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Density Functional Theory

Electronic many-particle Hamiltonian (o =1, ]; h = 1)
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The electrons experience their mutual Coulomb interaction and the
interaction with the ions at positions R,
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Density Functional Theory

Ritz variational principle

Task: minimize the energy functional

E[{[w)}] = W (4)

Problem

This task poses a difficult many-body problem!

Density Functional Theory

Express the energy functional in terms of a density functional —
and make some educated approximations later in the game!
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Density Functional Theory

Consider all normalized states |\U(")> for given ‘physical’ densities

ne(r) = (WO (), (1) W) . (5)

The purely electronic operator I:Ie = I:Ikin + \A/XC (kinetic energy +
exchange-correlation energy) is

Fin = Z/d"“ﬁ < r) U, (r) (6)
Ve = Z / dr / A V(e — ) [FL ()00, (1), ()T, (1)

— 205000, (1), () + no(P)nor ()]

For fixed densities, the interaction with the ions and the Hartree

interaction are constant.
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Density Functional Theory

Levy's constraint search

Task: minimize the energy functional
F 1m0}, {1WO) ] = (WO Ao + VW) . (@)

for fixed densities n,(r). Result: optimized \\Ugn)>.

Density functionals for the kinetic/exchange-correlation energy

We define two energy functionals that only depend on the densities,

Kinetic: K [{n(r)}] = (W | Fhan [ W§) . (8)
Exchange-correlation:  Ex. [{n,(r)}] = (\U(()")|\A/XC|\II(()")> . (9)
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Density Functional Theory

Density Functional
Task: minimize the Density Functional

D[{ny(r)}] = K[{no(r}+ Exc[{ns(r)}]
+U[{no(N}] + Vi [{no(r)}]  (10)

with the ionic/Hartree energies

lonic: U [{ns(r)}] = Z/drU(r)ng(r), (11)

Hartree:  Viar [{no(r)}] = / dr / Ar'V(r — ') ng(r)ng:(r') .

The minimization provides the ground-state densities n?(r) and the
ground-state energy Eg = D [{n2(r)}].
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Density Functional Theory

Problem

The minimization of the energy functional in eq. (7) @ poses a
difficult many-particle problem. Thus, the exact density functional
D [{n,(r)}] is unknown.

| A\

Hohenberg-Kohn approach

Idea: derive the same ground-state physics from an effective
single-particle problem.

A\

How can this be achieved?
In the following we follow a simple and straightforward strategy,
not the most general one.

8/38



Density Functional Theory Electronic problem
Levy’s constrained search
Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

Consider all normalized single-particle product states |®(") for
given ‘physical’ densities

nP(r) = (SNE (), (1)|e) . (12)

As our single-particle Hamiltonian we consider the kinetic-energy
operator Fiin. For fixed single-particle densities n;’(r), we define
the single-particle functional

Fop [{n2 ()} {100 }] = (@] A0 . (13)
Levy's constrained search provides the optimized ]d>gn)> and

Kep [{nP(1)}] = (057 | Fh |95 . (14)
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Density Functional Theory

The single-particle density functional is defined as

Do [{inz7 (0} = Ksp [{n5?(r)3] + U[{nz? (1) 3] + Viar [{n5”(r)}]
+Espxe [{n5°(n)}] (15)

with the yet unspecified single-particle exchange-correlation energy
Espxe [{n5°(r)}].

Assumption: non-interacting V/-representability

For any given (physical) densities n,(r) we can find normalized
single-particle product states |®(") such that

nP(r) = ny(r) . (16)
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Density Functional Theory

Hohenberg-Kohn theorem
We demand
Dsp [{no(r)}] = D [{ns(r)}]- (17)

= The single-particle substitute system has the same ground-state
density n(r) and energy Ey as the many-particle Hamiltonian.

Single-particle exchange-correlation energy
To fulfill eq. (17), we define

Esp xe [{no(r)}] = K [{n5(r)}]—Ksp {16 ()} +Exc [{no(r)}] - (18)

Problem
We know neither of the quantities on the r.h.s. of eq. (18)!
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Density Functional Theory

Upshot of the Hohenberg-Kohn theorem:

@ A single-particle substitute system exists that leads to the
exact ground-state properties.

@ lIts energy functional takes the form

E[{n(n},{I®)}] = (®Hnl®) + U[{ns(n)}] (19)
+Vitar [{n5(r)}] + Espxe [{no(1)}] -

Remaining task:
minimize E [{n,(r)},{|®)}] in the subset of single-particle product
states |®) = HII,JIA)L’U‘V&C>. The field operators are expanded as

V= vsnbl, . V()= v.(Nb,,.  (20)
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Kohn-Sham equations

Density Functional Theory

With the Hartree and exchange-correlation potentials

Viar(r) = Z/dr'2V(r— r')n (v,

aEsp,xc [{na’ (I’,)}]

Vsp,xc,a(r) = on (I’)

(21)

)

o (F)=n3(v)

the minimization conditions lead to the Kohn-Sham equations.

Kohn-Sham equations

h}fs(r)wn(r) = 6n(r)wn(r)a
PSS = ot VES(), (22

VES(r) = U(r) + Vi (r) + Vep xc,o(F) -
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Density Functional Theory

Resume of DFT

@ There exists a single-particle substitute system that has the
same ground-state energy and ground-state densities as the
interacting many-electron system.

o If we knew the single-particle exchange-correlation energy
Espxc [{ns(r)}], the Kohn-Sham equations would provide
single-particle eigenstates that define the single-particle
ground state |®g). The exact ground-state properties can be
extracted from |®g).

Remaining task

Find physically reasonable approximations for Egp, xc [{no(r)}].
Example: the local (spin) density approximation (L(S)DA).
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Density Functional Theory for many-particle Hamiltonians

Limitations of DFT-L(S)DA & Co

The properties of transition metals and their compounds are not so
well described.
Reason: 3d electrons are strongly correlated.

Solution

Treat interaction of electrons in correlated bands separately!
The kinetic energy Hyi, plus the Hubbard interaction Vi, define
our new reference system,

I:Ikin — I:IH = /:Ikin F \A/loc - \A/dc . (23)

Here, Vdc accounts for the double counting of the Coulomb
interactions among correlated electrons.
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Density Functional Theory for many-particle Hamiltonians

Using the same formalism as before, we define the functional
Fiu [{no(n}, {[WO) }] = (WO ) . (24)
Its optimization provides \\Ilg’)o) and the functionals

K [{no(r)}] = (Wi} Fhanl WD)
Vioe/ae [{na(MY = (Wi VioesaclWiTh) | (25)
D [{no(n)}] = K [{ne(r)}] + U[{no(0)}] + Vitar [{n0(r)}]
4—\400[{n0(r)}]'_ th[{HO(r)}]
+Eit e [{n0(1)}] - (26)

We demand Dy [{ny(r)}] = D [{ns(r)}]. Then, My leads to the

exact ground-state energy Eq and densities n2(r).
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Density Functional Theory for many-particle Hamiltonians

The Hubbard interaction Vi, reintroduces the complexity of the
the full many-body problem! — What have we gained?

Indeed, when we apply the Ritz principle to the energy functional
E = (W[AulW) + U [{ne()}] + Vitar [{no(r)}] + Exi e [{no(N}]

(27)
we arrive at the many-particle Hubbard-Schrodinger equation
(f:/o + Vie — Vdc) |Wo) = Eo|Wo) (28)

with the single-particle Hamiltonian

I:IO = Z/dl’\]\fg(l’) (—% + U(r) + VHar(r) + VH,XC,U(r)) ﬂ\/g(l’).
’ (29)
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Density Functional Theory for many-particle Hamiltonians

Density Functional Theory for many-particle Hamiltonians

Advantage

Local interactions among correlated electrons are treated explicitly
so that they are subtracted from the exact exchange-correlation
energy,

Euxe [{no(N}] = K[{no(r)}] = Ku [{n5(r)}] + Exc [{no(r)}]
— (Voc [{ns (1)} = Vac [{ns(r)}]) . (30)

Consequence: an (L(S)DA) approximation should better suited for
En xc than for Egp, .

Later, we shall employ the approximation

Ett xe [{no(r)}] = ELpaxe [{no(1)}] - (31)
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Density Functional Theory for many-particle Hamiltonians

Variational approach

Idea:
approximate the many-particle functional (W|I:Ikin + Vige — \A/dC]\Il>.
Strategies:

o LDA+U: use single-particle states |®).

o Gutzwiller: use many-particle variational states |W).

v

Consider atomic states |[)g at lattice site R that are built from the
correlated orbitals. With the local many-particle operators
mr.r - = |F)RR(T’| we define the Gutzwiller states as

Wa) =Pal®) , Po=]]D Arr(R)irrr . (32)
R T,V

Ar,r(R) are, in general, complex variational parameters.
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Density Functional Theory for many-particle Hamiltonians

The energy functional requires the evaluation of expectation values
for the local interaction

loc/dc \UG|ﬁ7R;r,r”\UG>
Vloc/dc = ZZ Er r// y (33)

R T (Vg|Va)
loc/dc 9
EF,F’/ (R) = R<r|vloc/dc(R)|rl>R ’ (34)

and for the single particle density matrix, e.g., in the orbital
Wannier basis (W5(r) = Y g #R b.o(F)eR b,5),

welel &, . Ve
pG v [ < ’ Rbo R,b VU‘ > . (35)
(R",6),(R,b);0 (Wg|ve)
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Density Functional Theory for many-particle Hamiltonians

Gutzwiller energy functional

The Gutzwiller energy functional E = E [{n,(r)},{|Wg)}] reads

a
E = ) T(R,b), (R0 Yo PR b7) (R byo + Viee — Ve
R,b.R b0

+U[{no(r)}] + Vizar [{n6(1)}] + Erxe [{no(r)}] , (36)

N A
sy wore = [ o) (<50 ) omse. @7

The densities become

ne(N) = D SrboOrb.0(Do ) RE)e - (38)

R,b,R’,b/
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Density Functional Theory for many-particle Hamiltonians

The evaluation of expectation values with Gutzwiller-correlated
states poses a difficult many-particle problem

Solution

| \

Evaluate expectation values diagrammatically in such a way that
not a single diagram must be calculated in the limit of infinite
lattice coordination number, Z — oo (recall: Z = 12 for nickel).

N,

Result: all quantities depend only on the single-particle density
matrix Cy o (R) = (®|8} , 2 ,|®) and the Gutzwiller
variational parameters Ar r(R). For example,

VIE);CZZ Z >‘|'2,|'1(R) %ZCQ( )>\I‘3,I‘4(R)<ﬁ7R;r1,r4>¢~ (39)

R Tq,..
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Density Functional Theory for many-particle Hamiltonians

For R # R/, the correlated single-particle density matrix becomes

P o). Rbye = 2 Taa(R)(@ 0 (R)) pra)(Ra)o - (40)
a,a’
The orbital-dependent factors g7 (R) reduce the band width of
the correlated orbitals and their hybridizations with other orbitals.

@ In the limit Z — oo, the Gutzwiller many-body problem is
solved without further approximations.

@ 'Solve the Gutzwiller-Kohn-Sham equations’ ®
‘Minimize with respect to the Gutzwiller parameters Ar r/(R)’
is similar in complexity to the DFT. For simple systems such
as nickel, the latter minimization is computationally
inexpensive (20% of total CPU time).
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Translational invariant lattice systems

For translational invariant lattice systems, the quasi-particle
(‘Gutzwiller-Kohn-Sham') Hamiltonian becomes

Z hb bio Ck b.o kb o (41)

k,b,b’ ;o

with the matrix elements in the orbital Bloch basis

o bo
hl();,b’;a(k) = Tbb;o + qu,’o (qa/,g) ha ao (k) )

hg,a’;o(k) = /dr(l)i,a,a(r) <_;Anr.' + Vf(")) ¢k,a/,0(r) ) (42)
Vo' (r) = U() + Vitar(r) + vitxeo(r) -

b b':o: Lagrange parameters (variational band-shifts).
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Translational invariant lattice systems

In cubic symmetry, the local interaction for 3d electrons reads

Vil = dens 1 Gpf 4 08 4 0
\A/l((i)‘(a:ns = ZU cc ncanc’6'+ Z ZUUO-(C C ncgnczgz s
c(#)c! o0’
Ve = Z (e, C)< € c¢Cc’¢Cc'T+hC>
(A
+ Z J(C7 C/)ei,aezlﬁec,c_fec’,o . (43)
(Ao

Here, T =] (} =1) and U(w/(c, )= U(c,c) — d50J(c, ).
U= U(c,c) and J = J(c, ) are local Hubbard and Hund's-rule
exchange interactions. DMFT calculations often employ V/dens
only (reduction of the numerical effort).
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Translational invariant lattice systems

Gutzwiller calculations include the full \A/loC with the spin-flip terms
and the three-orbital and four-orbital terms

U = ST(T() ~ G A(t))Aeol] 8y + e (44)
t;o,0’

+ Z A(t <ct Jct 5Cu,5Cv0 + c;fa Zﬁét,a&‘,p + h.c.)

TEED S S (T S
A (A 00’

Here, t = (,n, & (tog orbitals) with symmetries ( = xy, n = xz,
and £ = yz, and e = u, v (two e, orbitals) with symmetries

u=23z2—-r?and v=x%—y2
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Translational invariant lattice systems

Double counting corrections

There exists no systematic (let alone rigorous) derivation of the
double-counting corrections.

In the context of the LDA4U method, it was suggested to use

U_,_ J _ _
VLDA+U _ En(n —1)- > (1 —ngy), (45)

where n, is the sum of o-electrons in the correlated orbitals.
In effect, the double-counting corrections generate a band shift

e =~ U (R —1/2) + J (R —1/2)] . (46)
It guarantees that the Hubbard interaction does not empty the

3d-levels.
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Translational invariant lattice systems

Problems

@ The choice of the double-counting correction is guess-work.
@ The double-counting corrections have no orbital resolution.

@ The double-counting corrections do not work, e.g., for Cerium.

There is the big risk that the physics is determined by the choice of
the double-counting corrections!

Double counting corrections for nickel

The 3d-shell is almost filled, n3g ~ 9/10. Here, the form of the
double-counting corrections is not decisive for the ground-state
properties.
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Translational invariant lattice systems

Further simplifications for nickel

@ Assume identical radial parts for the to; and e, orbitals
(‘spherical approximation’). Then, three Racah parameters

A, B, C determine all Coulomb parameters, e.g.,
U=A+4B+3C, J=5B/2+ C.

@ Use C/B =4, as is appropriate for neutral nickel atoms.
Then, U and J determine the atomic spectrum completely.

@ In cubic symmetry, some matrices become diagonal

qg:&g = 5c,c’ (5c,t2gqt,a +6c,egqe,a) ) (47)
(48)

p(c;’;,b/),(R,b);g = Ob,b'P(R,b),(R,b);0 -

Then, we recover expressions used in previous phenomenological
treatments of the Gutzwiller-DFT.
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Translational invariant lattice systems

Implementation

o We use QUANTUMESPRESSO as DFT code (open source,
based on plane waves, employs ultra-soft pseudo-potentials).

@ ‘Poor-man’ Wannier orbitals for 3d electrons (Wannier90 not
yet implemented).

Hubbard parameters
The ‘best values’ for U and J depend on

@ the quality of the correlated orbitals; better localized orbitals
require larger Coulomb interactions;

@ the accuracy of the local interaction; using density-density
interactions only requires smaller Coulomb parameters;

@ The choice of the double-counting corrections.
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Translational invariant lattice systems

We fix U and J for nickel from a comparison of the lattice
constant and the spin-only magnetic moment.

6.80
e-s |=0.0eV ) .

6.75| = -+ J=U*0.05 Fig. 1: fcc lattice constant of
£ ~-+ ]=U*0.075 AN : :
Se70l4 s j=ur010 nickel as a function of U for
P S different values of J/U,

6.65 ’ /. .
2 S calculated with the full local
c , A ~
geso S Hamiltonian V{fu!! and the
4] . el ]
5655 T LDA+U double counting
© St LET AT . .

6.50 ety correction; dashed line:

asl T ‘ ‘ ‘ experimental value

0 2 4 6 8 10 12 14

U/eVv

In DFT: the lattice constant is too small; the Gutzwiller approach
resolves this problem if we choose U > 10eV.
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Translational invariant lattice systems

In order to fix both U and J, we must also consider the spin-only
magnetic moment.

0.9
e e j=0.0ev , .
+« J=U%0.05 Fig. 2: magnetic moment of
0.8t . 1= id . .
- J_ﬂig%s ; nickel as a function of U for
- ¥ .
0 K different values of J/U,
é’ calculated with the full local
0.6 o Hamiltonian V{!' and the
_ 7 .
”‘*‘i:{,;j:;’::’j;:” ””” e LDA+U double counting
0.5 “SItiyoopl Y U . .
th.jj;j****' - correction; dashed line:
oa R experimental value.
0 2 4 6 8 10 12 14
U/ev

If we choose Uypt = 13€eV and Jypt = 0.9eV (J/U = 0.7), we
obtain a good agreement with the experimental values for a and m.
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Translational invariant lattice systems

For Uopt = 13€eV and Jop = 0.9eV (J/U = 0.7), we calculate the
bulk modulus.

0.0020

Fig. 3: Ground-state energy per
particle Eg(a)/N relative to its
value at a = 6.63ap as a
function of the fcc lattice
parameter a/ap, calculated
with the full local Hamiltonian
Vull and the LDA+U double
counting correction; full line:

0.0015F

0.0010+

energy / eV

0.0005F

0.0000(

—0.0005'59

660 661 662 663 664 665 666 667 2nd—order polynomial fit.
lattice constant / Bohr

Kce = 169 GPa, in good agreement with experiment,
K = 182 GPa, whereas KppT = 245 GPa.

33/38



Gutzwiller-Kohn-Sham quasi-particle Hamiltonian
. . . . Local Hamiltonian for transition metals
Translational invariant lattice systems 5
Results for nickel

Translational invariant lattice systems

For Uppt = 13eV and Jopy = 0.9eV (J/U = 0.7), we derive the
quasi-particle band structure.

energy / eV
energy / eV

r X r L T X r L

Fig. 4. quasi-particle band structure of fcc nickel along high-symmetry
lines in the first Brillouin zone, calculated with the full local Hamiltonian
Vil and the LDA+U double counting correction; left: majority spin;

right: minority spin; Fermi energy ES = 0.
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Translational invariant lattice systems

Symmetry Experiment \A/lfouc11 \A/l‘i‘éns
(1) 8.90 £0.30 8.95[0.08] | 8.93[0.08]
(X1) 3.30£0.20 3.37[0.27] | 3.42[0.10]
Xop 0.21 +£0.03 0.26 0.13
Xoy 0.04 +£0.03 0.14 0.21
Xsp 0.15+0.03 0.32 0.41

A, (X2) 0.17 £ 0.05 0.12 —0.08

At2g(X5) 0.33£0.04 0.60 0.70
(Ly) 1.00 +£0.20 0.14[0.06] | 0.12[0.06

(A3:1/2) 0.50[0.21 +0.02] | 0.64[0.30] | 0.60[0.16

Quasi-particle band energies with respect to the Fermi energy in eV at
various high-symmetry points (counted positive for occupied states).

(...) indicates the spin average, errors bars in the experiments without
spin resolution are given as +. Theoretical data show the spin average

and the exchange splittings in square brackets.
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Translational invariant lattice systems

Improvements

@ Gutzwiller-DFT gets the correct 3d bandwidth
(We—prr = 3.3eV, whereas Wppr = 4.5¢eV).

o Gutzwiller-DFT gets the correct Fermi-surface topology (one
one hole ellipsoid at the X-point).

@ The positions of the bands are OK, by and large.
@ The band at Ly are pure 3p-like (not correlated — yet!).

@ The full local interaction gives somewhat better results that
the density-only interaction.

Refinements are to be expected when we improve the description
(orbital dependent double counting, spin-orbit coupling).
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Conclusions

@ Formalism:

o We presented a formal derivation of the Gutzwiller Density
Functional Theory.

o Explicit expressions for all required expectation values are
available in the limit of large lattice coordination number.

e For simple cases such as nickel, previous ad-hoc formulations
are proven to be correct.

@ Results for nickel:

o Experimental values for the lattice constant, the bulk modulus
and the magnetic moment are reproduced for U = 13eV and
J=0.9eV.

e The band width, the Fermi surface topology, and the overall
band structure reproduce the experimental data fairly well.

o No fine tuning of parameters is required.
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Conclusions

@ The Gutzwiller DFT is a generic extension of the DFT
framework; however, it is not fully ‘ab initio’!

@ It is a numerically affordable method to include correlations.

@ Our present implementation is based on the limit of infinite
lattice coordination number.

Open problems

@ The spin-orbit coupling must be implemented.

@ The method must be applied to other materials.
o Well localized correlated orbitals must be constructed & used.

@ The double-counting problem must be solved in a canonical
way; ad-hoc potentials are not helpful in the long run.
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