
Empowering model repair: A rule-based approach
to graph repair without side effects

1st Alexander Lauer
Philipps-Universität Marburg

Marburg, Germany
alexander.lauer@uni-marburg.de

2nd Jens Kosiol
Philipps-Universität Marburg

Marburg, Germany
kosiolje@mathematik.uni-marburg.de

3rd Gabriele Taentzer
Philipps-Universität Marburg

Marburg, Germany
taentzer@mathematik.uni-marburg.de

Abstract—Working with models can lead to inconsistencies
due to erroneous or contradictory actions during concurrent
modeling processes. Modern modeling environments typically
tolerate inconsistencies and support their detection. However, at a
later stage of development, models are expected to be consistent,
which means that their inconsistencies should be considered and
resolved. The process of resolving model inconsistencies is usually
referred to as model repair. Our approach to model repair is
semi-automatic in the sense that the system computes appropriate
paths for repair and the modeler decides which path to go.
What is special about our approach is that the repair process
can register every small improvement in the model. This allows
the interaction with the user to be optimized, resulting in an
approach with a high level of automation on the one hand and
flexible configuration options on the other. The approach is able
to provide all possible repair plans that do not have side effects,
i.e., the computed repair plans do not inadvertently introduce
a new inconsistency into the model so that a consistent model
cannot be achieved after the repair. Since models often have a
graph-like structure, we present our approach to model repair
based on graphs. Our approach is completely formal and uses the
algebraic graph transformation approach to show its correctness.

Index Terms—model repair, graph repair, consistency con-
straint, graph transformation, graduated consistency

I. INTRODUCTION

Working with models can lead to inconsistencies due to
erroneous or contradictory actions in modeling processes,
especially in concurrent processes. Modern modeling envi-
ronments should tolerate inconsistencies and support their
detection [1], [2]. However, at a later stage of development,
models are expected to be consistent, which means that
their inconsistencies should be detected and resolved. The
process of resolving model inconsistencies is usually referred
to as model repair. There are many different approaches
to model repair; the approaches previously examined were
compared using a feature-based classification of model repair
approaches [3]. That article points out that “most techniques
do not provide guarantees regarding the functional semantics
of the model repair procedures”.

There are rule-based approaches that generate repair rule
sequences for each inconsistency of a model such as [4] and
the user can choose one of the computed repair plans. If
two model repairs are in conflict, the repair of one model
inconsistency may lead to a new inconsistency as a side effect
so that repairs have to be taken back or even a consistent

model cannot be achieved after the repair. It is interesting to
determine a class of consistency constraint sets where such
side effects cannot occur.

Since models are typically based on a graph structure, graph
repair approaches can in principle also be used for model
repair. Graph repair approaches usually have the advantage that
they are formal and thus precisely defined. There are several
approaches to graph repair for first-order graph constraints
or certain subsets thereof that are correct, i.e. always return
consistent graphs [5]–[11]. The used repair algorithm may
be non-terminating if there are graph repairs for several
constraints that influence each other. We are interested in
finding a characterization of consistency constraint sets such
that there is a terminating graph repair algorithm that always
returns a consistent graph. Ideally, this algorithm is fast in the
sense that it does not need backtracking.

Our approach is fully formal and uses the algebraic graph
transformation approach [12], [13]. We use a restricted form
of nested graph constraints [14] to specify graph consistency.
Constraints of this form use alternating quantifiers and do not
contain Boolean operators. Graph updates are rule-based and
use the algebraic graph transformation approach. Our approach
to graph repair is also rule-based and uses so-called repair
rules. If a set of constraints is such that repairing one constraint
cannot entail a new violation, the constraint set is circular
conflict-free. This property can be checked statically for a
given set of constraints. We show that a graph can always
be repaired such that the resulting graph is fully consistent if
the constraint set is circular conflict-free. The repair rules can
be automatically computed and selected by the modeler. Our
repair approach is efficient in the sense that no backtracking
is needed.

The paper is organized as follows: Sections II and III
present the formal basis for graphs and graph constraints.
Consistency checks are defined in Section IV. Graph updates
are formalized as graph transformations in Section V. The
proper repair algorithm is presented in Sections VI and VII.
The paper concludes with the related work in Section VIII and
a conclusion in Section IX.

II. GRAPHS

Since models generally have an underlying graph structure,
we present our approach based on graphs. More precisely, we

http://orcid.org/0009-0001-9077-9817
http://orcid.org/0000-0003-4733-2777
http://orcid.org/0000-0002-3975-5238

work with typed graphs as introduced for graph transformation
in [12], [13]. The nodes of a graph represent objects that can be
attributed with data values, and the edges of a graph represent
object references.

Definition 2.1 (Graph [13]). A graph G = (GV , GE , sG, tG)
consists of a set GV of nodes, a set GE of edges and two
mappings sG : GE → GV and tG : GE → GV that assign the
source and target nodes for each edge of G. If a tuple as above
is not given, the set of nodes is denoted by GV and the set of
edges by GE .

In the following, we will assume that a graph is always
finite, i.e., the set of nodes and the set of edges are finite.

Definition 2.2 (Graph morphism [13]). Given two graphs
G = (GV , GE , sG, tG) and H = (HV , HE , sH , tH), a graph
morphism f : G → H consists of two mappings fV : GV →
HV and fE : GE → HE that preserve the source and target
functions, i.e., fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE .

A graph morphism is called injective (surjective) if both
mappings fV and fE are injective (surjective). We denote
an injective morphism by f : G ↪→H . An injective graph
morphism f : G ↪→H is called inclusion if fE(e) = e for
all e ∈ GE and fV (v) = v for all v ∈ GV .

Definition 2.3 (typed graph and typed graph morphism [13]).
Given a graph TG, called the type graph, a typed graph
over TG is a tuple (G, type) which consists of a graph G
and a graph morphism type : G → TG. Given two typed
graphs G = (G′, type1) and H = (H ′, type2), a typed graph
morphism f : G→ H is a graph morphism f : G′ → H ′ such
that

type2 ◦ f = type1.

:Account

id

:Client

name

:Portfolio

has

associates has

Fig. 1: Type graph

Example 2.1. Throughout this paper, we use a running exam-
ple from the banking domain. The type graph TG is shown in

c1:Client

name = Bob

a1:Account

id = 1

c2:Client

name = Alice

a2:Account

id = 2

c3:Client

name = Peter

p:Portfolio

a3:Account

id = 3

has

has has

has

associates

has

Fig. 2: An instance graph typed over the graph in Fig. 1

Fig. 1. It represents the structure of a simple banking example
consisting of Clients, Accounts and Portfolios. The edges
denoted by has and associates assign an Account or Portfolio
to its owner and an Account to the Portfolio it is connected
to, respectively. Each Client has an attribute representing its
name and each account has an attribute representing its id.
The attribute values can be represented by a special kind of
node and an edge between an object node and a value node
can be interpreted as an attribute. Typed graphs can already
cover a simple attribution concept where attributes are only set
and not set. For a more powerful concept of attribution that
also supports the computation of attribute values, we refer the
interested reader to [13] for one possible such formalization.

A graph typed over TG is shown in Fig. 2. The morphism
type is implicitly given by the type information in the nodes
and on the edges.

III. CONSTRAINTS

To formulate consistency conditions for graphs, Habel and
Pennemann introduced nested graph conditions in [14]. The
class of nested graph conditions forms a first-order, two-valued
logic for graphs [14], [15]. When being used for formalizing
invariants, they are called nested graph constraints. Radke et
al. have shown in [16] that most of OCL (i.e., almost all of
the first-order, two-valued part of OCL) can be translated into
nested graph constraints.

Since our new repair approach for general nested graph
constraints is too extensive to present in this paper, and our
approach can well be demonstrated using simple constraints,
i.e., constraints with nesting level less than or equal to 2, we
will only consider constraints of the following forms in the
remainder of this paper:

Definition 3.1 (simple graph constraints (special form of
nested graph condition in [14])). A simple graph constraint
is one of the following forms:

• ∀(P,false)
• ∀(P,∃(Q,true)) so that there is an inclusion

iP : P ↪→Q

The nesting level, denoted by nl(c), of a simple constraint
c is defined as:

• nl(true) = nl(false) = 0.
• nl(∀(P, d)) = nl(∃(P, d)) = nl(d) + 1.

Note that these forms also cover constraints of the form
∃(P,true), since this constraint can be transformed into
the equivalent constraint ∀(∅,∃(P,true)). The theory for
constraints with nesting levels higher than 2 can be found
in [17].

Example 3.1. A set of simple constraints is shown in Fig. 3.
The inclusions of constraint graphs are not explicitly shown
but can be deduced from the node identifiers. For example,
the node denoted by c in the first graph of c1 is mapped to
the node denoted with c in the second graph of c1. Intuitively,
the constraints have the following meanings:

• c1: Each Client has at least one Account.

c1 = ∀ (c:Client ,∃ (c:Client a:Account
has , true))

c2 = ∀ (c1:Client a:Account c2:Client
has has , false)

c3 = ∀




c:Client

p:Portfolio a:Account
associates

has ,∃




c:Client

p:Portfolio a:Account
associates

hashas , true






c4 = ∀
(

p1:Portfolio a:Account p2:Portfolioassociates associates , false
)

c5 = ∀
(

a1:Account a2:Account
id = x id = x

, false
)

Fig. 3: Constraints used throughout the examples.

• c2: No Account is assigned to two different Clients.
• c3: If an Account is associated to a Portfolio, then both

belong to the same Client.
• c4: No Account is contained in two different Portfolios.
• c5: There are no two different Accounts with the same

id, i.e., the id of an Account is unique.
This set of constraints is useful for a simple banking model,
and we can think of more constraints, even for this simple
model. Another constraint would be, for example, that clients
may not have a portfolio without an account.

Let us now introduce the semantics of simple graph con-
straints and sets of these. For the remainder of this paper we
will assume that a set of constraints C is always finite.

Definition 3.2 (semantic of simple graph constraints). Given
a graph G and a simple graph constraint c, then G satisfies c,
denoted by G |= c, if

• c = ∀(P,false) and there is no morphism p : P ↪→G
• c = ∀(P,∃(Q,true)) and for all morphisms p : P ↪→G

there is a morphism q : Q ↪→G with p = q ◦ iP .
A graph G satisfies a set of constraints C if G |= c for all
c ∈ C.

Example 3.2. Consider the constraints given in Fig. 3 and
the graph G given in Fig. 2. The graph satisfies c1, each
Client is connected to an Account. It does not satisfy c2, the
Account with id 1 is assigned to the Clients “Bob” and “Alice”.
Also c3 is not satisfied, Client “Peter” is connected to the
Account with id 3 which is connected to a Portfolio, but Client
“Peter” is not connected to that Portfolio. Constraints c4 and
c5 are both satisfied, no Account is associated to two different
Portfolios and each Account has a unique id. Therefore, if
C = {c1, c2, c3, c4, c5}, then G ̸|= C.

To repair a graph later on, we first search for violating pat-
terns in the graph. Each constraint violation can be identified
by the existence of a violating morphism.

Definition 3.3 (violating morphism). Let a graph G and a
constraint c be given. If

• c = ∀(C1,false), each morphism p : C1 ↪→G is a
violating morphism;

• c = ∀(C1,∃(C2,true)), each morphism p : C1 ↪→G
such that p ̸|= ∃(C2,true) is a violating morphism.

I1

c:Client

a:Account

I2

c:Client

a:Account

has

Fig. 4: Intermediate graphs for constraint c1.

IV. CONSISTENCY CHECKS

To support an appropriate repair of graphs, we will identify
a constraint violation as precisely as possible. This means that
a constraint is not simply violated or not but can be more or
less violated depending on which part of the constraint cannot
be satisfied. Thus, we introduce a more fine-grained notion of
violation. It allows to detect the degree of consistency of a
given constraint in a graph and to identify even the smallest
action that leads to an increase in consistency, namely the
insertion or deletion of single edges or nodes. A first definition
of such a graduated notion of consistency of graphs was given
in [18]. The following definitions extend the formalization
from [18] in such a way that it is not only possible to count
violations but also to distinguish their severity.

A prerequisite for the detection of constraint violations is the
notion of intermediate graphs. A graph C is an intermediate
graph of two graphs G and H if it lies in between G and H ,
i.e., it is a subgraph of H and G is a subgraph of it.

Definition 4.1 (subgraph [19]). Given two graphs G and H ,
G is a subgraph of H if there is an inclusion morphism
f : G ↪→H . G is called a proper subgraph of H if f is not
surjective, i.e., G ̸= H .

Definition 4.2 (intermediate graph). Given two graphs G and
H such that G is a proper subgraph of H , a graph G′ is called
an intermediate graph of G and H if G is a proper subgraph
of G′ and G′ is a subgraph of H . The set of intermediate
graphs between G and H is denoted by IG(G,H).

Example 4.1. For the constraint c1 shown in Fig. 3, the
intermediate graphs of the first and the second graph of c1
are shown in Fig. 4.

To decide whether transformations have increased or de-
creased the consistency level of a constraint, graphs of the
constraint are replaced by certain intermediate graphs.

Definition 4.3 (number of violations). Given a graph G and
a constraint c, the number of violations of c in G, denoted by
nv(c,G), is defined as:

• If c = ∀(C,false):

nv(c,G) = |{q | q : C ↪→G}|

• If c = ∀(C, ∃(P,true)):

nv(c,G) =
∑

q : C ↪→G

|{I ∈ IG(C,P) | q ̸|= ∃(I,true)}|

Example 4.2. Consider the graph G given in Fig. 2 and the
constraints given in Fig. 3. As discussed in Example 3.2, G
satisfies c1, c4 and c5. One sees easily that the satisfaction of
a constraint implies that the number of violations is equal to
0 and therefore, nv(c1, G) = nv(c4, G) = nv(c5, G) = 0.
For c2, we get nv(c2, G) = 2, since the Account with id 1
is assigned to more than one Client. In fact, it is associated
with exactly two Clients. So there are two morphisms from the
graph of c2 to G. For c3, there is only one morphism p from
the first graph of c3 to G involving Client “Peter”, the Account
with id 3 and the Portfolio node. The set of intermediate graphs
of c3 contains only the second graph of c3. Since p cannot be
extended to this intermediate graph, we get nv(c3, G) = 1.

V. UPDATES

Models can generally be updated by simply changing the
state or by applying defined operations. This mainly depends
on the type of model editor used. Most diagram editors support
basic editing operations where model elements can be created
from a palette and relationships between elements are inserted
so that no hanging relations can occur. The application of such
editing operations can be easily used to derive a delta between
subsequent model states. Both types of model update can be
formalized on the basis of graphs, and the application of edit
operations can be specified using graph transformations.

In the following, we recall the algebraic approach to graph
transformation presented in [12], [13].

Definition 5.1 (graph transformation rule [13]). A graph
transformation rule ρ = L

l←−↩ K r
↪−→ R consists of graphs

L,K and R and inclusions l : K ↪→L and r : K ↪→R.

Example 5.1. The graph transformation rules being used
in our example are shown in Fig. 5. They are presented
in a compact notation used in Henshin [20], where deleted
elements are coloured in red, created elements are coloured
in green and preserved elements are coloured in grey (and all
elements are additionally stereotyped according to their role).
According to Definition 5.1, the left-hand side L contains the
elements coloured in red and grey, the context K contains the
elements coloured in grey, and the right-hand side R contains
all elements coloured in grey and green. These rules can be

Fig. 5: Graph transformation rules used in the examples.

seen as a specification of selected editing operations for a
simple domain-specific modeling language in banking.

In the following, we will recall the definition of a graph
transformation. For simplicity, despite the common definition
of graph transformations using the double-pushout approach
(DPO) based on the concept of pushouts from category theory,
we will present a more constructive definition based on set
theory, which has been shown to be equivalent to the definition
using the DPO when dealing with graphs [13].

When a transformation rule is applied to a graph, all nodes
and edges of L \K that match to the graph are deleted, and a
copy of all nodes and edges of R \K is added to the graph.

Definition 5.2 (graph transformation [13]). Let a graph G,
a rule ρ = L

l←−↩ K
r

↪−→ R and an injective graph
morphism m : L ↪→G be given. A transformation t, denoted
by t : G =⇒ρ,m H , via ρ at m can be constructed as follows:

1) Delete all nodes and edges of L that do not have a preim-
age in K, i.e., construct the graph D = G\m(L\l(K)).

2) Add all nodes and elements of R that do not have a
preimage in K, i.e., construct the graph H = D∪̇R \
r(K), where ∪̇ denotes the disjoint union.

If and only if D is a graph, i.e., it does not contain any
dangling edges, ρ is applicable at m and m is called match.
By construction D is a subgraph of both, G and H . Therefore,
there are inclusions g : D ↪→G and h : D ↪→H which we call
transformation morphisms.

c1:Client

name = Bob

a1:Account

id = 1

c2:Client

name = Alice

c3:Client

name = Peter

p:Portfolio

a3:Account

id = 3

has

has

has

associates

has

Fig. 6: Graph after applying the rule deleteAccount (Fig. 5) to
the graph in Fig. 2.

Example 5.2. Consider graph G given in Fig. 2 and the rule
deleteAccount given in Fig. 5. There is an injective morphism
from the left-hand side of deleteAccount to G, where the Client
node is mapped to Client “Bob”, the Account node to the
Account with id 2 and edge to the corresponding edge that
lies in between them. When deleteAccount is applied at this
match, we obtain the graph H in Fig. 6.

Rule deleteAccount is not applicable at the morphism that
maps the Client node to Client “Bob” and the Account node to
the Account with id 1. The deletion of the Account would
produce a dangling edge of type has originating in Client
“Alice”.

Graph transformations can, in particular, be used for repair-
ing models. In this case, we are interested in knowing whether
the consistency increases continuously in a repair process.
In the following, we introduce two special forms of graph
transformation that are related to the consistency of a given
constraint.

Definition 5.3 (Consistency-increasing and consistency-main-
taining transformation). Given a constraint c, a transformation
t : G =⇒ H is called consistency maintaining w.r.t. c if

nv(c,H) ≤ nv(c,G).

The transformation is called consistency increasing w.r.t. c if

nv(c,H) < nv(c,G).

These notions of transformation allow new violations to be
introduced as long as enough violations are also deleted. In
certain cases, it is necessary to ensure that no new violations
are introduced at all. To reflect this, we introduce the even
stricter notions of direct consistency-increasing and direct
consistency-maintaining transformations.

Definition 5.4 (direct consistency-increasing and -maintaining
transformation). Given a transformation t : G =⇒ H and a
constraint c, the transformation t is called direct consistency-
increasing (direct consistency-maintaining) w.r.t. c if it is
consistency-increasing (consistency-maintaining) w.r.t. c and
does not introduce any new violations of c. A rule ρ is direct
consistency-increasing (direct consistency-maintaining) w.r.t. c
if all the transformations applying ρ are.

By definition, a consistency-increasing transformation is
also consistency-maintaining; a direct consistency-increasing
(direct consistency-maintaining) transformation is also
consistency-increasing (consistency maintaining). For a
more detailed comparison of these notions to the kinds of
transformations introduced in [14] and [18] we refer to [17].

Example 5.3. The transformation t : G =⇒ H , as described in
the Example 5.2, is a direct consistency-maintaining transfor-
mation with respect to all constraints. The constraints c1, c4
and c5 are still satisfied in H , nv(c2, H) = nv(c3, H) = 1
and no new violations of c2 and c3 have been introduced. A
transformation t′ : G =⇒ H ′ via the rule unassignAccount,
which matches to the Clients “Bob” and “Alice” and the
Account with id 1 and removes the has-edge between “Alice”
and the Account, is direct consistency-increasing with respect
to c2, since H ′ |= c2.

VI. REPAIR PREPARATION

Before we present our graph repair algorithm, we need some
prerequisites. These are mainly a characterization of constraint
sets that are satisfiable and that can be repaired in a certain
order one after the other, so that no repair cycles occur. Such a
cycle can occur when the repair of some violations adds new
violations to the graph from constraints whose violations have
already been repaired.

Definition 6.1 (conflict within a constraint). Let a constraint
c = ∀(P,∃(Q,true)) be given.

1) The graph P causes a conflict for Q if a deletion
of an occurrence of P can also delete an occurrence
of Q without deleting the embedded occurrence of P ,
i.e., there is an intermediate graph C ∈ IG(∅, P) such
that the rule ρ = P ←−↩ C ↪−→ C is not a direct
consistency-maintaining rule w.r.t. ∃(Q,true).

2) The graph Q causes a conflict for P if the creation of
an occurrence of Q at an already existing occurrence of
P can introduce a new occurrence of P , i.e., the rule
P ←−↩ P ↪−→ Q is not a direct consistency-maintaining
rule w.r.t. ∀(P,false).

Definition 6.2 (circular conflict-free constraint). A constraint
c is called circular conflict-free if

• c = ∀(P,false) or
• c = ∀(P,∃(Q,true)) and P does not cause a conflict

for Q or Q does not cause a conflict for P .

Example 6.1. Consider constraint c3 = ∀(C1,∃(C2,true))
given in Fig. 3. An insertion of an has-edge between the Client
and Portfolio nodes of an occurrence of C1 will never introduce
a new occurrence of C1. Hence, c3 is circular conflict-free. In
fact, all constraints shown in Fig. 3 are circular conflict-free.

The core concept of our repair algorithm is that of a repair
sequence, i.e., a transformation sequence that repairs a con-
straint violation in a minimal context. In the repair algorithm,
rules derived from repair sequences, so-called derived repair
rules are applied at violating morphisms. For constraints of

the form ∀(C,false) or ∀(C, ∃(P,true)) we are looking
for a repair sequence that does not delete any nodes in the
occurrence of C. (Please note that edges in the occurrence of
C may be deleted.)

We leave open which repair rules to use and where they
might come from. In [8]–[11], Habel and Sandmann derive
the repair rules from the constraint graphs. By identifying
a missing or too large graph part, a rule can be determined
that performs exactly the desired action. Another possibility
is to consider basic editing operations as they occur in model
editors and to specify these operations as rules.

Definition 6.3 (repair sequence). Let a set of rules R and
a condition c over a graph C be given. A transformation
sequence

C =⇒ρ1
G1 =⇒ρ2

. . . =⇒ρn
Gn

via rules ρ1, . . . , ρn ∈ R is a repair sequence for c via R if
Gn |= c and no node of C is deleted. If the repair sequence
does not delete any elements of C, we call it an inserting
sequence and otherwise a deleting sequence.

There are two kinds of repair sequences for a constraint of
the form ∀(C, ∃(P,true)). One sequence that inserts a new
occurrence of P at C, and one that destroys an occurrence of
C. Constraints of the form ∀(C,false) can only be repaired
by destroying occurrences of C. We can do so by deleting
edges of the occurrences of C. The requirement that no node
of C is deleted ensures that the sequence is applicable to any
violating morphism of the constraint, regardless of the context
in the graph to be repaired [17].

Example 6.2. Consider constraint c1 (Fig. 3). One application
of the rule insertAccount at the first graph of c1 forms a repair
sequence for c1, since the resulting graph satisfies c1 and no
element of the first graph of c1 is deleted. An application of
the rule createAccountAndClient in Fig. 7 forms another repair
sequence for c1. However, this application would introduce a
side effect, i.e., a new violation of c2.

Fig. 7: Rule createAccountAndClient.

To determine a suitable rule set for repairing a constraint
violation, we check whether there is at least one repair
sequence for that constraint via a given set of rules. Then,
this rule set is a repair rule set. We have briefly discussed
above the kinds of rules that are promising for this task.

Definition 6.4 (repair rule set). Given a set of rules R and a
constraint c, then R is called a repair rule set for c if there is
a repair sequence for c via R. R is a repair rule set for a set
of constraints C if R is a repair rule set for each c ∈ C.

Given a repair rule set R for a circular conflict-free con-
straint c, any graph can be repaired via R in our approach.
However, there may also be cases where R is not a repair rule
set, but G can still be repaired via R.

Example 6.3. The rule set R = {insertAccount,
unassignClient, assignPortfolio} forms a repair rule set for
c1, c2 and c3. For constraints c4 and c5, there is no repair rule
set using the rules in Fig. 5, since no rule is able to delete an
Account that is associated with a Portfolio or an edge between
an Account and a Portfolio.

For the definition of conflicts between different constraints,
we look for repair sequences that are not consistency-
maintaining. To decide this, we summarize a repair sequence
in a derived rule [13], here derived repair rule. To define a
derived repair rule, we use the track morphism of a transfor-
mation, which allows us to track elements of the original graph
into the resulting graph of the transformation [21].

Definition 6.5 (track morphism [21]). Given a transformation
t : G =⇒ H with the transformation morphisms g : D ↪→G
and h : D ↪→H , the track morphism of t, denoted by trt :
G 99K H , is a partial morphism defined as

trt =

{
h(g−1(e)) if e ∈ g(D)

undefined otherwise.

The construction of derived repair rules is a special case
of the construction of derived spans, which allows to derive
a rule, given a sequence of transformations, which can be
used to transform the first graph directly into the last graph of
the sequence, i.e., there is a transformation t : G1 =⇒ρ Gn

where G1 is the first, Gn the last and ρ the derived rule of
the sequence [13].

Definition 6.6 (derived repair rule [13]). Let a repair sequence

C
t1=⇒ρ1

G1
t2=⇒ρ2

. . .
tn=⇒ρn

Gn

for a constraint c be given. The derived repair rule ρ of this
sequence is constructed as follows:

1) If the sequence is an inserting sequence,

ρ := C
id←−↩ C

trtn ◦...◦trt1
↪−→ Gn.

2) If the sequence if a deleting sequence,

ρ := C
i1←−↩ C ′ i2

↪−→ Gn

where C ′ = trtn ◦ . . . ◦ trt1(C) and i1 and i2 are the
inclusions of C ′ in C and Gn respectively.

As there is usually not only one constraint that can cause
violations but a set of several constraints, we also have to
consider the interrelationships between repairs of the different
constraints, which can also lead to conflict situations.

Definition 6.7 (conflict between constraints). Given a set of
constraints C and a repair rule set R for C, constraint c causes
a conflict for constraint c′ if there is a repair sequence for c

c1 c2

c3

(a) Conflict graph of C w.r.t. R.

c1 c2

c3

(b) Conflict graph of C w.r.t. R′.

Fig. 8: Conflict Graphs.

via R such that the derived repair rule of this sequence is not
a direct consistency-maintaining rule w.r.t. c′.

In order to easily see whether there are circular conflicts
between constraints, we use a conflict graph that represents
each constraint as a node and each conflict between two
constraints as an edge. A circular conflict is then represented
as a cycle in the conflict graph.

Definition 6.8 (conflict graph, circular conflict freeness).
Given a rule set R and a constraint set C, the conflict graph
of C w.r.t. R is constructed in the following way: There is a
node for each constraint c ∈ C. If c causes a conflict for c′

w.r.t. R, there is an edge e with s(e) = c and t(e) = c′.
A constraint c causes a transitive conflict for c′ w.r.t. R if

the conflict graph contains a path from c to c′. C is circular
conflict-free w.r.t.R if every constraint of C is circular conflict-
free and no constraint of C causes a transitive conflict for itself
w.r.t. R.

In other words, a constraint set C is circular conflict-free
w.r.t. R if its conflict graph w.r.t. R is acyclic.

Example 6.4. Consider the constraint set C = {c1, c2, c3}
and the set of rules R = {unassignAccount,
insertAccount, assignPortfolio}. There is a conflict from
c2 to c1. An application of unassignAccount also leads
to a destruction of an occurrence of the second graph
of c1. There are no further conflicts, so C is circular
conflict-free w.r.t. R. If we consider the rule set R′ =
{unassignAccount, createAccountAndClient, assignPortfolio},
there is an additional conflict between c1 and c2. An
application of createAccountAndClient is a repair sequence
for c1 but also introduces a new occurrence of the first graph
of c2. Hence, C has an circular conflict w.r.t. R′. Both conflict
graphs are shown in Figure 8.

Given a set of constraints C and a set of repair sequences
RS such that this set contains at least one repair sequence for
each constraint in C, it suffices to compute the conflict graph
representing only the conflicts caused by the repair sequences
of RS , provided that only these sequences are used for repair.

Given a set of constraints, there may be no graph that
satisfies all the constraints, i.e., the constraints may contradict
each other. If a constraint set is circular conflict-free, it is

also satisfiable. This is a consequence of the correctness and
termination of our repair algorithm (Theorem 7.1).

Definition 6.9 (satisfiable constraint). A simple constraint c
is satisfiable if there is a graph G that satisfies c.

Corollary 6.1. A set of constraints C is satisfiable if there is a
repair rule set R for C so that C is circular conflict-free w.r.t.
R.

During repair, we use the topological order of the conflict
graph to determine the repair order of the constraints. In
particular, the use of this order is an essential part of proving
the correctness and termination of the algorithm.

Definition 6.10 (topological order [19]). Given a graph G, a
sequence (v1, . . . , vn) of nodes in G is called a topological
order of G if no edge e ∈ EG with s(e) = vi, t(e) = vj and
i ≥ j exists.

VII. REPAIR ALGORITHM

Now we are ready to present our algorithm for graph repair.
This algorithm can repair all violations one by one. During
the repair, no side effects occur where repairs have to be taken
back or even a consistent graph cannot be achieved. Hence, the
repair algorithm terminates and all violations can be repaired.
The main assumption for this kind of repair is that the set of
constraints is circular conflict-free, i.e., the constraints do not
influence each other too much. Hence, the constraint violations
can be repaired in a topological order so that new violations
of already repaired constraints are not introduced.

Our approach is divided into two parts. Algorithm 1 repairs
one circular conflict-free constraint. Algorithm 2 uses Algo-
rithm 1 to repair a circular conflict-free set of constraints.

Algorithm 1: Repair algorithm for one circular
conflict-free constraint
Data: A graph G, a circular conflict-free constraint c

over a graph C and a repairing rule set R for c.
Result: A graph H with H |= c.

1 Determine a set of repair sequences for c;
2 while G ̸|= c do
3 Determine the set P of all violating morphisms;
4 Choose p : C ↪→G ∈ P ;
5 Choose a repair sequence for c;
6 Apply the repair sequence at match p, let H be the

resulting graph;
7 G← H;
8 end
9 return G;

It would be sufficient to compute the set P once. Since one
application of a repair sequence can repair several violating
morphisms at once, we compute P in each iteration to avoid
applying a repair sequence to a morphism that has been
repaired in a previous iteration.

c1:Client

name = Bob

a1:Account

id = 1

c2:Client

name = Alice

a2:Account

id = 2

c3:Client

name = Peter

p:Portfolio

a3:Account

id = 3

has

has has

associates

has

(a) Repair by deleting the edge between Client “Alice”
and Account a1.

c1:Client

name = Bob

a1:Account

id = 1

c2:Client

name = Alice

a2:Account

id = 2

c3:Client

name = Peter

p:Portfolio

a3:Account

id = 3

has has

has

associates

has

(b) Repair by deleting the edge between Client “Bob” and
Account a1.

Fig. 9: Possible results of Algorithm 1.

Example 7.1. Let us assume that the rule setR contains all the
rules shown in Fig. 5. Consider again the constraint c2 (Fig. 3)
and the graph G (Fig. 2). As already described in Example 4.2,
nv(c2, G) = 1. Algorithm 1 can repair c2 by applying the rule
unassginAccount in two different ways. Either by removing
the edge running from Client “Bob” to the Account with id 1
or by removing the edge running from Client “Alice” to this
Account. Both possible outcomes of this repair are shown in
Fig. 9. Note that the first repair has the unpleasant side effect
that constraint c1 is no longer satisfied, since Client “Alice” is
not associated with any Account.

Algorithm 2: Repair algorithm for a finite, circular
conflict-free set of constraints

Data: A graph G, a finite, circular conflict-free set of
constraints C and a repairing set R for C.

Result: A graph H with H |= C.
1 Choose a topological order (c1, . . . , cn) of the conflict

graph of C w.r.t. R;
2 for i← 1 to n do
3 Repair ci in G with Algorithm 1, let H be the

resulting graph;
4 G← H ;
5 end
6 return G;

Example 7.2. As discussed in Example 4.2, the graph G
in Fig. 2 does not satisfy the set C = {c1, c2, c3} and

c1:Client

name = Bob

a1:Account

id = 1

c2:Client

name = Alice

a2:Account

id = 2

a4:Account

id = 4

c3:Client

name = Peter

p:Portfolio

a3:Account

id = 3

has

has has

has

associates

has

has

Fig. 10: Repair result using Algorithm 2 with C = {c1, c2, c3}
and R = {unassignAccount, insertAccount, assignPortfolio}.

R = {unassignAccount, insertAccount, assignPortfolio} is a
repairing set for C (Example 6.4). As the topological order of
the conflict graph (Fig. 8a), we can choose either (c2, c1, c3),
(c3, c2, c1) or (c2, c3, c1). If (c2, c1, c3) is chosen, Algorithm 2
repairs c2 in the first step and creates one of the graphs shown
in Fig. 9. The graph in Fig. 9a does not satisfy c1. Therefore,
first c1 and then c3 are repaired. A possible result of the repair
process is shown in Fig. 10.

Theorem 7.1. Given a graph G, a finite, circular conflict-free
set of constraints C and a repair set R for C. Then, Algorithm
2 is correct, i.e., it terminates and returns a graph that satisfies
C.

Proof. Given an topological order (c1, . . . , cn) of the conflict
graph of a constraint set C w.r.t. to a repair rule set R for C.

According to the definition of direct consistency-
maintaining rules, a repair sequence for ci cannot introduce
new violating morphisms for a constraint cj with j < i. Since
Algorithm 1 only applies derived repair rules, a repair of ci
in a graph that already satisfies cj will result in a graph that
still satisfies cj . Thus, if the number of constraints is finite
and the constraints are repaired according to the topological
order, the resulting graph satisfies C.

It remains to show that Algorithm 1 terminates and thus,
the resulting graph satisfies constraint c whose violations are
to be repaired. By Definition 6.3, an application of a repair
sequence for c does not introduce any new violating morphism.
Thus, the finite number of violating morphisms decreases with
every iteration of the while loop. Therefore, the set P is
empty after a finite number of iterations. By the definition of
violating morphisms (Definition 3.3), one can easily see that
the absence of violating morphisms implies the satisfaction of
the constraint. Therefore, Algorithm 1 terminates after a finite
number of iterations.

Corollary 7.1. Algorithm 1 terminates and returns a consistent
graph.

Discussion: To better understand how our graph re-
pair algorithm can be used for model repair, we discuss
its properties along the feature-based classification of model
repair approaches in [3]. Our graph repair algorithm is semi-
automatic, in that the user can choose a repair sequence for
each violation and these repair sequences are then used to

repair the graph G. The algorithm is also incremental, since
it repairs one violation at a time. If there is no constraint
violation, nothing happens which means that the algorithm is
stable. For each graph repair, the user can configure the set of
constraints whose violations are repaired and also the set of
repair rules to be applied. However, the absence of circular
conflicts is checked for the selected sets before the actual
repair is made. The repairs are not necessarily least-changing,
as this property depends directly on the repair rules chosen.

VIII. RELATED WORK

In the following, we compare our repair approach with other
rule-based approaches to graph and model repair.

A. Rule-based graph repair

There are several approaches to rule-based graph repair [6],
[8]–[11], [22], [23]. The approach closest to ours is that
of Habel and Sandmann [8]–[11]: Similar to our approach,
Habel and Sandmann define a formal approach based on graph
transformation and nested graph constraints in alternating
normal form (ANF). More precisely, they define rule-based
graph repair for constraints in ANF that have a nesting level
less than or equal 2 or end with ∃(C,true). They have
presented a terminating repair algorithm for this form of
constraints that is able to produce consistent graphs. Their
algorithm derives rules from the constraints; alternatively, a
given rule set (specifying, e.g., basic editing operations for
graphs) can be checked for equivalence to the derived rules.
Considering repair in terms of a single constraint, our new
concept of circular conflict-free constraints (Def. 6.2) is an
important step beyond their work. Sandmann and Habel prove
termination only for repair programs called solid in [11],
which are severely restricted in that they are forced to reuse
existing graph elements wherever possible. For example, in
our running example, once an Account exists, their solid
repair program repairs our constraint c1 by connecting Clients
without Accounts to pre-existing Accounts (likely leading to
violations of c2). In terms of repairing a set of constraints,
our approach can be seen as complementary to theirs. They
are able to repair preserving sequences, i.e. sequences of con-
straints where the repair program does not introduce violations
of previously repaired constraints. They show that the property
of being preserving is semi-decidable [11, Lemma 22]. Our
notion of circular conflict-freeness of a set of constraints
(Def. 6.8) can be understood as a new, statically checkable
sufficient condition for the sortability of a set of conditions into
a preserving sequence. Finally, our fine-grained consistency
check which is able to detect small improvements (at the level
of individual elements) even if full consistency has not yet
restored, is a new formal concept.

In [6], the authors formalize rule-based model repair on
the basis of graphs and precisely characterize the type of
constraints for which the repair algorithm terminates and
results in consistent models. However, the type of constraints
is quite limited and only includes the constraints for models
in the Eclipse Modeling Framework (EMF) and multiplicity

constraints. (Note that multiplicity constraints can also be
specified with exactly the two forms of simple constraints
presented in this paper.)

In [23], the authors consider constraints of the form
∀(C1,∃(C2,true)). They extend given transformation rules
to so-called interaction schemes [24] such that the creation of
new occurrences of C1 is accompanied by the then necessary
creation of an occurrence of C2. Under certain conditions, this
formalism can also be used to repair existing violations of such
constraints.

In addition, there is a large amount of work on triple graph
grammars (TGGs) [25] where two graphs are interconnected
by an intermediate one. In TGGs, updates of one graph are
propagated to the other graph via the intermediate graph. In
[22], this kind of graph repair is optimized so that the resulting
graphs satisfy constraints of the form ∀(C,false).

B. Rule-based model repair

There are also several approaches to rule-based model repair
such as [4], [5], [26]–[29]. As a good example for the state-of-
the-art of rule-based model repair without formal foundation
we discuss a recent work in more detail. In [4], the authors give
an up-to-date presentation of a major approach to rule-based
model repair. In this approach, abstract repairs are generated
for the various causes of inconsistencies. To repair an incon-
sistency, there may be multiple repair alternatives in form of
repair sequences, which are organized in repair trees [27]. This
approach has been implemented for UML models and OCL
constraints and has been extensively evaluated in practice for
larger models and constraint sets. It is shown that this approach
is powerful and suitable for practice. Since it is not a formal
approach, its correctness has not been proved. Specifically, it
does not provide static conditions for conflict-free repair, as
our approach does.

IX. CONCLUSION

Rule-based graph and model repair are very popular because
it allows constraint violations to be repaired in a flexible,
interactive way. Rule-based repair supports the separate repair
of each violation and the flexible selection of a suitable repair
alternative. The main disadvantage of rule-based approaches
is that side effects can occur in the sense that repairing a
violation can inadvertently introduce new violations. In this
paper, we have presented a rule-based approach to graph repair
so that no backtracking due to side effects is required to repair
all violations. This is possible if the set of constraint does
not contain circular conflicts within the same constraint or
between different constraints. This additional assumption can
be checked statically, i.e., directly on the constraint set. It does
not require the actual graph with constraint violations.

Nevertheless, circular conflict-free nature of constraints is,
of course, a limitation of our repair approach. It is the task of
future work to develop repair strategies for constraint sets with
circular conflicts. For example, one strategy could be to first
identify the largest sets of circular conflict-free constraints, so
that the user can select one of these sets and begin a fast repair

of all corresponding violations, and then attempt to repair the
remaining violations by hand.

Furthermore, we plan to implement our repair algorithm
based on Henshin and its conflict analysis, and to apply it to
larger case examples. In this way, we would like to evaluate
how suitable our graph repair approach is for practical use.

On the theoretical side, we plan to extend our graph repair
approach to different variants of graph-like structures, which
is possible if the constructions are defined on the basis of
category theory, as well as to constraints with deeper nesting
levels, as already considered in [17] for typed graphs.

ACKNOWLEDGMENT

We would like to thank Andy Schürr for his valuable
comments on an earlier version of this paper.

REFERENCES

[1] P. Stevens, “Bidirectionally tolerating inconsistency: Partial
transformations,” in Fund. Approaches to Software Engineering -
17th Int. Conf., FASE 2014. Springer, 2014, pp. 32–46. [Online].
Available: https://doi.org/10.1007/978-3-642-54804-8 3

[2] C. Mayr-Dorn, R. Kretschmer, A. Egyed, R. Heradio, and D. Fernández-
Amorós, “Inconsistency-tolerating guidance for software engineering
processes,” in 43rd IEEE/ACM Int. Conf. on Software Eng.: New
Ideas and Emerging Results, ICSE (NIER) 2021. IEEE, 2021, pp.
6–10. [Online]. Available: https://doi.org/10.1109/ICSE-NIER52604.
2021.00010

[3] N. Macedo, J. Tiago, and A. Cunha, “A feature-based classification of
model repair approaches,” IEEE Trans. Software Eng., pp. 615–640,
2017. [Online]. Available: https://doi.org/10.1109/TSE.2016.2620145

[4] L. Marchezan, R. Kretschmer, W. K. G. Assunção, A. Reder, and
A. Egyed, “Generating repairs for inconsistent models,” Softw. Syst.
Model., pp. 297–329, 2023. [Online]. Available: https://doi.org/10.1007/
s10270-022-00996-0

[5] N. Nassar, H. Radke, and T. Arendt, “Rule-based repair of EMF models:
An automated interactive approach,” in Theory and Practice of Model
Trans. - 10th Int. Conf., ICMT@STAF 2017. Springer, 2017, pp. 171–
181. [Online]. Available: https://doi.org/10.1007/978-3-319-61473-1 12

[6] N. Nassar, J. Kosiol, and H. Radke, “Rule-based Repair of
EMF Models: Formalization and Correctness Proof,” in Graph
Computation Models (GCM 2017), Electronic Pre-Proceedings, 2017.
[Online]. Available: pages.di.unipi.it/corradini/Workshops/GCM2017/
papers/Nassar-Kosiol-Radke-GCM2017.pdf

[7] S. Schneider, L. Lambers, and F. Orejas, “A logic-based incremental
approach to graph repair,” in Fundamental Approaches to Software
Engineering – 22nd Int. Conf., FASE 2019. Springer, 2019, pp. 151–
167. [Online]. Available: https://doi.org/10.1007/978-3-030-16722-6 9

[8] A. Habel and C. Sandmann, “Graph repair by graph programs,”
in Software Technologies: Applications and Foundations – STAF
2018. Springer, 2018, pp. 431–446. [Online]. Available: https:
//doi.org/10.1007/978-3-030-04771-9 31

[9] C. Sandmann and A. Habel, “Rule-based graph repair,” in Proceedings
Tenth Int. Workshop on Graph Computation Models, GCM@STAF
2019, 2019, pp. 87–104. [Online]. Available: https://doi.org/10.4204/
EPTCS.309.5

[10] C. Sandmann, “Graph repair and its application to meta-modeling,”
in Proceedings of the Eleventh Int. Workshop on Graph Computation
Models, GCM@STAF 2020, B. Hoffmann and M. Minas, Eds., 2020,
pp. 13–34. [Online]. Available: https://doi.org/10.4204/EPTCS.330.2

[11] ——, “A theory on graph generation and graph repair with application
to meta-modeling,” Ph.D. dissertation, University of Oldenburg,
2021. [Online]. Available: http://uol.de/f/2/dept/informatik/download/
Promotionen/Sandmann Dissertation.pdf

[12] H. Ehrig, “Introduction to the algebraic theory of graph grammars
(A survey),” in Graph-Grammars and Their Application to Computer
Science and Biology, Int. Workshop, 1978. Springer, 1978, pp. 1–69.
[Online]. Available: https://doi.org/10.1007/BFb0025714

[13] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals
of Algebraic Graph Transformation, ser. Monographs in Theoretical
Computer Science. An EATCS Series. Springer, 2006. [Online].
Available: https://doi.org/10.1007/3-540-31188-2

[14] A. Habel and K. Pennemann, “Correctness of high-level transformation
systems relative to nested conditions,” Math. Struct. Comput.
Sci., pp. 245–296, 2009. [Online]. Available: https://doi.org/10.1017/
S0960129508007202

[15] A. Rensink, “Representing first-order logic using graphs,” in
Graph Transformations, Second Int. Conf., ICGT 2004. Springer,
2004, pp. 319–335. [Online]. Available: https://doi.org/10.1007/
978-3-540-30203-2 23

[16] H. Radke, T. Arendt, J. S. Becker, A. Habel, and G. Taentzer,
“Translating essential OCL invariants to nested graph constraints for
generating instances of meta-models,” Sci. Comput. Program., pp.
38–62, 2018. [Online]. Available: https://doi.org/10.1016/j.scico.2017.
08.006

[17] A. Lauer, “Rule-based graph repair using minimally restricted
consistency-improving transformations,” Master’s thesis, Philipps-
Universität Marburg, Department of Mathematics and Computer
Science, 2023. [Online]. Available: https://doi.org/10.48550/arXiv.2307.
09150

[18] J. Kosiol, D. Strüber, G. Taentzer, and S. Zschaler, “Sustaining and
improving graduated graph consistency: A static analysis of graph
transformations,” Sci. Comput. Program., 2022. [Online]. Available:
https://doi.org/10.1016/j.scico.2021.102729

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd Edition. MIT Press, 2009. [Online]. Available:
http://mitpress.mit.edu/books/introduction-algorithms

[20] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer,
“Henshin: Advanced concepts and tools for in-place EMF model
transformations,” in Model Driven Engineering Languages and Systems
- 13th Int. Conf., MODELS 2010. Springer, 2010, pp. 121–135.
[Online]. Available: https://doi.org/10.1007/978-3-642-16145-2 9

[21] D. Plump, “Confluence of graph transformation revisited,” in Processes,
Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to
Jan Willem Klop, on the Occasion of His 60th Birthday. Springer, 2005,
pp. 280–308. [Online]. Available: https://doi.org/10.1007/11601548 16

[22] A. Anjorin, A. Schürr, and G. Taentzer, “Construction of integrity
preserving triple graph grammars,” in Graph Trans. - 6th Int. Conf.,
ICGT 2012. Springer, 2012, pp. 356–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-33654-6 24

[23] J. Kosiol, L. Fritsche, N. Nassar, A. Schürr, and G. Taentzer,
“Constructing constraint-preserving interaction schemes in adhesive
categories,” in Recent Trends in Algebraic Development Techniques –
24th IFIP WG 1.3 Int. Workshop, WADT 2018. Springer, 2019, pp. 139–
153. [Online]. Available: https://doi.org/10.1007/978-3-030-23220-7 8

[24] U. Golas, A. Habel, and H. Ehrig, “Multi-amalgamation of rules
with application conditions in M-adhesive categories,” Math. Struct.
Comput. Sci., 2014. [Online]. Available: https://doi.org/10.1017/
S0960129512000345

[25] A. Schürr, “Specification of graph translators with triple graph
grammars,” in Graph-Theoretic Concepts in Computer Science, 20th
Int. Workshop, WG ’94. Springer, 1994, pp. 151–163. [Online].
Available: https://doi.org/10.1007/3-540-59071-4 45

[26] X. Blanc, A. Mougenot, I. Mounier, and T. Mens, “Incremental
detection of model inconsistencies based on model operations,”
in Advanced Information Systems Engineering, 21st Int. Conf.,
CAiSE 2009. Springer, 2009, pp. 32–46. [Online]. Available:
https://doi.org/10.1007/978-3-642-02144-2 8

[27] A. Reder and A. Egyed, “Computing repair trees for resolving
inconsistencies in design models,” in IEEE/ACM Int. Conf. on
Automated Software Eng., ASE’12. ACM, 2012, pp. 220–229.
[Online]. Available: https://doi.org/10.1145/2351676.2351707

[28] M. Ohrndorf, C. Pietsch, U. Kelter, L. Grunske, and T. Kehrer,
“History-based model repair recommendations,” ACM Trans. Softw.
Eng. Methodol., pp. 15:1–15:46, 2021. [Online]. Available: https:
//doi.org/10.1145/3419017

[29] A. Barriga, R. Heldal, A. Rutle, and L. Iovino, “PARMOREL:
a framework for customizable model repair,” Softw. Syst. Model.,
pp. 1739–1762, 2022. [Online]. Available: https://doi.org/10.1007/
s10270-022-01005-0

https://doi.org/10.1007/978-3-642-54804-8_3
https://doi.org/10.1109/ICSE-NIER52604.2021.00010
https://doi.org/10.1109/ICSE-NIER52604.2021.00010
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1007/s10270-022-00996-0
https://doi.org/10.1007/s10270-022-00996-0
https://doi.org/10.1007/978-3-319-61473-1_12
pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf
pages.di.unipi.it/corradini/Workshops/GCM2017/papers/Nassar-Kosiol-Radke-GCM2017.pdf
https://doi.org/10.1007/978-3-030-16722-6_9
https://doi.org/10.1007/978-3-030-04771-9_31
https://doi.org/10.1007/978-3-030-04771-9_31
https://doi.org/10.4204/EPTCS.309.5
https://doi.org/10.4204/EPTCS.309.5
https://doi.org/10.4204/EPTCS.330.2
http://uol.de/f/2/dept/informatik/download/Promotionen/Sandmann_Dissertation.pdf
http://uol.de/f/2/dept/informatik/download/Promotionen/Sandmann_Dissertation.pdf
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1017/S0960129508007202
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1016/j.scico.2017.08.006
https://doi.org/10.1016/j.scico.2017.08.006
https://doi.org/10.48550/arXiv.2307.09150
https://doi.org/10.48550/arXiv.2307.09150
https://doi.org/10.1016/j.scico.2021.102729
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/11601548_16
https://doi.org/10.1007/978-3-642-33654-6_24
https://doi.org/10.1007/978-3-030-23220-7_8
https://doi.org/10.1017/S0960129512000345
https://doi.org/10.1017/S0960129512000345
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-642-02144-2_8
https://doi.org/10.1145/2351676.2351707
https://doi.org/10.1145/3419017
https://doi.org/10.1145/3419017
https://doi.org/10.1007/s10270-022-01005-0
https://doi.org/10.1007/s10270-022-01005-0

	Introduction
	Graphs
	Constraints
	Consistency checks
	Updates
	Repair Preparation
	Repair algorithm
	Related Work
	Rule-based graph repair
	Rule-based model repair

	Conclusion
	References

