E Approach

S
=
=
=
(@5

t
5
=

Context
Plug-In

Base

Overriding

Tool

rofiling Execute

all

Work

O piff
Implementation

Snapshot Cﬂde :

Benchmark

£Debugging

— Detection

n anc
Editor

xecution

E

ol
DI = 4
gFS —
<< >
= —
;% e
£ Java §
O Eclipse
E CheCk Compilation
S e
9! S S
- S E
|-
= Probe & S =
: © Node °=— =
S 8 ?;E % E
— 'S’cc @
%gh z @
S =
2R =
= -
< g % oh
.= 2 E &>
£ E = @
E=E A e =&
SDE B S‘E
E A S E [=B)
=E T 8
O =<2
View & =
State Strobe

Philipps-Universitat Marburg

Faculty of Mathematics and Computer Science

An Efficient Domain-Specific Language
For Breakpoints

Freya Dorn

Bachelor Thesis

December 23, 2021

Supervisor:
Prof. Dr.-Ing. C. Bockisch

Programming Languages
and Tools Group

Advisor:
M.Sc. Stefan Schulz

Programming Languages

@ @ @ and Tools Group

https://creativecommons.org/licenses/by/4.0/deed.en

An Efficient Domain-Specific Language For Breakpoints

I8 Institution

Philipps-Universitdt Marburg

Faculty of Mathematics and Computer Science
Programming Languages and Tools Group
Hans-Meerwein-Str. 6

35043 Marburg

Deutschland

8 About the author

Freya Dorn is a computer science student with an interest in linguistics, programming
language design, and bioinformatics. You can reach her under freya.siv.dorn@gmail.com.

I License

This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 International”
license.

I Classification (ACM CCS 2012)

= Applied computing — Education; Document preparation;

= Software and its engineering — Software notations and tools;

I Keywords

Breakpoints, Debugging, Domain Specific Languages, Java programming language, Xtext

mailto:freya.siv.dorn@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.en

Freya Dorn

I Acknowledgment

I would like to thank my supervisor Prof. Dr.-Ing. Christoph-Matthias Bockisch for his
continuous encouragement during the many roadblocks I encountered while writing this
bachelor thesis. His helpful feedback kept me on track when my work schedule was
suffering the most.

I would also like to thank Anais and Elena for their ceaseless support and love. Thank you
for giving me stability and acceptance that I've never had in my life before.

Finally, I want to acknowledge Rasputin for helping me through many long coding sessions.

Though she’d heard the things he’d done
She believed he was a holy healer
Who would heal her son

Rasputin, Boney M. (1978)

e

An Efficient Domain-Specific Language For Breakpoints

8 Abstract

Breakpoints are a powerful tool for debugging programs. Real-world debuggers support
breakpoints through a wide range of divergent and non-composable commands with no
agreed-upon shared notation across independent debugging tools.

We developed a unified domain-specific language for breakpoints together with an efficient
backend implementation.

We followed a set of design principles to develop an expressive breakpoint language for
the Java programming language. We designed an ergonomic language for all commonly
used types of breakpoints in a way that closely follows the language conventions of Java.

Furthermore, we implemented an efficient automaton and backend for the breakpoint
language as an extension of the instrumentation framework used by Bockisch et al. in
their unified specification of breakpoints.

The breakpoint language and its efficient implementation largely meet our initial goals in
terms of expressive power, ergonomics, and practical performance.

P Zusammenfassung

Haltepunkte (Breakpoints) sind ein wichtiger Bestandteil des Debuggens von Software. In
der Praxis unterstiitzen Debugger Haltepunkte durch ein Sammelsurium unterschiedlicher
und nicht kombinierbarer Befehle, denen zudem eine gemeinsame Notation zur Nutzung
in voneinander unabhédngigen Debugging-Werkzeugen fehlt.

Das Ziel dieser Arbeit war es, eine einheitliche domé&nenspezifische Sprache fiir Hal-
tepunkte in Kombination mit einer effizienten Backend-Implementierung zu entwickeln.

Anhand von ausgewahlten Designprinzipien wurde eine ausdrucksmachtige Haltepunkt-
sprache fiir die Programmiersprache Java entwurfen. Diese ergonomische Sprache deckt
alle gédngigen Arten von Haltepunkten ab und orientiert sich dabei eng an den in Java
iiblichen sprachlichen Konventionen.

Dariiber hinaus wurden ein effizienter Automat swoie ein Backend fiir die Haltepunk-
tsprache als Erweiterung eines Instrumentierungsframeworks implementiert, welches
bereits von Bockisch u. a. in deren vereinheitlichter Spezifikation von Haltepunkten
verwendet wurde.

Die Haltepunktsprache und ihre effiziente Implementierung erfiillen weitestgehend die
urspriingliche Zielsetzung in Hinblick auf Ausdrucksmacht, Ergonomie und Laufzeitver-
halten.

I Contents

1

2

4L

Introduction e 1
Design Principles 3
2.1 Event-based 3
2.2 Runtime-based e 4
2.3 Ergonomic for Programmers 5
2.4 ADbStraction i e 6
2.5 Efficiency e 7
Query DSL e e e e e 9
3.1 Design. e 9
3.2 Variables e 11
3.3 Special Variables 14
3.4 Method Calls e 15
3.5 Exceptions 18
3.6 Query Organization v v ittt m it 19
3.7 COMMNECHIVES . . . v it i e e e e e e e e e 20
3.8 QueryVariables 27
Automaton Design And Implementation 31
4.1 Design. e 3I
4.2 Variables e 36
4.3 Special Variables 38
4.4 Method Calls e 39
4.5 EXCEPLIONS e e e 41
4.6 Query Organization v v ittt 41
4.7 CONNECLIVES . . . v i i e e e e e e e e e e e e e e e 42
4.8 QueryVariables 48
Evaluation e e 50
5.1 Principles 50
5.2 Performance Evaluation 52
Related Work e e 55
Conclusion e 56
References e e 57
Query DSLGrammar e e e e e e e e e e e e e e e 60
Query DSLGrammar e e e e e e e e e e e e e 63

Freya Dorn

ER Introduction

Debugging is one of the core aspects of developing reliable software. It is the task of
finding and understanding bugs so that they can be fixed. To facilitate that task, dedicated
debugging tools are used to control the execution of programs, to inspect and modify their
state during runtime, and to collect and analyze additional information about programs.

Popular debugging tools are standalone debuggers, such as GDB[gdb] and WinDbg[win],
and integrated debuggers in sophisticated IDEs, such as in Eclipse[ecl] or Visual Studio
Code[vsc]).

In order to inspect a program, programmers can use a debugger to pause the execution
of the program at certain points. The debugger will also expose the current state of the
program, such as the values of variables or the current function call stack.

Breakpoints are specific conditions that define points during the execution of a program
when the execution should be suspended. Breakpoints are commonly specified by stating
a position in the source code, typically in the form of a file name and line number. The
task of the debugger is then to pause execution whenever the instruction that corresponds
to that source code position is being executed. Modern IDEs often provide a graphical
interface to select lines and mark them as breakpoints for the debugger.

There are many related concepts in common use today, such as watchpoints[wat] and
tracepoints[tra]. Watchpoints are breakpoints that monitor the current value of a given
variable or field and suspend execution if the value matches a given condition. Tracepoints
do not interrupt execution, but log execution points and values during the execution when
a condition is fulfilled, creating a specific execution trace.

For the purpose of this paper, watchpoints, tracepoints, and similar concepts can all be
considered special cases of breakpoints. They differ either in their specific condition (eg.
the current source line number, value assignments to certain variables, the type of an
exception, etc), or in what specific action the debugger is to take when the condition is
met. Typically, the debugger would either suspend execution or log the condition.

Currently, there are no unified interfaces or protocols for debuggers. Each editing en-
vironment and each debugging tool implements its own set of tools and conventions.
Common forms of breakpoints are implemented with disparate interfaces. For example,
marking a line as a breakpoint and triggering a breakpoint based on the value of a global
variable are two completely separate tasks in most common debuggers that use different
commands and can’t be easily combined. One might involve clicking on a line with the
cursor and selecting a breakpoint option, the other might require entering a variable name
and conditional value into a separate debugging pane.

Additionally, there are no established standards to exchange breakpoint specifications
between different tools or often even any means to share them between programmers
using the same set of tools. Debuggers with textual interfaces such as GDB allow sharing
commands between users in an ad-hoc fashion, but graphical debuggers rarely allow
reading and writing specific breakpoint conditions to a shared file, for example.

An Efficient Domain-Specific Language For Breakpoints

Standardizing common programming tools is very useful, as it concentrates development
efforts into a single project and makes it easier for programmers to collaborate across
different development environments. It also unifies the concepts involved and may lead to
more powerful tools through abstraction that have a significantly lower learning curve
because of the smaller number of necessary concepts.

Two prominent examples are the standardization of data exchange formats, such as with
XML[BPSM*o00] and JSON[Brar7], and the development of a standardized language
server protocol (LSP[lsp]) to provide semantic information to the IDE in the form of better
type information, navigation for function definitions, improved semantic markup, and
similar tools.

These standardization efforts are generally agnostic of the specific tools that consume
or implement them, so that they can be employed in a wide range of tooling. This also
allows programmers to use the same standardized approach in different domains possibly
written in different languages and developed with different editing environments.

Our goal in this thesis is to develop a unified domain-specific language (DSL) to specify
breakpoints and to implement a backend for this language that can be used by a debugger.

Our breakpoint DSL builds on the unified approach to breakpoints introduced by [BSWK21].
Our backend is implemented as an extension to [BSWK21]’s existing instrumentation
framework for the Java programming language and Java Virtual Machine (JVM). Because
of that, we focus our efforts only on developing a breakpoint DSL for programs written in
Java.

We first decided on design principles to aid the development of the DSL.

We then developed a grammar using the Xtext language workbench[EB10] and decided
on specific breakpoint semantics according to the design principles. We used the textbooks
«DSL Engineering» [VBD*13] and «Implementing Domain Specific Languages with Xtext
and Xtend» [Bet16] as our guides for the design and implementation of the Query DSL.

Finally, we implemented an automaton and backend on top of the instrumentation frame-
work that consumes our breakpoint DSL.

The backend significantly outperforms the XML-based implementation in [BSWK21] and
provides a powerful, human-readable language for breakpoints.

Freya Dorn

F1 Design Principles

Before designing the domain-specific language, we assembled several principles to guide
the design process. We used the requirements implied by the goal of developing an efficient
backend for an existing framework as a major guideline as to what principles to focus on.

21 Event-based

Breakpoints can be understood as the combination of an event, such as executing an
instruction corresponding to a particular line number, changing the value of a variable,
or throwing an exception, plus a condition related to the event attributes, the program
state and the execution history that determines whether the given event should trigger a
breakpoint or not. The same breakdown into a base event and a condition was taken by
[BSWKar1].

Because we agree with their core analysis of the breakpoint domain, and we are extending
the authors’ existing instrumentation framework, we followed their decision to design
breakpoints around base events and conditions.

[BSWK21] proposes the following seven base events:

B Table1 Base Events used by [BSWK21]

kind parameters
line file name, line number
change field or local variable
read field or local variable
method enter method
method exit method
class load class
exception type

Conditions can refer to any of the parameters of the base event, and any component of the
program state, such as the value of a variable, the name of the current method call, or the
type of a value. They can also refer to any past or present event in the execution history.

[BSWK21] modeled the execution of a program as an event stream and breakpoints as
search queries over that stream. We followed the same approach and therefore continue
to refer to the combination of a base event and a condition as a query.

An Efficient Domain-Specific Language For Breakpoints

2.2 Runtime-based

The base implementation we are aiming to extend uses the instrument framework DiSL[MVZ*12]
to generate the instrumentation. DiSL is an «AOP-inspired domain-specific language for

Java bytecode instrumentation»[DiS]. The existing implementation generates events in

the form of callbacks that our backend will later use to implement the automaton for the
Query DSL.

Some debugging approaches, such as the macro-based facilities in Common Lisp[CLB],
modify the target source code. That way, the debugging tools are integrated into the
compilation of the program and can influence the resulting program directly. For example,
the programmer might place a call to the break macro in any place they want to suspend
execution.

However, that approach requires the recompilation of the program whenever the program-
mer wants to set new breakpoints or modify old ones. This slows down the debugging
experience and makes it considerably more difficult to debug existing programs without
access to the source code or an iterative compiler.

Because of the design of the instrumentation framework and the disadvantages of a
compilation-based debugger, we chose an approach that does not modify the program
and instead relies purely on runtime data.

In order to allowing debugging a running program without modifying its source code,
the debugger must be able to access certain information about the execution flow and
the program state, such as the names and values of variables, the current call stack, and
a mapping of instructions to locations in the source code. Modern programming lan-
guages commonly use managed runtimes, such as the Java Virtual Machine (JVM)[SBSo1]
or Common Language Runtime (CLR)[MWGo1], which expose that information to the
program, or can at least be compiled in a debug mode to do so.

As we restricted our scope for this thesis entirely to the Java programming language, we
can take the JVM and its means of reflection for granted. Additionally, the instrumentation
framework already provides nearly all the remaining necessary information such as a
mapping of events to source code line numbers.

Because the Query DSL only uses runtime information and does not directly interfere
with the existing program, it is also possible to enable or disable queries, to add new ones
during debugging!, and to replace existing ones.

As we rely on runtime reflection to access the state of the program, in particular the values
associated with variable names, we chose to limit the Query DSL to static fields. We chose
not to support instance fields for reasons we discuss in <Variables> (section 3.2).

T If the programmer defines new breakpoints during the execution of the program, our implemen-
tation will currently not be able to make the past execution history available to the query. A
query starts from scratch the moment it is defined. Otherwise, a full execution history would
need to be kept and that would be a violation of the efficiency principle we will introduce later.

Freya Dorn

The DiSL framework provides events corresponding to local variables, but it does not
expose the full lexical scope to distinguish multiple local variables of the same name
reliably. Additionally, there is no agreed-upon or intuitive way to refer to a particular local
block scope in a textual language?2 like Java, so it is unclear how to explicitly refer to a
local variable by name. This problem can often be worked around, however, by using the
line number in the query. <Variables> (section 3.2) also discusses the problems with local
scope in more detail.

2.3 Ergonomic for Programmers

The primary use case of the Query DSL is to serve as a language for a debugging back-
end. However, that language should still be usable directly by a programmer to define
breakpoints by specifying a condition based on the program state and execution flow.

We do not want to design the Query DSL exclusively for the internal use of a programming
environment or as a machine-readable exchange format. Otherwise, the programmer
would not be able to specify custom breakpoints that go beyond the commands provided
by the IDE. We explicitly want to empower the programmer directly, even though we
would still expect common debugging tasks to use a graphical interface in addition to
explicit queries written in the Query DSL.

Furthermore, if the Query DSL were not easy for a programmer to read, then the ability
to share breakpoint queries between programmers would be much more limited. The
programmer would not be able to easily infer the behavior of a shared breakpoint.

Therefore the DSL should be human-readable and ergonomic to write. While IDEs will
surely want to provide additional graphical means to specify breakpoints, such as right-
clicking on a line and selecting a breakpoint option, all the provided functionality should
nonetheless by independent of the specific tooling and unified in its presentation.

To reduce the effort of implementing a domain-specific language, we used an existing
language workbench. We chose a textual DSL implemented in the Xtext framework[EB10].
Xtext is a popular language workbench for the Eclipse Project[ecl]. One major advantage
of using Xtext is that we can use Xtext’s parser generator based on ANTLR[PQo95] to
generate a parser for the grammar specification discussed in «Query DSL> (section 3).
Additionally, the integrated Eclipse Modeling Framework[SBPMoo] is a good foundation
for our data model.

By using a textual DSL, all breakpoints are specified in the same format and can be saved
and exchanged in files or through text-based channels. The same approach is used by the
popular language-server protocol[Isp]. Additionally, Xtext provides full editor integration
for syntax highlighting, error checking, semantic completion, and means for further

% Structural editing environments such as JetBrains MPS[VO11] and Lamdu[lam] provide more
elegant ways to reliable refer to particular variables, such as through direct references to nodes
in the structural source code.

An Efficient Domain-Specific Language For Breakpoints

integration into the graphical programming environment. Most of those capabilities are
beyond the scope of this thesis, but will hopefully be useful for future extensions of the
breakpoint backend.

In order to be most ergonomic for the programmer, we aimed to minimize the amount of
new and unfamiliar syntax that must be learned. We also followed established industry
and language conventions whenever possible.

«Query DSL> (section 3) will provide a detailed breakdown of the Query DSL, but to illustrate
the basic ergonomic principle, consider the following queries and their representation in
the DSL:

M Table2 Simple Queries

Plain Text Query DSL
break when the variable X is larger than 10 X>10
break when obj is of type SubClass obj instanceof @SubClass
break when the method print is called print()
break when a FileNotFound exception is thrown | throw @FileNotFound

2.4 Abstraction

Like pattern matching for conditional expressions, we want to provide additional abstrac-
tions to allow the programmer to specify more generic patterns of queries.

In particular, we wanted to be able to express breakpoints that use more than just lit-
eral values and variable names. We were inspired by the declarative approach used in
pattern-matching[Tury6] to express conditionals and to destructure data (<Simple Queries>
(table 3)).

We solved the problem by introducing query variables, analogue to binding in pattern
matching[BMS8o]. We will discuss their syntax and design in «Query Variables> (sec-
tion 3.8).

B Table3 Simple Queries

Plain Text Query DSL
break when the method foo is called
with three arguments of the same value
break when the method g is called
with the same value as the method f before it

foo(?=x, ?x, ?x)

foo(f(?=x) then g(?x)

We also looked for ways to organize and reuse breakpoint queries to enhance the debugging
interface and to help the exchange of breakpoints between different environments. «Query

Freya Dorn

Organization> (section 3.6) will introduce two tools for that purpose — named queries and
a query file.

Lastly, we also wanted to be able to use the unified breakpoint DSL to express more
complex breakpoints that are currently often beyond the scope of debugging tools. Most
importantly, we needed a way to express conditions that depend on the execution flow
and refer to past events. We also needed a way to combine queries into larger compound
queries.

The Query DSL models this aspect by logically combining simple queries through connec-
tives (<Compound Queries> (table 4)).

Connectives are the subject of <Connectives> (section 3.7).

B Table4 Compound Queries

Plain Text Query DSL
break when x has the value 5 and y has the value 10 | x==5and y==10
break when one of the methods foo or bar is called foo() or bar()
break when foo is called, and then bar is called foo() then bar()

2.5 Efficiency

The previous implementation developed by [BSWK21] uses XQuery and XML to encode
queries and the execution stream. That approach leads to a large performance overhead
that makes it impractical for most debugging purposes.

As outlined in [BSWK21], there are three main flaws to using XQuery and XML:

1. It saves the entire execution history regardless of what information is actually needed
by the queries. That way, the memory use of the debugger grows linearly with execution
time, and the evaluation of a query often has to search through the entire execution
trace for any event that might potentially trigger a breakpoint.

2. It encodes the execution history as XML, which is both wasteful in terms of additional
markup overhead, and does not efficiently provide the information needed by the
queries.

3. It encodes queries through generic XQuery expressions, which makes it difficult to
determine bounds for the resources used by a query as generic XQuery expressions can
be arbitrarily powerful.

Our aim is to avoid the high memory cost of having to keep a full execution history.
Additionally, the implementation of the automaton should have an efficient design that
scales well with long execution times.

An Efficient Domain-Specific Language For Breakpoints

We chose a new automaton design that is significantly more efficient and only captures
the information that is strictly necessary for a given query. Additionally, the Query DSL
encodes most conditions declaratively and so allows for a broader use of optimizations.
The implementation is discussed in <Automaton Design And Implementation> (section 4).

By representing sequences of events through the logical combination of simple queries
with connectives, we are also explicitly aware what amount of nesting and history is
needed. For example, the previously used query foo() then bar() would only require us to
keep a call history for at most two methods. <Connectives> (section 3.7) discusses multiple
relevant implementation choices and optimizations.

Freya Dorn
] Query DSL
3. Design

The main goal of this thesis is the development of an efficient domain-specific language
as an interface for a breakpoint backend. We used the Xtext language workbench[EB10]
to specify the grammar for the DSL and to automatically generate a parser.

A breakpoint is a particular point during the execution of a program where the debugger
should interrupt the execution so that the programmer can closely inspect the program
state. Therefore the purpose of the breakpoint DSL is to specify exactly which points are
breakpoints.

The instrumentation framework segments the execution of the program into particular
events that correspond to instructions. Each type of event has additional attributes for the
data associated with the instruction.

Each of these events is a candidate breakpoint. We categorized these events into eight
base events that define the interface of the backend (Base Event Overview» (table 5)). This
simplifies the complexity of the implementation significantly. Furthermore, we limited the
types of events exposed by the framework to those that have a clear correspondence to
statements in the source code of the program as that is the level of abstraction on which
the programmer wants to understand their program.

B Tables Base Event Overview

Event Attributes

variable change variable name, new value

variable access variable name, current value

source code line change | line number

class file loading class name

method call method name, argument values

method return method name, argument values, return value
exception throw exception

exception catch exception

To identify if a base event is a breakpoint, we use the breakpoint DSL to specify queries. If a
query matches an event, it is a breakpoint. Each query corresponds to a specific debugging
situation defined by the programmer.

We designed a range of simple queries that each correspond to a single type of event.
Each simple query has a single condition that needs to be evaluated. The syntax of simple
queries closely follows the conventional syntax of the Java programming language in order
to create an intuitive mapping to statements.

An Efficient Domain-Specific Language For Breakpoints

Our classification leads to four types of base events — those relating to variables, method
calls, exceptions, and source code context. We defined a syntax for simple queries that
correspond directly to a single base event of one of those types. These simple queries will
be discussed in full in the following four sections.

In addition, we added several constructs to organize queries and simplify their specification.
These constructs will be introduced in «Query Organization> (section 3.6).

To support more complex breakpoints, we also provide connective operators to join
multiple simple queries into larger compound queries. That way, many natural breakpoint
queries can be expressed in a concise and readable format while limiting the number of
necessary constructs in the language. The four supported ways to form compound queries
are addressed in «Connectives> (section 3.7).

Lastly, we provide query variables as a way to express more generic queries. The debugger
can also expose query variables to the programmer as additional context for a breakpoint.
We discuss their syntax and semantics in «Query Variables> (section 3.8).

We restricted the values supported by our implementation to the primitive types of integer,
float, boolean, and string. Objects are also supported as opaque references that can be
compared for equality (as discussed in <Variables> (section 3.2)). These restrictions were
chosen to limit the scope of this thesis.

In order to implement the base event that corresponds to a source line change, we
introduced a new synthetic event. The DiSL-based instrumentation framework adds the
source code context to each of its events as an additional attribute. We extract the source
line in all supported contexts and introduce a new standalone event. That way, source
line changes can be treated in isolation as their own type of breakpoint, independent of
the actual instruction.

We chose to introduce special variables in the breakpoint DSL to represent the current
line and the current class file that is being executed by the JVM runtime. That way, both
of those source code attributes can be treated similar to other variables in the syntax,
reducing the number of necessary concepts in the DSL. Both source code context base
events — source line change and class file loading — are treated as a variation on the base
events belonging to variables, and so will be discussed directly after them in <Special
Variables> (section 3.3). We do not expose the current source code file that corresponds to
the class file as the instrumentation framework does not currently retain that information.

We unified local variables and fields into a single variable concept. However, we currently
only support static fields because they have a well-defined canonical name. Furthermore,
the lack of advanced support for objects as a value type prevents us from supporting
instance fields.

The instrumentation framework supports events for local variables, but it does not currently
expose an unambiguous scope context for local variables. As such, different local variables
with the same name but different block scopes can’t be told apart. Our backend supports
events relating to local variables, but because we found no clear way to name them, we
chose not to support them in our DSL. Otherwise, breakpoints could easily refer to different

10

Freya Dorn

local variables or even fields the programmer did not intend, violating the principle that
the DSL should be easy to understand. We discuss the semantic complexities of trying to
refer to local variables in detail in <Variables> (section 3.2).

Each of the following sections on the Query DSL will illustrate the syntactic constructs
with excerpts from the full Xtext grammar. The complete grammar is included in «Query
DSL Grammar> (appendix A).

3.2 Variables

Variable Base Events
Event Attributes
variable change | variable name, new value
variable access | variable name, current value

As mentioned in the introduction to «Query DSL> (section 3), we unified local variables and
fields into a single variable concept. Variables have two corresponding base events, either
the reading of a value or the assignment of a new value. The attributes of each event are
the name of the variable and its value.

In order to unambiguously connect the variable name and the correct variable in the
running program, we canonize the name into its fully qualified form. That way, we can
successfully handle any static field. For readability’s sake, most of the upcoming DSL
examples will use unqualified names. We will introduce a quality-of-life construct in
«Query Organization> (section 3.6) to simplify the handling of qualified names.

There is no established convention to refer to a particular block scope in the Java pro-
gramming language or similar languages in the ALGOL lineage. Consider the following
example:

public int f() {

int a = 1;
{
int a = 2;
{
int a = 3;
}
int a = 4;
}
return a;

There are four different local variables named a in f(). If we simply used the name a in
our query, it would be unclear which local variable we should associate it with.

We considered two naming scheme for block scope.

One option would be to number scopes in the order in which they appear in a method.
For example, in order to refer to the local variable a that is initialized with the value 3,
the numbering scheme might call that variable a:3 (in the method f()).

1"

(%}

N

An Efficient Domain-Specific Language For Breakpoints

Alternatively, one might associate the variable declaration with its line number. In the line
number scheme, the same local variable would be a:6.

Both systems would be hard to use for the programmer if the syntactic scope is complex
or the enclosing method is large. A graphical IDE might provide scope annotations for the
programmer, but that would create a tool dependency on certain graphical displays to
easily understand what variable a query refers to.

These systems would also be fragile if the source code is ever changed after defining a
breakpoint, as block scopes can move around easily during refactoring.3

Without being able to unambiguously refer to local variables, we decided to not support
them in the Query DSL.

P Assignment

Assigned:
var=VarName '<-' right=Element;

Element:
Value | VarName;

// break if x is assigned the value 5
X <- 5;

// break if skip is assigned the value true
skip <- true;

// break if the fully qualified variable Author.name is assigned the value "Freya"
Author.name <- "Freya";

// break if x is assigned the value of the variable y
X <= y;

Assignments are the most basic kind of variable base event. An assignment query is true if
the base event has a matching name and value. If the right-hand side element of the query
is itself a variable name, then the backend will look up its current value and substitute it.
If the variable is still undefined, then the query does not match.

The provided examples demonstrate several of the supported value types, namely integers,
booleans, and strings.

Assignments are not meant to be the typical way to specify queries concerning variables in
the Query DSL, so we decided to give them an explicit syntax that makes them stand out.
We introduced a new assignment operator <- not supported by the Java programming
language, but common in many programming languages and pseudocode conventions.

3 Structural programming environments such as MPS[Vo11] or Lamdu[lam] would provide un-
ambiguous references for all kinds of variables. Similarly, explicit annotations inside the source
code would also provide a possible solution as the compiler could resolve the correct name
reference for the debugger and the annotation would be locally connected to the source code.

12

Freya Dorn

By using a dedicated operator, the conventional = assignment operator remains available
for equality comparison, as discussed in the following paragraphs.

P Access

Accessed:
var=VarName;

// break if the value of x is read
X;

The simplest kind of variable read base event is independent of the actual value of the
variable. This simple query would allow the programmer to trace all uses of a variable
during execution. This use case fits easily into the general syntax of our DSL at no real
cost and so we decided to support it.

I comparison

Comparison:
left=Element pred=PredOP right=Element;

enum PredOP:

EQUALS = '=' |

EQ = '==' | NEQ = =
LESS = '<' | LESSEQ = '<="' |
GREATER = '>' | GREATEREQ = '>=' ;

// break if the value of x is greater than 5
X > 5;

// break if the value of x is less than or equal to 0.96
X <= 0.96;

// break if the value of "needed" is identical to the value of "available"
needed == available;

More commonly, the programmer is interested in the concrete value of a variable that is
being accessed. We support all common comparison operators with the expected Java
semantics for this purpose. Notably, the operators == and != also test for equality of
reference and so can be used to opaquely compare objects.

However, that still leaves the problem of how to compare strings or other objects that have
structural equality. Java normally uses the method equals() for this purpose.

We decided to introduce a new operator as a shorthand for equals(). As we used <- for
assignments, the symbol = is still available for this purpose. It is also very compact and
therefore matches the ergonomic principle.

We considered using a textual operator such as eq or equals. Most notably, the Perl
programming language uses eq for string equality. However, we decided that = was a
more natural fit for generic equality.

13

An Efficient Domain-Specific Language For Breakpoints

Comparing values with equals() is typically the desired behavior in the context of break-
points, as it is the default comparison method for most objects in Java and has the same
semantics as == for numerical types. By using = for the default case, our syntax fol-
lows the principle that the most common use case should have a simple, short form of
expression.

But what about comparisons using other instance methods, such as length()? While
arbitrary instance methods could be added, we decided against it to limit the scope of this
thesis and because arbitrary methods would violate our goal to implement an efficient
backend. The performance of such a method could be arbitrarily bad and our system
would be required to evaluate the query many times during the execution. This would
drastically affect the overall performance. Similarly, the system can provide no guarantee
that methods are free of side-effects.

P Type Change

InstanceOf:
2 obj=Var 'instanceof' type=TypeName;

4 TypeName:
‘@' (name=QName) ;

The final built-in comparison operator in the Java programming language is the type
check operator instanceof. However, in order to implement that operator, we have to
consider the syntax used for types. Java makes no inherent syntactic distinction between
the names of variables and types. would It be unambiguous to make the same decision for
the instanceof query, but it would create a confusing situation for method calls, which
will be discussed in <Method Calls> (section 3.4). Therefore, we decided to explicitly mark
types with the prefix @.

// break if obj is of the type Student
X instanceof @Student;

N

3.3 Special Variables

Source Code Context Base Events
Event Attributes
source code line change | line number
class file loading class name

1 LineChanged:
2 'Sline ' pred=PredOP val=Integer;

4 ClassChanged:
5 'Sclass' ('=" | '==") val=Text;

1 // break if the source line is 72
> Sline = 72;

14

Freya Dorn

4+ // break if the current class file is Debug(.class)
s $class = "Debug";

The source code context is modeled through the two base events source line change and
class file loading. The programmer would certainly be interested in an additional base
event for the source file that corresponds to the class file, but unfortunately the current
instrumentation framework does not support attributes for source file names. Trying to
reconstruct the correct source file from just the class file name is too unreliable in complex
projects, so we decided against supporting a source file loading base event until the
instrumentation framework can be improved.

The Query DSL exposes the source code context through the special variables $line
and $class, using the $ prefix. That convention is already well established in many
programming languages such as Mathematica, Perl, and Ruby, and has no prior meaning
in the Java programming language and syntactically related languages.

By using special variables, the source code context can be treated like other variables. The
structure and implementation of queries for comparing a numerical value of a variable
and for comparing the current numerical source line is very similar and simplifies the
automaton design.

In order to ease the writing of queries for the class file name, we support a glob value
type[TR75]. Globs are a regular expression language that is widely used in Unix shell
environments for matching file names. Because globs are a subtype of more general
regular expressions that only differs slightly in their syntax, we also implemented a regular
expression value type using the familiar slash notation supported by the java.util.regex
library and many other standard libraries.

1 // break if any class file with the name prefix "de.umr.plt" is loaded
$class = [de.umr.plt.*]

// break if the class file contains the substring "debug"
$class = /debug/

%}

3.4 Method Calls

Method Base Events
Event Attributes
method call method name, argument values
method return | method name, argument values, return value

Method base events represent either calling a method or returning from a method. In
both cases, the attributes include the method name and the argument values, even though
return statements in the Java programming language do not explicitly annotate the
method they return from. By including the information in the method return base event,
we can design a richer query syntax, as queries cannot rely on the implicit lexical scope of
an enclosing method definition to resolve which method a return belongs to.

15

voA W

~

10

An Efficient Domain-Specific Language For Breakpoints

B cals

MethodCall:
(method=MethodName) ' (' (args=MethodArgs)? ')';

MethodArg:

var=Element |
type=TypeName |
var=Element type=TypeName ;

MethodArgs:
void?="void"' | (args+=MethodArg (',' args+=MethodArg)*);

Because queries should follow the syntax of the source programming language whenever
possible, we chose the same core syntax as that of a method call. However, the programmer
should also have tho option to define breakpoints conditional on the arguments to the
method.

We carefully considered three situations:

1. break, no matter what arguments (or lack thereof) are passed
2. break if no arguments are passed

3. break if one or more argument are passed

We consider the first case the most common. When debugging, the programmer is likely
to first investigate the execution of a method, irrespective of the arguments, simply to
understand the overall behavior of the method. Only later might they want to provide
constraints on the arguments to narrow down their investigation.

Additionally, method queries will be used later to provide a context for other queries,
using the then connective in <Then, :> (section 3.7). In that case, simply narrowing the
debugging scope down to a particular method is the most typical situation. The use of
compound queries will be introduced in «Connectives> (section 3.7).

Because of those two common use cases, we wanted the shortest default syntax to reflect
the first type of situation where the concrete arguments are ignored. However, the most
straightforward syntax that would still superficially follow the Java convention would be
a call without explicit arguments, eg. print(). That syntax would clash with the way to
write a method call with no arguments.

We considered two possible solutions.

1. We could introduce a special token to represent “any number and type of argument”, for
example print(*) or print(...). That solution would be fully unambiguous and explicit,
but it would introduce a new syntactic construct for the most common case and would
make method call queries more complicated to write. That violates our principle that
the Query DSL should still be ergonomic for the programmer.

16

Freya Dorn

2. We could use the empty call as the default, and introduce a new token to explicitly
mark the case where we want to match a call with no arguments. The token void
is already used by the Java programming language to mark the absence of a return
value in method signatures and therefore well established. Additionally, the use of the
syntax print(void) to mean a method with no arguments is widely used in function
declarations of the C and C++ programming languages.

We decided to use the second solution because we considered the ergonomic trade-off
more important. Explicit queries to match the absence of arguments is clearly the special
case and therefore it can tolerate a more verbose syntax. Furthermore, referring to a
method or function merely by adding empty parentheses in the style of print() is widely
used in the programming community and a familiar ambiguity for many programmers.

Arguments in a method call base event may be matched either by their value or their type.
As we already introduced an explicit syntactic type prefix for type change base events
in <Variables> (section 3.2), there is no ambiguity in queries whether a name refers to a
variable or a type.

In total, we get the following possibilities to match a method call base event:
// break if the method print() is called with any arguments (including none)

print();

// break if the method print() is called with the two arguments 5 and 10
print(s, 10);

// break if the method print() is called with a String argument
print (@String);

// break if the method print() is called with a String argument and the argument "
— false"
print(@String, false);

// break if the method print() is called the value of the variable "unsafe"
print(unsafe);

// break if the method print() is called with the float value 10, and an int
< argument

print(1o @float, @int);

// break if the method print() is called without arguments
print(void);

I Returns

Return:
‘return' {Return} (retval=Value)? ('from' method=MethodcCall) ?;

return base events follow the same design logic as method calls.

We also wanted a compact way to connect the return statement in the query with the
corresponding method call. Most importantly, it is likely unusual for a breakpoint to be
merely about the return value independent of the method, such as in the query return s,

17

%}

N

IS

[C I N} -

N

®

An Efficient Domain-Specific Language For Breakpoints

which would interrupt the execution whenever the value 5 is returned by any method in
the programming. There are certainly some situations where that might be the intended
breakpoint, for example if the programmer wants to trace a particular notable value as it
passes from method to method in the program.

Nonetheless, we decided that the more typical situation would be the debugging of a
particular method and a breakpoint when said method returns a noteworthy value. It was
therefore essential that return queries could be tied to a method call in a compact way.
Compound statements as described in «Connectives> (section 3.7) cover a similar ground,
but are not completely sufficient for this purpose. That led us to enhance the syntax of
return queries with a from keyword to specify the corresponding method call in the same
way as for a method call base event.

// break if any method returns the string "password"
return "password";

// break if the authenticate method returns the null value
return null from authenticate();

3.5 Exceptions

Exception Base Events
Event Attributes
exception throw | exception
exception catch | exception

Throw:
"throw' (type=TypeName);

Catch:
"catch' (types+=TypeName('|' types+=TypeName)*);

// break when FileNotFoundException is thrown
throw @FileNotFoundException;

// break when FileNotFoundException is caught
catch @FileNotFoundException;

// break when FileNotFoundException or NullException are caught
catch @FileNotFoundException | @NullException;

Exception base events differ only in whether the exception was thrown or caught. We
decided to only match against the exception type because many exceptions do not expose
inner state beyond their error message. In the case of uncaught errors, debuggers already
interrupt the execution and so they don’t fall in the domain of breakpoints.

However, query variables and compound queries nonetheless provide ways to treat excep-
tions as values in queries. The extent of that support is however limited by the current
restriction on instance methods, as explained in «Variables> (section 3.2).

18

Freya Dorn

The type prefix syntax, as discussed in Variables> (section 3.2), is used consistently for all
types in the Query DSL. It would be possible to modify the DSL such that the type prefix
is optional in contexts that only allow type arguments, such as exception queries. That
way, these queries would look closer to the Java statement they are modelled after. In
order to keep the syntax consistent and avoid possible ambiguities, we decided against
optional prefixes.

3.6 Query Organization

QueryFile:
(entries+=Entry) +;

Entry:

Query | Import;
Query:

(name=QueryName '=>')? condition=Condition ';'+;
QueryCall:

'<' name=[QueryName] '>';

; Import:

'package ' pkg=PkgName ';'+;

// break if x is too big, or if it is too small
too_big => X > 60;

3 too_small => x < 10;

To help manage breakpoint queries for more complex debugging situations, we organized
queries into a larger query file4that can continue any number of queries. Every query
corresponds to a different breakpoint scenario. Note that our example queries have already
implicitly been multiple entries in a larger file.

In order to further organize the queries, we also introduced a way to name them. That
way we also gain a useful form of abstraction, as we can reuse queries in the definition of
other queries once we add compound queries in <Connectives> (section 3.7). Our current
implementation does not fully support nested queries, however, as we considered the
correct implementation of mutually recursive definitions beyond the scope of this thesis.

Query names are also useful as a visual aid in the debugger to quickly communicate to
the programmer which breakpoint query the current breakpoint belongs to.

Lastly, we mentioned in the introduction of the current chapter that variable names have
to be fully qualified in order to establish the correct correspondence. It is clear that
having to write fully-qualified names in all breakpoints would be very impractical for the
programmer, so we needed a way to simplify the task. We added a way to declare an
active package prefix that is used to qualify any unqualified names used afterwards.

4 Naturally, a query file may simply be a buffer in the editing environment and does not have to
correspond to an actual file in the file system.

19

o v »

N

An Efficient Domain-Specific Language For Breakpoints

// break when the fully qualified variable filename has the value "methods.query"
io.bitbucket.umrplt.extra.query.Tracer.filename = "methods.query"

// ditto, but more readable, especially for multiple queries in the same namespace
package io.bitbucket.umrplt.extra.query.Tracer;
filename = "methods.query";

As a further improvement, the editing environment might automatically associate break-
point queries with a particular source code file and add a package statement for the
programmer so that most queries can be written without having to manually qualify
names.

3.7 Connectives

Condition:
left=SimpleCondition (=> connective=ConnectiveOP right=Condition)?;

Breakpoints do not have to map directly to only one base event, but may refer to multiple
events in the execution history. Note that because we implemented the source code context
as a synthetic standalone event, writing a query that refers to an instruction and the line
or class file it belongs to will need to connect two base events as well.

We implemented operators to logically connect the previously introduced four types of
simple queries into compound queries. We considered the basic case that the compound
query consists of two constituent queries, which we will call its branches. Based on the
following two questions, we constructed a matrix (<Connective Matrix> (table 6)) of the
logical possibilities:

1. Should both branches be true, or is it enough for one to match?

2. Do the branches have to match in a particular order during the execution, or is any
order (ie. A then B, or B then A) acceptable?

M Table 6 Connective Matrix

both true?
no yes
no | Or And
yes | n/a Then

order important?

If only one of the two branches has to match in order for the whole compound query to
match, then obviously there is no meaningful order of events to consider, so only three of
the four possible permutations have a useful interpretation.

20

Freya Dorn

Our analysis yields three fundamental connective operators. We found that they cover all
non-contrived breakpoint scenarios we tested. However, we further split the Then operator
into two versions which we will discuss in «Connectives> (section 3.7).

We introduced four new keywords, or, and, Then and : for the connectives.

enum ConnectiveOP:

-

2 OR = 'or' |
3 AND = 'and' |
4 THEN_SEQ = 'then' |
5 THEN_TRUE = ':' :

m o

1 // break if either x is 10 or y is 100
> X =10 or y = 100;

+ // break if mode is assigned the value "next" or the value "skip"
s mode = "next" or mode = "skip";

1

// break if the method error() is called or a ParseException is raised
error() or throw @ParseException;

©

The simplest connective operator is or. An or query matches if either of its two branches
matches the current base event.

As the or query only requires that one of its branches matches, it does not need to refer
back to previous events in the execution. That simplifies the semantics of or queries as we
do not need to consider the semantics of matching over the execution history yet. The
next section on the and operator will address that problem.

An or query is semantically equivalent to testing the branches one after another as if they
were two independent queries, with the only exception that they still form a single logical
breakpoint and therefore should not generate two interrupts in the debugger.

It would be tempting to skip the evaluation of the second branch if the first branch
already matches, and for all the stateless query constructs we have introduced so far,
that optimization would be valid. However, the introduction of query variables in «Query
Variables> (section 3.8) will include query state and so lazy evaluation would no longer
have the same semantics as eager evaluation.

However, all stateful query constructs are explicit in the Query DSL, so the automaton can
perform lazy evaluation and branch reordering as an optimization for any query that is
free of side-effects, which is any query that does not use query variables.

B And

// break if x is 10 and y is 100
> X =10 and y = 100;

4+ // break if x is greater than 100 in line 72
s X > 100 and $line = 72;

21

~

©

An Efficient Domain-Specific Language For Breakpoints

// break if f() is called before line 100
f() and Sline < 100;

The and connective requires that both of its branches match in any order. There are several
possible ways to interpret that requirement. We need to develop consistent semantics for
the and operator and what it means for a query to depend on the execution history.

We assumed so far that a breakpoint should always trigger at any point in the execution
where a relevant base event occurs and the breakpoint condition holds true. However, we
have not generally considered that a breakpoint might refer back in the execution history
and that it might be conditional on not just the current base event, but also previous base
events.

To decide on the semantics of an and query and what it would mean that both of its
branches have to match, we considered three possible interpretations:

1. Both branches match the same base event. (Same Event)

2. Each branch matches a base event, but not necessarily the same event. (Any Prior
Events)

3. Each branch matches a base event, and both branches are still true. (Both True)

The Same Event interpretation would be highly restrictive. Most importantly, an and
query could only ever match if both of its branches match the same type of base event.
For example, the query f() and x <- 10 could never match, as it would require a base event
that is both a method call and a variable assignment.

To illustrate the difference between the other two interpretations, consider the following
Java code example and two queries:

int a, b;

= 10; // (1)
= o; // (2)
10; // (3)
= 100; // (4)

T T T Y
n

g1 => b >0 and a = b;

3 g2 => b < 10 and b > 10;

The two branches of query qt are b > o and a = b. The first branch, b > o, would clearly
match statements 3 and 4, while the second branch, a = b, would only match statement
3.

If we merely require that there is a base event that matches each of the two branches, than
during the execution, that requirement would be fulfilled at point 3 and at point 4. In other
words, if we search backwards through the execution history starting at point 4, we would
find that the current base event matches one of the branches, and that there is fitting past

22

Freya Dorn

base event for the other branch. According to the Any Prior Events interpretations we
considered earlier, point 4 would therefore qualify as a breakpoint.

However, at that point in the execution, the condition implied by the branch a = b is no
longer true, as a and b have different values now. In the Both True interpretation, that
contradiction would rule out point 4 as a breakpoint. If a branch encounters a fitting base
event, but the event contradicts the condition of the branch, then we consider that branch
as no longer matching, even if there is a prior event that matches it.

That difference becomes even more clear with query q2. Point 4 would be a breakpoint
under Any Prior Events, as there is a base event where b < 10 and one where b > 10,
but of course there is no point in the execution where both of those conditions are true at
the same time.

One can consider Any Prior Events as a way to express queries about a sequence of events,
whereas Both True looks for an intersection of multiple conditions.

We rejected the highly restrictive Same Event interpretation as it was only of very limited
use and either of the other two interpretations could easily express those situations as
well.

The implicit sequential nature of the Any Prior Events interpretation clashes with the
design decision that the and connective should not care about the order of the branches.
For example, if the programmer is interested in a sequence of values that a variable takes
on, they would most likely also be interested in a particular order, not just a set of values.

However, the Both True interpretation gives us a way to combine queries in order to
narrow down a context for a breakpoint. For example, f() and unsafe = true can work as a
guard to restrict an overly generic breakpoint for the method f to only trigger if unsafe is
also true.

Because of these considerations, we decided that only the Both True interpretation is
semantically sensible for the and connective.

P Then,:

The then connective follows the same logic as the and connective, except that it defines a
correct order in which the branches need to match.

As we discussed for and, there are two possible interpretation when considering the
execution history, Any Prior Events and Both True. We rejected Any Prior Events for
and because of the lack of ordering, but then provides just that missing requirement.

With well-defined ordering, both interpretations are useful for breakpoints. Consider the
previous example from and again, with two new queries:

23

An Efficient Domain-Specific Language For Breakpoints

int a, b;

10; // (1)
o; // (2)
10; // (3)
100; // (4)

o T T o
n 1

g1 => a = b then b > o;

3 g2 => b < 10 then b > 10;

Under Any Prior Events, points 3 and 4 would be breakpoints for query qz. Similarly,
point 4 would satisfy query q2, as there was just such a sequence of base events, even
though at no point in the execution were both branches true at the same time.

Analogously, Both True would yield point 3 as a breakpoint for the query q1, the intersec-
tion where both branches are both true, but not point 4. As expected, the query q2 would
never match.

Both of those interpretations are useful for debugging. Any Prior Events lets the program-
mer explore a sequence of events, and Both True narrows down the scope of a query
to find intersections. Therefore, we decided to support both semantics with different
keywords, using then for the sequential Any Prior Events, and : for Both True to mimic
the nested structure of certain constructs in well-established programming languages like
Python. That suggestive syntax becomes particularly clear with the use of (syntactically
irrelevant) indentation:

// break when x is greater than 10,
// and later y is greater than 10 (while x is still greater than 10)

3 X > 10y > 10

// (with indentation)
X > 10:
y > 10

// break when f is called while x is greater than 10
X > 10:

f()

So far, we have assumed an intuitive sense of what it means for a query to still be true after
it has matched a base event for the first time. In order to properly clarify the semantics of
the : connective, we analyzed all base event types.

The variable base events have a clear condition that depends on the program state. For
any base event, we can decide whether it either fits the condition, is independent of it
(for example because it refers to a different variable), or directly contradicts it. There is
an obvious and unambiguous sense of when a variable query is no longer true, namely
when its condition is contradicted by the current base event. The same applies to special
variables.

24

Freya Dorn

Exceptions do not normally have a persistent effect on the execution beyond being thrown
or caught. Whereas variables have state that spans multiple events, exception base events
can be considered point events. As such, then and : would behave identically for exceptions.

The main complication arises with method calls. Consider these two different examples:

// (1) sequential
2

-

3 public void f() {}
4 public void g() {}

6 f(); g0);
7}

o // (2) nested

10 {
I1 publlc void f()

{g0); }
- public void g() {}

4 f();

In both cases, there are two method call base events for the methods f and g in the same
order, but they represent very different situations — one sequential, one nested. To be
explicit, due to the nesting, the full sequence of events for 1 is call f, return f, call g,
return g, whereas for 2, the sequence is call f, call g, return g, return f.

If the Query DSL did not provide a way to distinguish between these two situations, we
could not use then and : to properly provide a method context for queries.

The following example illustrates the problem. Say we have a method init() that initializes
some data structure, and a method use() that accesses the initialized data structure. The
programmer is concerned that the method use() might erroneously get called before the
call to init() is completed, so they want to define several breakpoints to explore that
possibility.

void init() { /* initializes the data */ }
void use() { /* uses the initialized data *) }

N

There are two possible error scenarios — calling use() during the execution of init() (either
directly, or indirectly through other methods used in init()), and calling use() before the
call to init().

Using the Query DSL constructs available so far, these two scenarios might be represented
with the following two queries:

: during => init() then use();
> before => use() then init();

25

-

An Efficient Domain-Specific Language For Breakpoints

The query before works as intended? but during is too permissive. Because then only
requires that the two base events occur one after another, init() may have returned or not
before the call to use().

The programmer could express the intended behavior of the two methods by using a
query like return from init() then use(), but there is no way yet to state that another query has
match during a method call.

There are three useful kinds of breakpoints concerning method calls:

1. The method is called. (Agnostic)

2. The method is called and has not yet returned. In other words, it is still active on the
call stack. (During)

3. The method has successfully returned and is no longer on the call stack. (After)

The simplest kind is Agnostic, and when a query contains no connectives, it is the primary
use case. After all, in a simple query method calls can’t provide context for further elements
of the query.

Using the same principle that the most common and least specific case should get the least
complex syntax that we applied for method signatures in <Method Calls> (section 3.4),
we decided that unmarked method calls would be Agnostic. We added the optional call
keyword to offer an explicit way to mark the programmer’s intention regardless, but it
adds no additional semantic information.

// two identical queries:
init() then use();

3 call init() then call use();

—

Because the Agnostic case only indicates that a method was called at all, it can’t be
contradicted by any future base event, and so the semantics for then and : are identical
as well.

To mark the more specific situations During and After, we added the keywords in and
after as follows:

during => in init(): use(); // the actual intended earlier breakpoint
correct => after init(): use(); // the correct program behavior

A method call query using the keyword in is only true until the corresponding method
call returns, analogue to how a variable query is only true while its condition holds, as
discussed earlier. Clearly in provides no additional information using the then connective
as the current truth state has no effect on its semantics, so it is only useful for : queries.

5 A possible exception might be that use() calls init() itself before actually accessing the data
when it notices that the data isn’t yet initialized. Slightly more complex queries could cover
that possibility too.

26

N

Freya Dorn

Similarly, a method call query using after only matches once the method returns. Note
that it is not possible to use a combination of a call and return event to achieve the same
result as after, as there is no way to correctly link the return to the same method, and
not just any other previous method call fitting the same specification. Both then and:
behave the same for after as it is not possible to contradict an after query again, but the
additional specificity it allows is nonetheless useful for the ordered connectives.

We now have a full understanding of what it means for a simple query to still be true
after it matches for the first time. The semantics of the Both True connective : are now
clear and allow us to write queries with well-behaved ways to narrow down the context in
which a condition holds.

// break if loadClasses() accesses the Database.students field

//(directly or indirectly)

in load():
Database.students;

// break if x is greater than 10 while y is less than 10
X > 10:

y < 10;

// break if x takes the values 1, 2, 3 in order

X = 1 then
» X = 2 then
3 X = 35

Nonetheless, the then connective can only declare the mere sequence of events, but there
is no fine-grained control over exactly how these events are spread out or what events
might or might not occur between them. That task would be better served by applications
for the detailed analysis of time streams and not a general-purpose debugger. Additionally,
the analysis is likely to be highly domain-dependant and will require proper data sets, not
the short queries typical for breakpoints.

3.8 Query Variables

Var: VarName | QVar;
SetVar: Var | SetQvar;
Element:

Value | Vvar;

SetElement:
Element | SetQVar;

QVar: '? ' (name=QName) ;
SetQVar: '?='(name=QName);

In <Method Calls> (section 3.4), we introduced a syntax for matching method signatures.
So far, we've seen ways to match a method argument by comparing it against values,
either specified explicitly as literals or implicitly by reference to variables. Additionally,
arguments can be matched against concrete types, and can be narrowed down through
the use of connectives.

27

-

An Efficient Domain-Specific Language For Breakpoints

As we explored various plausible breakpoint scenarios during the design process of the
Query DSL, we encountered situations that could not be adequately represented by the
existing constructs. In particular, there was no way to match a method signature purely
based on the number of arguments, for example, or to match a situation where two
variables had the same (unspecified) type.

In order to represent these queries, we added query variables as a form of abstraction,
similar to the use of bindings in pattern-matching[BMS80]. As a preliminary design, we
marked query variables with the ? prefix. Consider the following three candidate queries:

// match if the method f() is called with the same three values
f(?x, ?x, ?x)

// match if the method f() is called with three arguments (of any value)
f(?x, ?y, ?z)

// match if the method g is called with the same value as the method f before it
f(?x) then g(?x)

That sketch of query variables would seem sufficient, but it leaves open one main problem.
All usages of a particular query variable are equivalent throughout the query, so for
compound queries, it is unclear what usages would bind the query variable and what
would read the binding. That problem is particularly severe for the and connective because
does not impose an ordering:

// match if a and b are assigned the same value
a <- ?x and b <- ?x

We considered several solutions to the problem.

It would be possible to create the binding the first time a simple query otherwise matches
a base event and then keep the binding constant. That approach has multiple important
disadvantages. It would be unpredictable what places in the query would be binding, which
adds a sense of non-determinism to the Query DSL, which would be highly undesirable.
Additionally, only one single event during the entire execution could set a query variable,
so queries would lose a lot of their generic power that we are trying to add to the DSL in
the first place. Breakpoints should not just describe one particular point in the execution,
but potentially multiple ones that all follow the same condition.

Another approach would be to impose a syntactic order on queries, such that the first
usage of a query variable is the binding site, and all other usages afterwards treat it as
a value. The most natural way to create such an order would be to take the syntax tree
of a query, descend depth-first, and treat the first encounter of a query variable name as
the binding site. Intuitively, that matches the left-most position in the query expression.
This lexical approach does not lead to a sensible interpretation for the and connective
as it would treat the left branch as definitive, even though both branches are otherwise
semantically on equal footing. That way, and branches would have a hidden ordering
after all, a strong violation of their design principles.

28

-

%}

]

®

N

S~ W

w

[N —

®

Freya Dorn

We solved the problem by splitting the binding and the use of a query variable into two
different constructs, marked with the prefixes ?= and ?. The corrected version of our
previous queries are:

// match if the method f() is called with the same three values
f(?=x, ?x, ?x)

// match if the method f() is called with three arguments (of any value)
f(?=x, ?=y, ?=z)

// match if the method g is called with the same value as the method f before it
f(?=x) then g(?x)

The main disadvantage of the explicit distinction between setting and using a query
variable is the syntactic overhead.

It might be tempting to introduce an inference rule (maybe based on the previously
mentioned depth-first ordering) to automatically reinterpret a query that only uses ?
constructs, but then the Query DSL would contain elements whose interpretation depends
on a potentially much larger context. Additionally, programmers would have to learn
about the ?= syntax anyway whenever they want to use and connectives together with
query variables, so the total amount of concepts necessary to learn would in fact be greater,
as they would now also have to understand the inference rule.

As a backend language, the Query DSL should always be as explicit and unambiguous to
parse as possible, so we decided against implementing any kind of syntactic shortcut that
would contradict that.

One additional advantage of query variables is that they offer a way for the debugger to
track and display named values that aren’t directly part of the original program. That
way, the programmer can name certain parts of the query and have them available during
debugging without having to modify the original program.

Type: TypeName | QType;
SetType: Type | SetQType;
QType: '?@' (name=QName) ;

SetQType: '?2@= '(name=QName);

One last extension is necessary to fully implement our initial goal. So far, query variables
can match values, but they cannot bind types. As discussed in Variables> (section 3.2),
types are also syntactically distinct from variables, so we analogously added query type
variables using the prefixes ?@= and ?@.

// match if the method f() is called with the same three types
f(?@x, ?@x, ?@x)

// match if the method f() is called with three arguments (of any type)
f(?@=x, @y, @z)

// match if the method g is called with the same type as the method f before it
f(?@=x) then g(?@x)

29

An Efficient Domain-Specific Language For Breakpoints

We extended the grammar of the Query DSL to add query variables to all other constructs in
various value and type places. See the full grammar in «Query DSL Grammar> (appendix A)
for the complete version.

30

(2 I N)

Freya Dorn

Automaton Design And Implementation
41 Design

We implemented a backend for the Query DSL based on the instrumentation framework
used in [BSWK21].

First, we parse the provided breakpoint queries using the Xtext-generated parser for the
Query DSL. We then construct an automaton for each query to match base events.

The breakpoint backend receives events from the instrumentation framework through the
use of callbacks. We grouped these events into the eight base events we introduced in
<Design> (section 3.1).

We then pass these events to the matching automaton. If the automaton signals a match,
we trigger a breakpoint. Lastly, the backend also performs some necessary bookkeeping
for the automata.

Beyond base events and their associated attributes, queries may require information about
the current program state and its call history. A query may reference variables, so we make
a mapping of variable names to values available to the automata.

We implemented the variable bookkeeping by adding a call to the following method
updateStaticField(String name, Object value) to each field event supported by the
instrumentation framework.

private final Map<String, Optional<Object>> statics = new HashMap<>();

private void updateStaticField(String name, Object value) {
statics.replace(name, Optional.ofNullable(value));

}

Additionally, method call queries may track when their respective methods return, so we
also provide that information based on the call stack. Furthermore, the instrumentation
framework does not currently include the method name and signature in its return events,
so we also need to use the same call stack to recreate that information. ®

We added similar calls to the method call and return events to maintain our own call
stack.

6 The current implementation does not correctly process the unrolling of the call stack in the case
of an exception. Exception control flow can still disrupt the correct mapping of method calls
to returns. We decided that correcting this limitation should wait until the instrumentation
framework is able to handle the call stack portion of our bookkeeping system.

31

An Efficient Domain-Specific Language For Breakpoints

private final Stack<Method> callstack = new Stack<Method>();
private Method current_method;

public class Method {
public String name;
public List<Object> args;
public Optional<Object> retval;
}

@Override

public void beginMethodCall(String classFqn, String methodName, String methodDesc,
< int line, boolean isDynamic, boolean islnterface, boolean isSpecial, boolean
< jisStatic, boolean isVirtual) {
// maintain a call stack
current_method = new Method(classFqn, methodName, methodDesc);
callstack.push(current_method);

}

@Override

public void addArgument(Object val) {
// add method arguments
current_method.args.add(val);

}

3 @Override

public void endMethodCall() {
// maintain a call stack
Method m = callstack.pop();
current_method = callstack.lastElement();
calledMethod(m, true); // true -> return event, not call event

Before execution, the backend traverses all the queries to find the variable names that are
actually of interest to the queries, and which methods may need to be associated with
return events. We then reconstruct that highly limited subset of the program state from
the event stream. As an optimization, the backend performs all the bookkeeping for the
active queries in a single location.

Ideally, the backend would access the program state and call stack directly through the
runtime. However, the current instrumentation framework does not have that functionality
and extending it in that way was beyond the scope of this thesis. In the performance
evaluation in <Evaluation> (section 5) we measure the bookkeeping overhead. As we only
track the bare minimum of the information that is necessary for matching the queries, the
overhead remains small.

The instrumentation framework currently generates events of all types and for the entire
scope of the instrumented program. A significant gain in performance would be possible
by restricting the events to those that are potentially relevant to the active queries.

Similarly, it would be possible to restrict the instrumentation to only a subset of the
program. For example, static analysis of the queries could easily yield a comprehensive list
of all methods used in the active queries. Any other method in the instrumented program
would not need to contain instrumentation to generate method call and return events.

32

I

Freya Dorn

Both of those optimizations were outside the scope of this thesis and so we did not pursue
them. However, the backend already performs some the the necessary static analysis for
its own optimizations and as such could easily pass it to the instrumentation framework.

We originally considered using the Xtext framework to compile each query into specialized
code for the automaton. That would have the advantage that there would be no indirection
through multiple method calls or nested queries because the compiler could flatten the
entire code. It would also make it possible to skip any code for a particular Query DSL
construct that is not necessary for a given query.

However, we encountered several major problems with that approach.

Xtext is not specifically designed for runtime code generation and typically compiles DSL
input into separate .java files. That additional complexity does not fit the use case of a
debugger that would have to handle many new breakpoint queries at runtime.

We also found it much more complex to implement the logic correctly, as we could not
easily inspect the automaton during the compilation process or after flattening.

Finally, we decided that the potential gains from compilation likely weren’t great enough
to justify the additional complexity or the switch to a different code generation framework,
so we implemented the automaton as an interpreter with nested Matcher instances that
would handle the matching of the Query DSL constructs.

We recursively construct the Matcher instances by traversing the query syntax tree. As our
automaton and the Query DSL correspond very closely, the entire construction process is
fairly straightforward.”

private Matcher constructMatcher() {
return parse(query.getCondition());

}

private Matcher parse(Condition c¢) {
if (c.getRight() == null) { // just a simple condition
return parse(c.getLeft());

} else { // connective
Matcher left = parse(c.getLeft());
Matcher right parse(c.getRight());

switch (c.getConnective()) {
case AND: return new AndMatcher(left, right);
case OR: return new OrMatcher(left, right);
case THEN_SEQ: return new ThenSeqMatcher(left, right);
case THEN_TRUE: return new ThenTrueMatcher(left, right);

}
}

// (continued on next page)

7The code excerpts used in this section are primarily illustrative and contain some minor
simplifications. The full source code of the automaton implementation is available under
https://segit.mathematik.uni-marburg.de/ExTra/extra-base as part of the Programming Lan-
guages and Programming Tools research group at the Philipps-Universitdt Marburg.

33

https://segit.mathematik.uni-marburg.de/ExTra/extra-base
https://www.uni-marburg.de/en/fb12/research-groups/psw
https://www.uni-marburg.de/en/fb12/research-groups/psw

69

An Efficient Domain-Specific Language For Breakpoints

private Matcher parse(SimpleCondition c¢) {

}

if (c instanceof VariableChanged) return parse((VariableChanged) c);
else if (c instanceof MethodCalled) return parse ((MethodCalled) c);
else if (c instanceof Exception) return parse ((Exception) c);

else if (c instanceof Return) return parse((Return) c);

private Matcher parse(VariableChanged v) {

}

if (v instanceof Comparison) {
Comparison ¢ = (Comparison) v;
return new VarMatcher(c.getLeft(), c.getRight(), c.getPred());

} else if (v instanceof Accessed) {
Accessed a = (Accessed) v;

return new AccessMatcher(a.getVar().getName());

} /* other variable matchers... */

private Matcher parse(MethodCalled m) {

}

MethodCall call = m.getCall();
MethodArgs margs = call.getArgs();
List <MethodArg> args;

if (margs == null) { // any argument is allowed
args = null;

} else if (margs.isVoid()) { // explicitly o args
args = new ArrayList<MethodArg>();

} else { // explicity some args
args = margs.getArgs();

}

return new MethodMatcher(m.getModifier(), call.getMethod().getName(), args);

private Matcher parse(Return r) {

}

/* nearly identical to MethodCalled */

private Matcher parse(Exception ex) {

if (ex instanceof Catch) {
Catch ¢ = (Catch) ex;
return new ExceptionMatcher(c.getTypes(), c.getQtype());

} else if (ex instanceof Throw) {
Throw t = (Throw) ex;
return new ExceptionMatcher(t.getType(), t.getQtype());

A query automaton has the following data structure:

34

Freya Dorn

1 public class QueryAutomaton {

public String name; // the query name

3 private Query query; // the parsed syntax tree of the query

4 private Matcher matcher; // the generated automaton used for matching

6 private final Map<String, Optional<Object>> statics; // the variable mapping
7 public final Map<String, Optional<Object>> qvars; // the query variables
8 public final Map<String, String> qtypes; // the query type variables

Note that we wrap all values in the mappings with the Optional type to handle uninitialized
variables. The Java programming language and other memory-safe languages do not allow
the use of uninitialized variables, but the debugger is in a special position as queries don’t
exist in the same lexical environment and so can attempt to reference variables outside
their normal scope.

The automaton receives base events through a small set of methods that it passes to its
matcher for evaluation.

1 public enum Match { yes, no, skip }

2

3 private class Matcher {

4+ // Variable Read and Write
5 public Match changedVariable(String name) { return Match.skip; }

7 // Method Call (returned == false) and Method Return (returned == true)
8 public Match calledMethod(Method method, boolean returned) { return Match.skip; }

o // Exception Throw (caught == false) and Catch (caught == true)
1T public Match threwException(Throwable ex, boolean caught) { return Match.skip; }

i3 // Source Line Change
14 public Match changedLine(int line) { return Match.skip; }

6 // Class File Load
17 public Match changedClass(Class<?> cls) { return Match.skip; }

We encoded matching with three possible states using the Match enum.
If a method returns yes, the base event matches and should trigger a breakpoint.

However, if the base event does not match, we make a distinction between two possible
situations. Either the query represented by the matcher contains a simple query related to
the current base event but the condition does not hold true, or the base event is unrelated.
If the condition is false, we return no, otherwise we return skip.

The use of skip is necessary to properly support connectives and will be discussed in detail
in «Connectives> (section 4.7). Using a default method for each base event that just returns
skip encodes that the matcher does not handle that particular type of event. More specific
subclasses override the appropriate methods for the type of query they represent.

Following the same structure as «Query DSL> (section 3), we will now discuss the specific
matcher subclasses for each Query DSL construct. As discussed in <Design Principles>

35

An Efficient Domain-Specific Language For Breakpoints

(section 2), the backend was designed to be efficient, so we will focus on the space and
time requirements in particular.

4.2 Variables

private class VarMatcher extends Matcher {
protected PredOP op;
protected Element left;
protected Element right;

protected final List<String> vars = new ArrayList<String >();

public Match changedVariable(String name) { /* ... */ }

Variable queries can be seen as having a predicate operator and two arguments, which we
call the left and right side. The only exception is the Access query which only compares
the variable name, independent of any values.

In order to decide whether a base event matches, the matcher first needs to determine
whether the variable name in the base event occurs in the query. If it does, then both
sides need to be evaluated and then compared according to the predicate operator. The
structure of the different variable matchers differs little beyond the predicate operator
and what evaluation method is applied to the arguments.

As both sides may contain variables that need to be evaluated, the matcher needs access
to the program state or previous base events. The bookkeeping system maintains just that

mapping.

Note that the base event does not pass the variable value attribute itself in changedVari-
able(String name). The bookkeeping system of the backend registers the current value in
the statics map as part of the variable mapping. The event only pass the variable name to
allow the distinction between no and skip.

In order to be more efficient, we didn’t want to traverse the full query for every base event
just to decide whether the variable name is used by the query. We added a preprocessing
pass during instantiating that extracts all variable names first, so that we can perform a
fast lookup.

protected List<String> findVars(SetElement el) {
Set<String > names= new LinkedHashSet<>(); // avoid duplicates

if (el instanceof VarName) {
names.add (((VarName) el).getName());

} else { // try to descend
Treelterator <EObject> it = el.eAllContents();
while (it.hasNext()) {
EObject o = it.next();

if (o instanceof VarName)
names.add (((VarName) o).getName());

36

-

N

Freya Dorn

}

return new Arraylist <>(names);

We store the names in a simple array as queries typically contain very few names (often
just a single one) and so a hash-based lookup would be slower than a direct comparison.

At the beginning of changedVariable(String name), the name is looked up in the list of
names and if it is not found, the matcher returns skip.

Otherwise, it attempts to evaluate both sides of the query:

Optional<Object> lvar = eval(this.left);
Optional<Object> rvar = eval(this.right);

The evaluation method currently only supports literal values, variables, and query variables.
The syntax of the Query DSL can easily accommodate full expressions with binary operators,
multiple variables, and parentheses. In fact, an earlier version of the Query DSL supported
such expressions, but we decided to disable them for the time being until the evaluation
method can be extended.

Evaluation may fail because some variable might still uninitialized at this point in the
execution. In that case, the matcher returns skip.

With both sides reduced to a known value, all that is left to do is to apply the appropriate
predicate, as shown here for Comparison:

public Match changedVariable(String name) {
//

boolean m = false;
switch (this.op) {

case EQ: m = (lvar.get() == rvar.get()); break;
case EQUALS: m = (lvar.get().equals(rvar.get())); break;
case NEQ: m = (!lvar.get().equals(rvar.get())); break;
default:

int cmp;

try {

cmp = ((Comparable<Object>) lvar.get())
.compareTo ((Comparable<Object>) rvar.get());
} catch(ClassCastException e) {
throw new ParseException("invalid type comparison: "+e);

}

switch (this.op) {

case GREATER: m = (cmp > 0); break;
case LESS: m = (cmp < 0); break;
case GREATEREQ: m = (cmp >= 0); break;
case LESSEQ: m = (cmp <= 0); break;
default: break; // see above

}
}

return m ? Match.yes : Match.no;

For variable queries that support binding query variables, the matcher also sets the correct
value before evaluating the right side.

37

An Efficient Domain-Specific Language For Breakpoints

private class AssignMatcher extends VarMatcher {
public Match changedVariable(String name) {

/] ...

if (this.right instanceof SetQVar) {
Optional<Object> lvar = eval(this.left);
if (lvar.isEmpty()) return Match.skip;

String qvar = ((SetQVvar) this.right).getName();
qvars.put(qvar, lvar);

For type comparisons for instanceof queries, we compare the fully qualified type names
using equals(), as that is the information that the instrumentation framework passes in
its events.

Variable matchers only save the (unevaluated) query expression for each side of the
variable query. During comparison, variable references are substituted with their values
(except for Access). The size of the query expression is only dependent on the size of the
query itself, which is expected to be very small, even with full expressions.

Evaluating a side is only necessary if it contains variables, otherwise it can be reduced to
a single value during instantiation once and then reused.

There are no additional space requirements for variable matchers. The only computation
is the necessary evaluation of both sides of the predicate and the time needed for the
predicate itself, which are both fixed requirements for any variable query. Therefore, the
variable matcher fits our efficiency goal.

4.3 Special Variables

The matchers for special variables have a very similar design to the previously discussed
variable matchers. After all, that is why we chose to represent the source code context
events as variable-like base events.

Unlike with variables, we pass the line number or class file name value directly as a value,
as special variable queries cannot contain other variable names. The source line change
base event can be handled very straightforwardly:

private class LineMatcher extends Matcher {

private PredOP op;
private int val;

public Match changedLine(int line) {
switch (this.op) {
case EQ: return (line == val) ? Match.yes : Match.no;
case EQUALS: return (line == val) ? Match.yes : Match.no;

// (continued on next page)

38

19

Freya Dorn

case GREATER: return (line > wval) ? Match.yes : Match.no;
case LESS: return (line < wval) ? Match.yes : Match.no;
case GREATEREQ: return (line >= val) ? Match.yes : Match.no;
case LESSEQ: return (line <= val) ? Match.yes : Match.no;
case NEQ: return (line != val) ? Match.yes : Match.no;
default: return Match.skip;

}

}

The class file load matcher works analogously. The only difference is that it only performs
a string equality test against the class file name.
private class ClassMatcher extends Matcher {

private String val;
private Pattern rx;

If the value used by the query is a glob or a regular expression, we use the java.util.regex
library for matching. We compile globs into regular expressions to simplify the implemen-
tation.

As with variable matchers, the special variable matchers fulfill our performance require-
ment. There is no additional space requirement beyond the expected value of the query.
The source line change and class file load matcher perform only the single necessary
comparison.

4.4 Method Calls

// passed as part of the base event

public class Method {
public String name; // method name
public List<Object> args; // method arguments
public Optional<Object> retval; // return value

The backend represents all method attributes as a Method object. The return value is
Optional.empty during method call base events. The bookkeeping system links method
return events to the correct method by maintaining its own call stack.

Both the method call and method return base events are handled by the same matcher
class. The base event represents the difference with a single boolean flag returned that
is set to true for returns. To decide whether the method query should return skip, the
matcher compares the method name first.

// default method call and method return base event implementation

private class Matcher {
/] ...

// Method Call (returned == false) and Method Return (returned == true)
public Match calledMethod(Method method, boolean returned) { return Match.skip; }
//

}

39

-

An Efficient Domain-Specific Language For Breakpoints

private class MethodMatcher extends Matcher {

private String method; // expected method name

private List<MethodArg> args; // expected method arguments

private Object retval; // expected return value

private CallModifier modifier; // query type: Agnostic, During, or After
private int matches = 0; // state for During and After semantics
public Match calledMethod(Method method, boolean returned) { /* ... */ }

The method matcher encodes the difference between Agnostic, During, and After using a
CallModifier enum in the modifier field. We previously discussed the semantic differences
in detail in «Connectives> (section 3.7).

In order to correctly decide whether a matched method is still true, the matcher needs
the internal state matches to count how often the method was called and how often it
returned. See the upcoming section «Connectives> (section 4.7) for details.

The only remaining step in matching a method base event is to compare each actual argu-
ment against the expected argument. In order to simplify and speed up the comparison,
we first check the arity of the method and whether a comparison is necessary at all:

protected boolean matchSignature (Method m) {
if (args == null) return true; // any signature allowed

if (args.size() != m.args.size()) return false; // wrong arity

for (int i=o0; i<args.size(); i++) {
if (! matchArgument(args.get(i), m.args.get(i))) return false;

}

return true;

One might suppose at first that a failure to match the signature should return no from the
matcher, as the query did not match. The Java programming language allows overloaded
methods with different signatures, however, and calls to different method variants should
not be a failure to match, just as a base event for an entirely different method with a
different method name would return skip, not no.

After all, the following two queries should be treated the same way:

// different method names
f(x):

// different method signatures
f(x):
f(x, y):
X =y;

The evaluation and comparison of each method argument is performed just as with
variables matchers (see <Variables> (section 4.2)) and has the same overall efficiency. The

40

Freya Dorn

only additional overhead of the method matcher is the internal matches state, which is
a single integer per method call query. As we will see in <Connectives> (section 4.7), the
additional logic is minimal.

4.5 Exceptions

private class ExceptionMatcher extends Matcher {
2 private final List<Type> caughts = new ArrayList<>();
3 private Type thrown;

5 public Match threwException(Throwable ex, boolean caught) {
6 // analogue to VarMatcher

-

We use a single matcher type to handle both exception throw and exception catch base
events. The base event contains a boolean flag to communicate whether the exception
was caught or thrown.

As with instanceof variable matchers, the exception matcher performs type comparison
based on string equality. Its performance is similarly just a function of the query size and
necessary comparison and therefore acceptable.

4.6 Query Organization

Each query is represented by its own (possibly nested) matcher instance. That way, all
breakpoints are kept logically separate with their own automaton.

The backend maintains a list of active queries, so that the programmer can enable or disable
them as necessary. The backend passes base events only to the active query automata, as
shown here for the variable change base event:

for (QueryAutomaton qga : qa_active) {

2 if (ga.changedVariable(name)) breakpoint(ga);
3 }

In order to handle fully-qualified names consistently, we decided to qualify all names used
in a query during the instantiation of the automaton:

I //

> if (e instanceof Import) {

pkg = ((Import) e).getPkg().getName();
e

s //

6

; if (e instanceof VarName) {

8 if (! varname.contains(".")) {

9 // not qualified yet, so let's qualify it against the active package
) varname = pkg + "." + varname;

11 1

2}

41

An Efficient Domain-Specific Language For Breakpoints

That way, all names used inside a matcher have the same format and can be compared
using a simple string comparison.

The current automaton does not support nesting queries through the use of query names,
as the correct implementation of mutually recursive calls was beyond the scope of this
thesis.

4.7 Connectives

In order to implement the connective operators, we first broke down the problem into
two parts — the evaluation of its branches and a defining predicate.

Connectives are composed of two branches which are themselves queries, so the connective
matcher would need to contain references to the matchers corresponding to those branches.
The connective matcher needs to pass the base event to one or both of its branches
(depending on the specific operator) and receive the results.

In a second step, the matcher applies the correct predicate for the operator to decide
whether the base event matches the connective or not.

All connective operators follow this basic structure. We noticed that the connectives differ
only in whether they enforce an ordering, and what predicate they use to combine their
two branches.

Therefore, we decided to implement an abstract ConnectiveMatcher class that generalizes
the shared behavior of passing the base events to its branches, and defines an abstract
match(left, right) method that represents the specific predicate of the connective.

That way we could use the same simple base event implementations for all connectives.
Each connective operator would only need a single method implementation to define its
full behavior.

It is important that the match() method does not receive the evaluated results of its
branches directly as Match values, as that would require us to always evaluate both
branches. In particular, that would force us to evaluate the right branch even when that is
not the desired behavior, as with the then operator should the left branch fail to match,
as required by the Query DSL design in «Connectives> (section 3.7).

We considered using two interfaces, one in which match() receives the results directly,
and a separate implementation for then and :. However, that would lead to a significant
amount of code duplication, especially for passing the base events to the branches. That
way, only two matchers — and and or — would be able to share the simpler interface.
Furthermore, this design would also preclude the possibility of optimizing the connectives
later to avoid evaluating branches if we can statically determine that it is safe to do so.

Instead, we used a design for match() that receives the the unevaluated branches as
lambda arguments.

452

Freya Dorn

private abstract class ConnectiveMatcher extends Matcher {
public Matcher left_branch, right_branch;

protected abstract Match match(Supplier<Match> left,
Supplier<Match> right);

public Match changedVariable(String name) {
return match(() -> left_branch.changedVariable(name),
() -> right_branch.changedVariable (name));

}

// ditto for remaining base events

We used lambda expressions to wrap the left and right branch argument to control the
evaluation order and let the predicate evaluate the branches as needed.

If we had implemented the automaton with a code generator the way we considered in
Design> (section 4.1), then the additional level of indirection of using lambda expressions
would not be necessary. The code generator could insert the unevaluated source code of
the right branch in the correct position instead.

Except for the or connective, the other connectives need to match at least two separate
base events, ie. one for each branch. Because the automaton should be efficient, it should
not be necessary to perform a possibly open-ended backwards search of the execution
history, so we decided to add state to the matcher so it can track which branches have
already matched a previous base event.

To properly support the During and After semantics of method calls in connectives, we
needed to extend the method call matcher with an additional return state variable. We
will discuss this extension after we have presented the connective matchers.

B or

The or connective matches a base event if either of its branches matches it. It only ever
needs to match a single branch to match a base event, so our implementation needed no
state and just a single conditional.

private class OrMatcher extends ConnectiveMatcher {

@Override
protected Match match(Supplier<Match> left, Supplier<Match> right) {
Match ml = left.get();

Match mr = right.get();

// nb: the ternary operator takes care of our Match logic,
// it does not represent logical short-circuiting
return (ml == Match.yes) ? Match.yes : mr;

As discussed in «Connectives> (section 3.7), it is not possible to skip the evaluation of
a branch even when it is already known that the other branch matches because query
variables in particular can have side-effects.

43

I

N

An Efficient Domain-Specific Language For Breakpoints

B And

The and connective needs to match both of its branches, so it is necessary to remember
whether a branch has matched for a previous base event. We added two Match fields to
the matcher to represent that state.

Additionally, the and connective needs to unset that state for a branch if it is no longer
true, as discussed in «Connectives> (section 3.7).

To support invalidating the saved state of a branch, we added the yes / no / skip distinction
introduced in Design> (section 4.1).

Otherwise, if skip and no were collapsed into one no state, a branch that already found
a matching base event might be set to yes, and then upon encountering a base event
unrelated to its query could not tell the difference to its original query no longer matching.
The branch would end up falsely set to no and the and matcher would not behave as
expected.

private class AndMatcher extends ConnectiveMatcher {
private Match m_left = Match.skip;
private Match m_right = Match.skip;

@Override

protected Match match(Match ml, Match mr) {
// save the current truth state of the left branch
switch (ml) {
case yes: m_left = Match.yes; brealk;

case no: m_left = Match.no; break;
case skip: // unchanged
}

// save the current truth state of the right branch
switch (mr) {
case yes: m_right = Match.yes; break;

case no: m_right = Match.no; break;
case skip: // unchanged
}

// if both branches skipped, then the base event is unrelated to this query
if (ml == Match.skip &% mr == Match.skip) return Match.skip;

// match if both branches are true

if (m_left == Match.yes &% m_right == Match.yes) return Match.yes;
else return Match.no;

P Then,:

We implemented two separate matchers for the then and : connective. We will discuss :
first, as it is the more important case.

The core functionality of the : matcher is the same as the and matcher. However, we do
not need two state fields. The : connective matches its branches in order, so we only need
to remember the state of the left branch.

L4

Freya Dorn

However, we have the additional complication that we should only evaluate the right
branch if the left branch has matched successfully before, otherwise we might end up
corrupting the state of the right matcher with a spurious base event.

Similarly, we must also ensure that a single base event cannot match both branches by
itself. Consider the following example:

// match if f() is called three times (before returning)
fO: f0: f(O);

Clearly a call to f() would match by branches of the first : connective. If we passed the
base event to the right branch right away when encountering the first method call, we
would in effect collapse the query to just matching f();, We would have no way to encode a
nested breakpoint like in our example.

To control the evaluation of the right branch, we used an abstract match() method that
receives lambda expressions representing each branch. That way, the match() implemen-
tation can evaluate only the branches it requires.

The invalidation of the saved state for the left branch works the same way as for the and
operator.

private class ThenTrueMatcher extends ConnectiveMatcher {
private Match m_left = Match.skip;

protected Match match(Supplier<Match> left, Supplier<Match> right) {
// definitely evaluate the left branch,
// but only evaluate the right one if the left one matched before
Match ml = left.get();

switch (ml) {

case skip: // saved state unchanged
if (m_left == Match.yes) return right.get();
else return m_left;

case no: // update state
m_left = Match.no;
return Match.no;

case yes: // update state
if (m_left == Match.yes) {
return right.get();
} else {
// update, but stop here
m_left = Match.yes;
return Match.no;

The defining difference between : and then is that then only looks for multiple sequential
events that match its branches, but is not concerned with the question whether the
condition expressed by those branch queries still holds or not.

45

N

An Efficient Domain-Specific Language For Breakpoints

Therefore, the matcher for then does not need the logic to invalidate the saved branch
state. The matcher for the then connective still needs to track the state of left branch, but
failing to match a similar base event later does not invalidate that state once it has been
set to yes.

Note that as with or, we cannot skip the evaluation of the left branch in general, as queries
can have side-effects due to the presence of query variables. See «Connectives> (section 3.7)
for the semantic argument. As with or would be possible, it would be possible to perform
static analysis of the left branch and mark it as skippable once it is set to yes if it contains
no stateful matchers.

// match if x has the values 1, 2, 3, in order
X = 1 then x = 2 then x = 3;

private class ThenSeqMatcher extends ThenTrueMatcher {
private Match m_left = Match.skip;

protected Match match(Supplier<Match> left, Supplier<Match> right) {
// definitely evaluate the left branch,
// but only evaluate the right one if the left one matched before
Match ml = left.get();

// update state if the left branch matches
if (ml == Match.yes) m_left = Match.yes;

// nb: the ternary operator takes care of our Match logic,
// it does not represent logical short-circuiting
return m_left == Match.yes ? right.get() : ml;

I Method Call Semantics

Finally, as mentioned in <Method Calls> (section 4.4), we needed to extend the method
matcher to support the During and After variants. In order to know whether a method has
already returned or not, the automaton needs a similar kind of state as the connectives.

More specifically, the method matcher needed to be able to connect a method return
base event to the corresponding previous method call base event.

We considered two possible implementations for the method matcher:

1. Record the entire call history and search backwards for the matching method call base
events.

2. Use a call stack to connect method return base events with method call base events,
and add a counter how often each method has been called and returned from so far.

Recording the call history would be fully general and support any operator we might
want. If we supported a language with unlimited continuations that ability would be very
desirable, but for the more restricted Java programming language, we considered that
generality excessive.

46

I

2

21

Freya Dorn

The call history would also require a potentially very large amount of memory because it
will continue to grow indefinitely during execution. It would be possible to restrict the call
history to only the method calls that are referenced in a query, but the unboundedness
would remain.

Instead, using a call stack would be sufficient to map method return base events to their
correct method call base events. If the instrumentation framework exposed either the
actual call stack of the runtime or if its return events were to be extended to add the
missing method attributes, then the backend call stack would be unnecessary.

As the Java runtime has a fixed-size call stack, our call stack will have the same size
restriction.

However, it is not enough to just know which method a method return base event belongs
to, as we also need to be able to handle nested calls to the same function (eg. f(: f(): f();).

We solved that problem by adding a counter to each method matcher that gets incremented
by 1 each time it matches a method call and is decremented by 1 each time it matches
a method return. That way, we only need a single counter and we can still distinguish
Agnostic, During, and After by the difference.

call f(); // -> match on call event, no count needed
after f(); // -> count == o
in f(); // -> count > o

Therefore the only new overhead for the method matcher is a single integer to track the
count, and an increment or decrement operation for each successful match. There is no
unbounded space requirement, and only a fairly minimal runtime cost, so we considered
this option acceptable.

private class MethodMatcher extends Matcher {
public Match calledMethod(Method method, boolean returned) {
/] ..
switch (this.modifier) { // type of call query

case ANY: // Agnostic
// count does not matter
return returned ? Match.skip : Match.yes;

case CLOSED: // After

// check that we had at least one call before

if (‘returned) {
// method call
this.matches = 1;
return Match.skip;

} else {
// method return; match if all open calls have been closed
return (this.matches > 0) ? Match.yes : Match.skip;

}

// (continued on next page)

47

N

ES

An Efficient Domain-Specific Language For Breakpoints

case OPEN: // During
// count the number of closed calls
if (!returned) this.matches += 1;
else this.matches -= 1;

// the method is active as long as there are open calls
if (returned) return Match.skip;
else return this.matches > o ? Match.yes : Match.no;

4.8 Query Variables

public class QueryAutomaton {

//
public Map<String, Optional<Object>> qvars;
public Map<String, String> qtypes;

Query variables can be divided into the evaluation of a query variable, and setting a
binding.

Using query variables as values (or types) is completely analogous to the other variables
supported throughout the Query DSL, so all that was necessary was a separate mapping
for query variables and query type variables. The additional space requirement depends
only on the number of query variables used and is generally minimal.

The extension to the Assignment matcher is a typical example:

private class AssignMatcher extends VarMatcher {
// Variable Change base event
public Match changedVariable(String name) {
// sRip if the variable is not used in the query
if (tvars.contains(name)) return Match.skip;

// is the right side a query variable binding?

if (this.right instanceof SetQvar) { // set qvar
Optional<Object> lvar = eval(this.left);

// skip if the left side is still uninitialized
if (lvar.isEmpty()) return Match.skip;

// update query variable
String qvar = ((SetQVar) this.right).getName();
qvars.put(qvar, lvar);

return Match.yes;

// (continued on next page)

48

Freya Dorn

22 } else { // no query variable

24 Optional<Object> lvar eval(this.left);

25 Optional<Object> rvar = eval((Element) this.right);

26

27 // sRkip if either side is still uninitialized

28 if (lvar.isEmpty() || rvar.isEmpty()) return Match.skip;

30 return (lvar.get().equals(rvar.get())) ? Match.yes : Match.no;

In order to allow the binding of a query variable in a limited number of places in the Query
DSL, we extended the evaluation method to also update the mapping as needed. Note that
this modification makes some matchers stateful, as they can modify the query variable
mapping. It is therefore very important that matchers only actually set a binding once
they have ensured that the query does in fact match, or otherwise an unmatched query
could corrupt the query variable mapping. As discussed in «Connectives> (section 4.7), the
connective matchers also need to ensure that they pass on base events correctly.

The performance overhead of query variables is overall minimal. In particular, it does not
involve any constraint solving or other sophisticated forms of abstraction that might have
unacceptable performance, but it still enhances the expressive power of the Query DSL.

49

An Efficient Domain-Specific Language For Breakpoints

I Evaluation
5.4 Principles

How well do the Query DSL and its automaton implementation live up to the design
principles we laid out in <Design Principles> (section 2)?

The entire implementation and the semantics of connectives are designed fully around
base events. The event-based design is a natural fit for the runtime principle and dictated
by the existent instrumentation framework, which enforces an event-based interface using
callbacks for our implementation.

The only significant deviation is our simplification of the supported instrumentation events
into eight base events, but we only do so to create a simpler interface for our automaton
and design analysis. The functionality is not otherwise affected.

Our backend only communicates with the instrumentation framework through events
and does not interact with the running program except to access necessary information
about values such as their types. The backend does not influence the instrumentation or
execution, except of course to signal a breakpoint, so the principle that the breakpoint
backend should be runtime-based is also met. Additionally, we support enabling and
disabling breakpoints during execution, a major advantage of the runtime approach.

We met the limitation that we needed to perform some redundant bookkeeping for the
automaton, namely the mapping of variable names to values, and the call stack. We will
discuss the performance overhead in the next section.

We also found the lack of information about local scopes by the instrumentation framework
problematic for our initial goal to support local variables. However, even if the correct
scope information was available to us or we reconstructed it correctly, we would’ve still
not been able to refer to local variables in the textual queries.

When considering the principle that the Query DSL should be ergonomic for the program-
mer, we found it useful to focus on two aspects:

1. How intuitive is the Query DSL to read and write for a Java programmer?

2. How well does the Query DSL fit the existing conventions for Java source code?

We achieved an acceptable trade-off between unambiguously specifying queries and the
number of additional constructs. While the use of unfamiliar prefixes to distinguish types
and special variables is unfortunate, their syntactic cost is small overall.

We found that all breakpoints we wanted to express, many examples of which we used as
examples in the thesis, had a compact and straightforward representation in the Query
DSL. We consider the first requirement, that the DSL should be easy to read and write,
successfully met.

50

Freya Dorn

We also don’t stray far from Java’s syntactic conventions. Most of our innovations are
themselves widely used in other popular programming languages or pseudocode, so the
Query DSL fulfills this requirement as well.

The main syntactic limitation in the Query DSL is the lack of first-class support for objects.
That is also a limitation of the existing instrumentation framework, which is similarly
restricted to primitive types and opaque objects. We consider this a serious shortcoming
of the Query DSL, but an analysis of the appropriate semantics for supporting instances
and instance methods as values was beyond the scope of this thesis and would likely be of
comparable difficulty to the entirety of the rest of the Query DSL.8

The Query DSL and automaton support query names and query variables as a means to
increase the expressive power of the language. The previous chapters have shown that
their implementation cost is well worth the increased generality and expressiveness.

One might bemoan that query variables introduce side-effects and hinder some optimiza-
tions, but as we saw in «Connectives> (section 4.7), method calls are also internally stateful
in order to implement the During and After semantics.

We found it too difficult to attempt an automaton implementation that is internally
stateless, so the inherent state in the Query DSL did not create any additional problems
for the implementation or available optimizations.

Additionally, in the case of connectives, the programmer might be interested in knowing
why the query matched, so potentially only presenting half the reason by skipping the
evaluation of a redundant branch would be misleading.

Lastly, the goal was to develop a more efficient implementation of a debugging backend
compared to the XQuery-based design in [BSWK21]. <Automaton Design And Implementation»
(section 4) has demonstrated that queries introduce very limited memory overhead that

is independent®of the runtime of the program. Additionally, the amount of additional
computations is generally very small and does not depend on more than one base event at

a time.

From a design perspective, the Query DSL and automaton meet the original performance
goal. We will consider a simple set of benchmarks to validate that initial judgment.

8 A programming language with stronger guarantees about side-effects and structural comparisons
such as Standard ML[MTMg7] might be a better starting point.

9 Strictly speaking, the performance of the automaton could degenerate over time because calls to
equals() might scale badly over time, for example when comparing growing tree structures.
However, that performance penalty would be inherent in the breakpoint specification and would
not be caused by the backend itself.

51

An Efficient Domain-Specific Language For Breakpoints

5.2 Performance Evaluation

The breakpoint backend builds on the previous DiSL-based approach from [BSWK21]. As
such, the overhead introduced by the instrumentation framework or similar details of the
underlying implementation are not part of the scope of this work.

The instrumentation framework supports a dummy backend called the Null Tracer that
implements the callback interface in the same way our backend does. As the name
indicates, the Null Tracer does no additional work and is therefore the ideal comparison
for our backend. Any cost incured by the Null Tracer can be considered outside our scope.

Additionally, we are going to evaluate the performance of the Query DSL by splitting the
backend into two parts, the bookkeeping backend and the automaton itself.

As we discussed in <Automaton Design And Implementation> (section 4), the instrumen-
tation framework does not easily expose the current values bound to variables or the
full call stack. We considered extending the framework, but focused our efforts on the
automaton instead. Because of that limitation, our backend needs to perform its own
bookkeeping for variables and methods. By extending the instrumentation framework,
that same information could be accessed with little additional cost, as it is already an
aspect of the normal execution of a program inside the Java Virtual Machine.

We assembled a set of 17 short benchmarks that represent all constructs of the Query DSL
and cover the range of examples shown in other chapters. 10

As expected, we found that the performance of the benchmarks does not change after
repeated executions,!! so the goal to not have the performance degrade over time was
clearly met. As the automaton does not keep a full execution trace, that result is not
surprising.

We measured repeated executions of the benchmark set (with N = 10,000) and took the
median execution time (in milliseconds) for each benchmark to reduce measurement
noise. As many of our measurements are of the size of one millisecond or less, noise
introduced by JIT optimizations or garbage collection was a significant factor, so the whole
measurement should be taken only as a rough approximation. («Back-End Benchmarks>
(figure 1))

Notably, the bookkeeping system outperforms the Null Tracer in two benchmarks by
less than 1ms, which is almost certainly just a measurement artifact. The goal of the
performance evaluation is to confirm the plausibility of the claim that our design is

% See «Query DSL Grammar> (appendix B) for the queries we evaluated. The minimal test cases
are part of the source code repository available under https://segit.mathematik.uni-marburg.de/
ExTra/extra-base.

™ The only difference we observed is that the first few measurements are typically outliers, which
we strongly suspect is due the execution of cold code in the JVM. We correct for this artifact by
performing two full measurements for each benchmark after another and discarding the first
one.

52

https://segit.mathematik.uni-marburg.de/ExTra/extra-base
https://segit.mathematik.uni-marburg.de/ExTra/extra-base

Freya Dorn

suitable for a practical backend implementation, not to assess the exact overhead of our
implementation.

The bookkeeping overhead for most benchmarks is on average a factor of 4 to 5, still well
inside the millisecond range. The overhead introduced by most queries is a factor of 2 or
less, but more complex or costly queries can produce a slowdown of up to a factor of 20.
Overall, the total performance overhead of our implementation is on average a factor of 8.

Additionally, the overhead of the automaton compared to the redundant bookkeeping is
generally small except for significantly nested queries queries involving multiple Then or :
connectives. (<Bookkeeping vs Automaton- (figure 2))

The XQuery implementation in [BSWK21] noted overheads of up to 300 and more in
their preliminary benchmarks, in addition to the growing memory cost of keeping a full
execution trace.

We consider a total factor of about 8 an acceptable overhead for the first implementation
of our debugging backend, but many low-level optimizations would still be possible. Using
code generation as discussed in Design> (section 4.1) would also likely remove many
redundant checks and layers of indirection. Most importantly, the entire bookkeeping
system could be removed by extending the instrumentation framework at little additional
cost.

53

An Efficient Domain-Specific Language For Breakpoints

B Null Tracer [Bookkeeping Automaton

Runtime (ms)

o o

\e
5o *

" o RPN\ e®
o 6‘4\0“‘ ,“\e“ O‘ée s «a‘“
o o 0\)

™ o

W A\ 005 05 *° 2°
P PN P e R e G cﬁ"\
ey w

(@ff\A e O PN 00““

Benchmark

M Figure1 Back-End Benchmarks

Automaton [l Bookkeeping
12.0
11.0
10.0
9.0
8.0
7.0
6.0

5.0

Runtime (ms)

4.0
3.0

2.0

0.0
o \;\(\e ?-\\e 0\0‘0\5

° " o o) e S
oe"’ 'b‘@' O’¢>\\ 50 N 200 N ot e"\ W
x@‘ﬁ 50\3‘0?' o [e OV P ‘\0 \W w2 o (@ W

d
PRI e o

Benchmark

B Figure2 Bookkeeping vs Automaton

54

Freya Dorn

I3 Related Work

Bockisch et al.[BSWK21] introduce a unified specification for breakpoints. They model
execution as a sequence of events represented as an XML stream. Each event is categorized
into one of seven classes of base events comparable to the base events used in <Designs
(section 3.1). A breakpoint is defined by its base event and a condition over its attributes,
the dynamic program state, and the execution history.

Breakpoints are expressed as search queries for the event stream using XQuery. They
map the base events and a number of composition operators to XQuery and discuss the
possibility of using XQuery’s functional language features as a means of abstraction for
breakpoints.

In addition to the specification, they implement a proof-of-concept framework for XQuery
search queries on an XML event stream generated from bytecode instrumentation. The
implementation suffers severe performance penalties do to the overhead of encoding
events as an XML character stream, the need to maintain and search through a full
execution history, and the large number of instrumentation sites due to the indiscriminate
generation of all base events, independent of what events are actually relevant to a given
search query.

De Volder[DVo6] develops a declarative configuration language for a generic code browser.
In order to improve the customizability of IDEs, the author analyzes the design space
of various navigation tools offered by the Eclipse Java Development tools[ecl], such as
view panels for type hierarchies, Java packages, and statically known call sites. Next, they
model all such code browsers as search queries over the static structure of the program
source code, and declarative rules on how to display the search results.

Of particular interest are the JQuery predicates that define the search queries, which
have a close syntactic similarity to Prolog[SSo4]. Predicates select static entities such as
methods or types from the source project and bind the results to variable names in a
similar style to the query variables used in this thesis. Afterwards, the results are displayed
in a tree view based on a hierarchy generated from declarative rules. That way, all code
navigation tools in the IDE use a unified design space and configuration language, and
the programmer can easily add customized views according to their specific needs.

Because JQuery is implemented as an extension to an inference engine in the Prolog
family, it offers significant flexibility and forms of abstraction. The author also significantly
reduces the size of the design space from over 3,000 original types and methods in the
Eclipse plugin API to just 13 JQuery types and 53 predicates.

55

An Efficient Domain-Specific Language For Breakpoints

Conclusion

Breakpoints are a powerful tool for debugging programs. Real-world debuggers currently
include breakpoints through a wide range of divergent and non-composable commands.

We designed a unified domain-specific language for queries to express breakpoints in an
ergonomic and general way. We used a range of design principles to guide the design of
the syntax and semantics of the Query DSL.

We used a runtime-based design built on a categorization of program instructions into a
set of eight base events. The Query DSL closely follows the conventions and semantics
of the Java programming language and extends the expressive power of conventional
breakpoints through query variables and connectives.

Additionally, we implemented an efficient automaton and backend for the Query DSL,
using the existing instrumentation framework used by [BSWK21]. The backend consists of
a bookkeeping system to complete the necessary runtime information otherwise provided
by the instrumentation framework, a parser and compiler for the Query DSL, and an
efficient automaton generated by the query compiler.

We met our design goals with only a small number of design restrictions and trade-offs,
such as the use of type prefixes, and the lack of support for local variables. The primary
limitation of the current design is the lack of first-class objects and instance methods.
Otherwise, we have achieved our initial goal to design and implement a unified breakpoint
language and a corresponding backend for an instrumentation framework.

A cursory performance evaluation of the backend confirmed the efficiency of our design
and justifies its validity for a practical debugging tool. The backend has good, effectively
constant memory usage during execution and a total linear runtime overhead of less than
a factor of 10, split between a factor of 4-5 for the bookkeeping system and 2 or less for
most query automata.

Our Query DSL with its efficient backend implementation constitutes a powerful, human-
readable language for breakpoints.

56

Freya Dorn

K] References

[Bet16]

[BMS80]

[BPSM*o0]

[Braz7y]

[BSWK21]

[CLB]

[DiS]

[DVo6]

[EB10]

[ecl]

[gdb]

[lam]

[Isp]

[MTMo7]

Lorenzo Bettini. Implementing Domain Specific Languages with Xtext and
Xtend. Packt Publishing, 2nd edition, 2016.

Rod M Burstall, David B MacQueen, and Donald T Sannella. HOPE: An
experimental applicative language. In Proceedings of the 1980 ACM conference
on LISP and functional programming, pages 136-143, 1980.

Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, Francois
Yergeau, and John Cowan. Extensible markup language (XML) 1.0, 2000.

Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
RFC 8259, December 2017. URL: https://rfc-editor.org/rfc/rfc8259.txt, doi:
10.17487/RFC8259.

Christoph Bockisch, Stefan Schulz, Viola Wenz, and Arno Kesper. A Unifying
Approach to Breakpoint Specification. In 24th Iberoamerican Conference on
Software Engineering. CIbSE Steering Committee, aug 2021.

Common Lisp HyperSpec, function BREAK. http://clhs.lisp.se/Body/f_break.
htm.

DiSL source code repository. https://gitlab.ow2.org/disl/disl.

Kris De Volder. JQuery: A Generic Code Browser with a Declarative Con-
figuration Language. In Pascal Van Hentenryck, editor, Practical Aspects
of Declarative Languages, pages 88-102, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster
than the quick and dirty way. In Proceedings of the ACM international con-
ference companion on Object oriented programming systems languages and
applications companion, pages 307—309, 2010.

Eclipse IDE. https://www.eclipse.org/eclipseide/.
The GNU Project Debugger. https://www.gnu.org/software/gdb/.
Lamdu project overview. https://www.lamdu.org/.

Language Server Protocol Specification. https://microsoft.github.io/language-
server-protocol/specifications/specification-current/.

Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard
ML. MIT Press, Cambridge, MA, USA, 1997.

57

https://rfc-editor.org/rfc/rfc8259.txt
https://doi.org/10.17487/RFC8259
https://doi.org/10.17487/RFC8259
http://clhs.lisp.se/Body/f_break.htm
http://clhs.lisp.se/Body/f_break.htm
https://gitlab.ow2.org/disl/disl
https://www.eclipse.org/eclipseide/
https://www.gnu.org/software/gdb/
https://www.lamdu.org/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://microsoft.github.io/language-server-protocol/specifications/specification-current/

An Efficient Domain-Specific Language For Breakpoints

[MVZ*12]

[MWGo1]

[PQos]

[SBPMog]

[SBSor1]

[SS94]

[TR75]

[tra]

[Tury6]

[VBD*13]

[vsc]

[Vorz]

[wat]

[win]

Lukas Marek, Alex Villazon, Yudi Zheng, Danilo Ansaloni, Walter Binder, and
Zhengwei Qi. DiSL: A domain-specific language for bytecode instrumentation.
AOSD’12 - Proceedings of the 11th Annual International Conference on Aspect
Oriented Software Development, 03 2012. d0i:10.1145/2162049.2162077.

Erik Meijer, Redmond Wa, and John Gough. Technical Overview of the
Common Language Runtime. Microsoft Research, 11 2001.

T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k) parser generator. Soft-
ware: Practice and Experience, 25(7):789-810, 1995. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/spe.4380250705, arXiv:https://onlinelibrary.wiley.
com/doi/pdf/10.1002/spe.4380250705, doi:10.1002/spe.4380250705.

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework. Eclipse Series. Addison-Wesley, 2 edition, 2009.

Robert F. Stark, E. Borger, and Joachim Schmid. Java and the Java Virtual
Machine: Definition, Verification, Validation with Cdrom. Springer-Verlag,
Berlin, Heidelberg, 2001.

Leon Sterling and Ehud Y Shapiro. The art of Prolog: advanced programming
techniques. MIT press, 1994.

Ken Thompson and Dennis M Ritchie. unix Programmer’s Manual. Bell
Telephone Laboratories, 1975.

Tracepoints, an introduction on the official Microsoft DevOps Blog.
https://web.archive.org/web/20190109221722/ https://blogs.msdn.microsoft.
com/devops/2013/10/10/tracepoints/.

DA Turner. SASL language manual, St. Andrews University, Fife, Scotland,
1976.

Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann, Mats
Helander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. DSL
Engineering - Designing, Implementing and Using Domain-Specific Languages.
dslbook.org, 2013.

Visual Studio Code. https://code.visualstudio.com/.

Markus Volter. Language and IDE Modularization, Extension and Composition
with MPS. GTTSE 2011, 7680, 07 20I1I. d0i:10.1007/978-3-642-35992-7_11.

Setting watchpoints, GNUD Debugger manual. https://ftp.gnu.org/old-gnu/
Manuals/gdb/html_node/gdb_29.html.

Debugging Tools for Windows (WinDbg, KD, CDB, NTSD). https://docs.
microsoft.com/en-us/windows-hardware/drivers/debugger/.

58

https://doi.org/10.1145/2162049.2162077
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380250705
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380250705
https://doi.org/10.1002/spe.4380250705
https://web.archive.org/web/20190109221722/https://blogs.msdn.microsoft.com/devops/2013/10/10/tracepoints/
https://web.archive.org/web/20190109221722/https://blogs.msdn.microsoft.com/devops/2013/10/10/tracepoints/
https://code.visualstudio.com/
https://doi.org/10.1007/978-3-642-35992-7_11
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_29.html
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_29.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/

Appendix

NoH

16

An Efficient Domain-Specific Language For Breakpoints

FN¥ Query DSL Grammar

grammar io.bitbucket.umrplt.extra.Query hidden (WS, ML_COMMENT, SL_COMMENT)
import "http://www. eclipse.org/emf/2002/Ecore" as ecore
generate query "http://waww. bitbucket.io/umrplt/extra/Query"

// top-level

QueryFile:
(entries+=Entry) +;

Entry:
Section | Query | Import;

3 Section:

"{' note=QName '}';

Import:
'package' pkg=PkgName ';'+;

Query:
(name=QueryName '=>')? condition=Condition ';'+;

QueryCall:
'<' name=[QueryName] '>';

Condition:
left=SimpleCondition (=> connective=ConnectiveOP right=Condition)?;

SimpleCondition:
VariableChanged | MethodCalled | Return | Exception | QueryCall;

// variables

VariableChanged:
Comparison | LineChanged | ClassChanged | Assigned | Accessed | InstanceOf;

Accessed:
var=VarName;

Comparison:
left=Element pred=PredOP right=Element;

LineChanged:
'Sline ' pred=PredOP val=Integer;

ClassChanged:
'Sclass ' ('=" '==") val=Text;

Assigned:
var=VarName '<-' right=SetElement;

InstanceOf:
obj=Var 'instanceof' type=SetType;

// (continued on next page)

60

®

96

99
100
101

102

104
105
106

107

// methods

MethodCalled:
(modifier=CallModifier)? call=MethodcCall;

MethodCall:

(method=MethodName) ' (' (args=MethodArgs)? ')';

// nb: ANY is the default case

4 enum CallModifier:

ANY = 'call' |
OPEN = 'in' |
CLOSED = 'after';

MethodArg:
var=SetElement [
type=SetType |
var=SetElement type=SetType ;

MethodArgs:

void?="void' | (args+=MethodArg (',' args+=MethodArg)*);

Return:

Freya Dorn

‘return' {Return} (retval=(Value | SetVar))? ('from' method=MethodCall) ?;

// exceptions

Exception:
Catch | Throw;

Catch:

‘catch' (types+=Type('|' types+=Type)*) (qtype=SetQType)?;

Throw:
"throw' (type=Type) (qtype=SetQType)?;

// names and values

; enum PredOP:

EQUALS = '=' | EQ = '==' | NEQ =
LESS = '<' | LESSEQ = '<=' |
GREATER = '>' | GREATEREQ = '>=' ;

s enum ConnectiveOP:

AND = 'and' |

OR = 'or' |

THEN_SEQ = 'then' |

THEN_TRUE = ':' ;
terminal ID: ('a'..'z'['A"..'Zz'|'_") (a'..'z"|'A"..
QName: ID ('.' ID)*;

// (continued on next page)

61

An Efficient Domain-Specific Language For Breakpoints

08 VarName: (name=QName) ;
oo MethodName: (name=QName) ;
1o PkgName:: (name=QName) ;
1 QueryName: (name=QName) ;
11> TypeName: '@' (name=QName) ;
3 Qvar: '? ' (name=QName) ;
s QType: '?@' (name=QName) ;
115 SetQvar: '?="(name=QName) ;
16 SetQType: '2@= ' (name=QName) ;
117

s Var: VarName | QVar;

119 Type: TypeName | QType;

120

21 SetVar: Var | SetQvar;
2> SetType: Type | SetQType;

24 Element:

125 Value | Vvar;

126

7 SetElement:

128 Element | SetQVar;

129

130 Value:

131 {Null} val=Null |
132 {Integer} val=Integer |
133 {Float} val=Float |
134 {STRING} val=STRING |
135 {GLOB} val=GLOB |
136 {REGEX} val=REGEX |
137 {Bool} val=Bool :
138

30 Text:

140 {STRING} val=STRING |
141 {GLOB} val=GLOB |
142 {REGEX} val=REGEX ;

144 Integer returns ecore::Elnt:
145 ("+' | '-')? DIGIT+;

147 Float returns ecore:: EFloat:
148 ('+" | '-')? DIGIT'. 'DIGIT;

5o Bool returns ecore::EBoolean:
151 "true' | 'false’';

153 Null: '"null ';

154
155 terminal DIGIT returns ecore::Elnt: ('o'..'9')+;

156 terminal STRING:

157 e NN /b e e f e ra N R RN))y
158

159 terminal GLOB:

160 L CoNNCE ol T NN) NN D))T

162 terminal REGEX:
163 OO NN NN) RO)),
65 terminal ML_COMMENT : '/*' -> '*/['.

66 terminal SL_COMMENT : '//' '('\n'|'\r")* ("\r'? "\n')?;
67 terminal WS (NNt \nt) +;

62

Freya Dorn

I} Query DSL Grammar

// overview of all supported query features, used for benchmarks
; package QueryTest;
[117111117717777

; // variables

{ testvalues }

// basic values

3y

X = 10;

= -10;
a = 20.0;
name = "freya";
valid = true;
ret = null;

{ testComparisons }

y == 10;
y < 10;
y <= 10;
y > 10;
y !'= 10;

{ testAssign }

y <=1

0;

{ testName }

QueryTest.name = "freya";

{ test

Sline
Sline
Sline
Sline

{ test

$class = "QueryTest";

Line }

= 145;
> 145;
< 150;
== 145;

Class }

{ testGlob }

Sclass
Sclass

{ testAccess }

X3

// (continued on next page)

[debug.*1;
= [*.debug.*];

63

63

66

67
68

69

o o
1

90
91
92
93
94
95
96
97
98
99

100

101

102

, return 10;

An Efficient Domain-Specific Language For Breakpoints

{ testinstanceOf }

s ret instanceof @String;

{ testMethods }

// any arguments, the sensible default
f();
QueryTest.f();

// overloaded methods

f(void); // explicit o-ary call
g(@string); //

g(@String, @int, @String);

// simple arguments
f(3);
f(@int);

f("Freya");
f(@String);

f(@String, 10);
f("Freya", @int);
f(@String, @int);

// return values

return

// break if a specific
from h(); // break if the method f returns (with any value)

value is returned (from any method)

return 10 from h(); // break if the method f returns the value 10;

{ testExceptions }
throw @NullException;

catch @NullException;
catch @NullException | @DivError;

{ testConnectives }

// or

X = 10 or y = 20;

f() or g();

f() or throw @NullPointerException;
X = 10 Or X = 20 or X = 30;

// and

X = 10 and y = 20;

y = 20 and x = 10;

f() and g() and h();

// in-order

3 X = 10:

y = 20;

// (continued on next page)

64

Freya Dorn

17 { testNested}

o /* void outer() { inner(); }
2o * void inner() { x = foo(); }

121 */

122

123 OUtEI’()Z

124 inner():
125 X = 10;
126

27 { testlnOrder }
128

1290 X = 10:

o Y = 20;
131

2 /* ie, this wouldn't cause a break:
s *int f() {

134 ¥ int y = 20;

135 & int x = 10,
136 ¥ return Xx;
137 * }

138 ki

130 * but this would:
140 * jint f() {

a1 ¥ int x = 10,
142 & int y = 20;
143 % return x;

us ¥}

145 */
146

47 { testUsed }

148

o // difference between "in order" and "while still active"

150

st /* void init{ ... }; => initializes some data

12 * void use{ ... }; => uses that data, expects it to be initialized
153 *

154 * so there's two possible errors: calling use() before init(),
15 * and calling use() during init();

156 */

157

s init(): use();
150 use(): init();
o in init(): use();
w6 after init(): use();
162

63 { testOrdering }

164 in f()

165 QueryTest.name;
166

167 f() o
168 Student.name;
169

o after f():
171 Student.name;

173 return from f(): // (equivalent)
174 Student.name;

176 // (continued on next page)

65

An Efficient Domain-Specific Language For Breakpoints

177 // sequence vs both true

78 X > 10: X < 10; // contradiction
179 X > 10 then x < 10; // sequence
180

s { testQVars }

182

183 X <- ?=a;

184

185 A = b,

6 a <- ?=x and b <- ?=x;
187 @ <- ?=x: b = ?x;

188

s F(2@T) and g(?@=T);
o F(?2@=T): g(?2@T);

o1 f(?@=T): ret instanceof ?@T;
192

03 g(?@T, ?2@T, ?@T);

194 g(7@:ar ?@=b1 ?@=C);
ws /] f(?@_, ?@_, ?@.);
06 f(?2=x, @String);

197

s f(?2@=a): x instanceof ?@a;
o f(?2=a): x = ?a;

200

2or { testQNames }

203 Name_1 => X = 1;

204 Y = 1 OF <name_1>;

66

	1 Introduction
	2 Design Principles
	2.1 Event-based
	2.2 Runtime-based
	2.3 Ergonomic for Programmers
	2.4 Abstraction
	2.5 Efficiency

	3 Query DSL
	3.1 Design
	3.2 Variables
	3.3 Special Variables
	3.4 Method Calls
	3.5 Exceptions
	3.6 Query Organization
	3.7 Connectives
	3.8 Query Variables

	4 Automaton Design And Implementation
	4.1 Design
	4.2 Variables
	4.3 Special Variables
	4.4 Method Calls
	4.5 Exceptions
	4.6 Query Organization
	4.7 Connectives
	4.8 Query Variables

	5 Evaluation
	5.1 Principles
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusion
	References
	8 References
	A Query DSL Grammar
	B Query DSL Grammar

