
Philipps-Universität Marburg
Department of Mathematics and Computer Science
Programming Languages and Tools group

Semantic Comparison of Java Bytecode

CONTEXT: THE MODBEAM PROJECT
Java bytecode is a very versatile intermediate representation to which several
languages (Java, Scala, Groovy, etc.) are compiled. It is always available even
for closed-source code therefore targeted by many modern code analysis tools.
The programming languages and tools group is developing a toolkit for program
analyses and transformations of Java bytecode, named Modular Bytecode Engi-
neering and Analysis based on Models (ModBEAM) [2, 4]. It contains ameta model1

of Java bytecode defined in the ECORE format of the “Eclipse Modeling Frame-
work” (EMF), the prevalent standard inmodel-driven engineering. ModBEAM also
provides and Eclipse plug-in which can represent Java bytecode files as instance
models2 according to its meta model. This allows the usage of a wide variety of
powerful model analysis and transformation tools, available in the EMF ecosys-
tem, to inspect and possibly modify the bytecode model. For possibly trans-
formed bytecodemodels, theModBEAMplug-in can again generate regular Java
bytecode.

MOTIVATION
Java bytecode is produced bymultiple different tools, for example, there aremul-
tiple Java source code compilers, compilers for other languages or other code
generators. One particularly interesting use case are tools which rewrite byte-
code in certain ways; popular examples are code instrumentations for purposes
such as profiling or dependency injection. To test such tools, the produced byte-
code can be compared to the expected bytecode. However, comparing the byte-
code for identity may be too restrictive. For example, the order in which entities
like methods are defined in the bytecode may be different without affecting the
meaning of the bytecode.

ASSIGNMENT
To facilitate a more lenient comparison between two Java bytecode files, a Java
library should be developed that tolerates small differences in the code which
are known not to affect the meaning of bytecode. To read and process Java byte-
code, several tools are available, probably the most suitable of these is the ASM
bytecode toolkit [1]. The developed library should be able to read two different
Java bytecode files and compare them, whereby it should be possible to config-
ure which differences are tolerated. In case an unacceptable difference is found,
a meaningful message should be created that describes the location of the dif-
ference in the bytecode (i.e., which method, which instruction, etc.), what was
expected and what was found instead. The developed library should be able to
compare all language constructs (e.g. annotations, generics, etc.) supported by
the most recent Java version.
The tool SootDiff [3] has a similar goal and can even in some cases recognize
of different instruction sequences are semantically equivalent. However, it only
supports Java 7, and it may be impossible to also opt for stricter comparison with
SootDiff. The suitability of SootDiff should, nevertheless, be investigated in this
project and the newly developed library should be comparedwith SootDiff. Other
related approaches are comparison tools for JSON objects with different compar-
ison modes or more general diff algorithms.

REFERENCES
1If the term meta model is not known, think of is as the classes in an object-oriented program.
2Assuming a meta model is comprised of classes, think of an instance model as thier runtime

objects in a specific execution.

INFO

Java bytecode, language
processors

Java

ASM

Research
Develop

Thesis (BSc, MSc)

Prof. Christoph Bockisch



[1] Homepage of the ASMbytecodemanipuation and analysis framework. https:
//asm.ow2.io/. Accessed: 2024-06-09.

[2] Christoph Bockisch, Gabriele Taentzer, Nebras Nassar, and LukasWydra. Java
bytecode verification with ocl why, how and when? Journal of Object Technol-
ogy, 19(3):3:1–16, October 2020. Special Issue dedicated to Martin Gogolla on
his 65th Birthday. doi:10.5381/jot.2020.19.3.a13.

[3] Andreas Dann, Ben Hermann, and Eric Bodden. Sootdiff: Bytecode compar-
ison across different java compilers. In Proceedings of the 8th ACM SIGPLAN
International Workshop on State of the Art in Program Analysis, pages 14–19,
2019.

[4] Bugra M. Yildiz, Christoph Bockisch, Arend Rensink, and Mehmet Aksit. An
MDE approach for modular program analyses. In Companion Proceedings of
Programming’ 17. ACM, 2017. doi:10.1145/3079368.3079392.

https://asm.ow2.io/
https://asm.ow2.io/
https://doi.org/10.5381/jot.2020.19.3.a13
https://doi.org/10.1145/3079368.3079392

	Context: The ModBEAM Project
	Motivation
	Assignment
	Info

