1.2 2.0 2.4 1.9 -0.2 0.0 0.2 0.7

2017 2.0 0.8 1.7 3.0 3.8 2.8 0.9 1.1 1.6 2.2

2018 1.6 0.6 0.1 2.1 3.0 1.7 0.8 1.1 1.5 2.1

2019 1.6 0.8 0.2 0.7 2.3 1.1 1.4 1.5 1.7 2.2

2020 -3.2 -3.4 -4.7 -4.5 -3.8 -4.3 -2.7 -2.8 -2.8 -2.6

2021 -0.8 -0.6 2.1 -2.4 -2.3 -0.9 -0.1 -0.2 -0.4 -0.3

2022 0.1 0.0 1.0 1.5 -1.5 0.3 1.0 0.9 0.8 0.7

2023 -1.1 -1.2 -1.1 0.4 -0.3 -0.4 0.0 0.0 -0.2 -0.3
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Figure A.1: Correlation coefficient of HP filter with the EUPF gap for varying smoothing factor λ. 

The vertical dashed lines mark, from the left: λ=2.91, λ=6.25, λ=20, λ=30, and λ=100. 

 

 

Figure A.2: Root Mean Squared Error of HP filter with EUPF gap for varying smoothing factor λ. 

The vertical dashed lines mark, from the left: λ=2.91, λ=6.25, λ=20, λ=30, and λ=100.  
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Figure A.3: Correlation coefficient of HP filter with the GCEE gap for varying smoothing factor λ. 

The vertical dashed lines mark, from the left: λ=2.91, λ=6.25, λ=20, λ=30, and λ=100. 

 

 

Figure A.4: Root Mean Squared Error of HP filter with GCEE gap for varying smoothing factor λ. 

The vertical dashed lines mark, from the left: λ=2.91, λ=6.25, λ=20, λ=30, and λ=100. 


