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Density Functional Theory

Electronic many-particle Hamiltonian (σ =↑, ↓; ~ ≡ 1)

Ĥ = Ĥband + Ĥint ,

Ĥband =
∑
σ

∫
drΨ̂†σ(r)

(
−∆r

2m
+ U(r)

)
Ψ̂σ(r) , (1)

Ĥint =
∑
σ,σ′

∫
dr

∫
dr′Ψ̂†σ(r)Ψ̂†σ′(r′)V (r − r′)Ψ̂σ′(r′)Ψ̂σ(r) .

The electrons experience their mutual Coulomb interaction and the
interaction with the ions at positions R,

V (r − r′) =
1

2

e2

|r − r′|
, (2)

U(r) =
∑

R

e2

|r − R|
. (3)
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Density Functional Theory

Ritz variational principle

Task: minimize the energy functional

E [{|Ψ〉}] =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

. (4)

Problem

This task poses a difficult many-body problem!

Density Functional Theory

Express the energy functional in terms of a density functional –
and make some educated approximations later in the game!
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Density Functional Theory

Consider all normalized states |Ψ(n)〉 for given ‘physical’ densities

nσ(r) = 〈Ψ(n)|Ψ̂†σ(r)Ψ̂σ(r)|Ψ(n)〉 . (5)

The purely electronic operator Ĥe = Ĥkin + V̂xc (kinetic energy +
exchange-correlation energy) is

Ĥkin =
∑
σ

∫
drΨ̂†σ(r)

(
−∆r

2m

)
Ψ̂σ(r) , (6)

V̂xc =
∑
σ,σ′

∫
dr

∫
dr′V (r − r′)

[
Ψ̂†σ(r)Ψ̂†σ′(r′)Ψ̂σ′(r′)Ψ̂σ(r)

− 2Ψ̂†σ(r)Ψ̂σ(r)nσ′(r′) + nσ(r)nσ′(r′)
]
.

For fixed densities, the interaction with the ions and the Hartree
interaction are constant.
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Density Functional Theory

Levy’s constraint search

Task: minimize the energy functional

F
[
{nσ(r)} ,

{
|Ψ(n)〉

}]
= 〈Ψ(n)|Ĥkin + V̂xc|Ψ(n)〉 . (7)

for fixed densities nσ(r). Result: optimized |Ψ(n)
0 〉.

Density functionals for the kinetic/exchange-correlation energy

We define two energy functionals that only depend on the densities,

Kinetic: K [{nσ(r)}] = 〈Ψ(n)
0 |Ĥkin|Ψ

(n)
0 〉 , (8)

Exchange-correlation: Exc [{nσ(r)}] = 〈Ψ(n)
0 |V̂xc|Ψ(n)

0 〉 . (9)
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Density Functional

Task: minimize the Density Functional

D [{nσ(r)}] = K [{nσ(r)}] + Exc [{nσ(r)}]
+U [{nσ(r)}] + VHar [{nσ(r)}] (10)

with the ionic/Hartree energies

Ionic: U [{nσ(r)}] =
∑
σ

∫
drU(r)nσ(r) , (11)

Hartree: VHar [{nσ(r)}] =
∑
σ,σ′

∫
dr

∫
dr′V (r − r′)nσ(r)nσ′(r′) .

The minimization provides the ground-state densities n0
σ(r) and the

ground-state energy E0 = D
[{

n0
σ(r)

}]
.

7 / 38



Density Functional Theory
Density Functional Theory for many-particle Hamiltonians

Translational invariant lattice systems
Conclusions

Electronic problem
Levy’s constrained search
Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

Problem

The minimization of the energy functional in eq. (7) poses a
difficult many-particle problem. Thus, the exact density functional
D [{nσ(r)}] is unknown.

Hohenberg-Kohn approach

Idea: derive the same ground-state physics from an effective
single-particle problem.

How can this be achieved?
In the following we follow a simple and straightforward strategy,
not the most general one.
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Density Functional Theory

Consider all normalized single-particle product states |Φ(n)〉 for
given ‘physical’ densities

nsp
σ (r) = 〈Φ(n)|Ψ̂†σ(r)Ψ̂σ(r)|Φ(n)〉 . (12)

As our single-particle Hamiltonian we consider the kinetic-energy
operator Ĥkin. For fixed single-particle densities nsp

σ (r), we define
the single-particle functional

Fsp

[
{nsp

σ (r)} ,
{
|Φ(n)〉

}]
= 〈Φ(n)|Ĥkin|Φ(n)〉 . (13)

Levy’s constrained search provides the optimized |Φ(n)
0 〉 and

Ksp [{nsp
σ (r)}] = 〈Φ(n)

0 |Ĥkin|Φ
(n)
0 〉 . (14)
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Density Functional Theory

The single-particle density functional is defined as

Dsp [{nsp
σ (r)}] = Ksp [{nsp

σ (r)}] + U [{nsp
σ (r)}] + VHar [{nsp

σ (r)}]
+Esp,xc [{nsp

σ (r)}] (15)

with the yet unspecified single-particle exchange-correlation energy
Esp,xc [{nsp

σ (r)}].

Assumption: non-interacting V -representability

For any given (physical) densities nσ(r) we can find normalized
single-particle product states |Φ(n)〉 such that

nsp
σ (r) = nσ(r) . (16)
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Density Functional Theory

Hohenberg-Kohn theorem

We demand
Dsp [{nσ(r)}] = D [{nσ(r)}] . (17)

⇒ The single-particle substitute system has the same ground-state
density n0

σ(r) and energy E0 as the many-particle Hamiltonian.

Single-particle exchange-correlation energy

To fulfill eq. (17), we define

Esp,xc [{nσ(r)}] = K [{nσ(r)}]−Ksp [{nσ(r)}]+Exc [{nσ(r)}] . (18)

Problem

We know neither of the quantities on the r.h.s. of eq. (18)!
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Density Functional Theory

Upshot of the Hohenberg-Kohn theorem:

A single-particle substitute system exists that leads to the
exact ground-state properties.

Its energy functional takes the form

E [{nσ(r)} , {|Φ〉}] = 〈Φ|Ĥkin|Φ〉+ U [{nσ(r)}] (19)

+VHar [{nσ(r)}] + Esp,xc [{nσ(r)}] .

Remaining task:
minimize E [{nσ(r)} , {|Φ〉}] in the subset of single-particle product

states |Φ〉 =
∏′

n,σb̂†n,σ|vac〉. The field operators are expanded as

Ψ̂†σ(r) =
∑
n

ψ∗n(r)b̂†n,σ , Ψ̂σ(r) =
∑
n

ψn(r)b̂n,σ . (20)
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Density Functional Theory

With the Hartree and exchange-correlation potentials

VHar(r) ≡
∑
σ′

∫
dr′2V (r − r′)n0

σ′(r′) ,

vsp,xc,σ(r) ≡ ∂Esp,xc [{nσ′(r′)}]
∂nσ(r)

∣∣∣∣
nσ(r)=n0

σ(r)

, (21)

the minimization conditions lead to the Kohn-Sham equations.

Kohn-Sham equations

hKS
σ (r)ψn(r) = εn(r)ψn(r) ,

hKS
σ (r) ≡ −∆r

2m
+ V KS

σ (r) , (22)

V KS
σ (r) ≡ U(r) + VHar(r) + vsp,xc,σ(r) .

13 / 38



Density Functional Theory
Density Functional Theory for many-particle Hamiltonians

Translational invariant lattice systems
Conclusions

Electronic problem
Levy’s constrained search
Single-particle Hamiltonian and Ritz variational principle
Kohn-Sham equations

Density Functional Theory

Resume of DFT

There exists a single-particle substitute system that has the
same ground-state energy and ground-state densities as the
interacting many-electron system.

If we knew the single-particle exchange-correlation energy
Esp,xc [{nσ(r)}], the Kohn-Sham equations would provide
single-particle eigenstates that define the single-particle
ground state |Φ0〉. The exact ground-state properties can be
extracted from |Φ0〉.

Remaining task

Find physically reasonable approximations for Esp,xc [{nσ(r)}].
Example: the local (spin) density approximation (L(S)DA).
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Density Functional Theory for many-particle Hamiltonians

Limitations of DFT-L(S)DA & Co

The properties of transition metals and their compounds are not so
well described.
Reason: 3d electrons are strongly correlated.

Solution

Treat interaction of electrons in correlated bands separately!
The kinetic energy Ĥkin plus the Hubbard interaction V̂loc define
our new reference system,

Ĥkin 7→ ĤH = Ĥkin + V̂loc − V̂dc . (23)

Here, V̂dc accounts for the double counting of the Coulomb
interactions among correlated electrons.
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Density Functional Theory for many-particle Hamiltonians

Using the same formalism as before, we define the functional

FH

[
{nσ(r)} ,

{
|Ψ(n)〉

}]
= 〈Ψ(n)|ĤH|Ψ(n)〉 . (24)

Its optimization provides |Ψ(n)
H,0〉 and the functionals

KH [{nσ(r)}] = 〈Ψ(n)
H,0|Ĥkin|Ψ

(n)
H,0〉 ,

Vloc/dc [{nσ(r)}] = 〈Ψ(n)
H,0|V̂loc/dc|Ψ

(n)
H,0〉 , (25)

DH [{nσ(r)}] = KH [{nσ(r)}] + U [{nσ(r)}] + VHar [{nσ(r)}]
+Vloc [{nσ(r)}]− Vdc [{nσ(r)}]
+EH,xc [{nσ(r)}] . (26)

We demand DH [{nσ(r)}] = D [{nσ(r)}]. Then, ĤH leads to the
exact ground-state energy E0 and densities n0

σ(r).
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Density Functional Theory for many-particle Hamiltonians

Problem

The Hubbard interaction V̂loc reintroduces the complexity of the
the full many-body problem! – What have we gained?

Indeed, when we apply the Ritz principle to the energy functional

E = 〈Ψ|ĤH|Ψ〉+ U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] ,
(27)

we arrive at the many-particle Hubbard-Schrödinger equation(
Ĥ0 + V̂loc − V̂dc

)
|Ψ0〉 = E0|Ψ0〉 (28)

with the single-particle Hamiltonian

Ĥ0 =
∑
σ

∫
drΨ̂†σ(r)

(
−∆r

2m
+ U(r) + VHar(r) + vH,xc,σ(r)

)
Ψ̂σ(r) .

(29)
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Density Functional Theory for many-particle Hamiltonians

Advantage

Local interactions among correlated electrons are treated explicitly
so that they are subtracted from the exact exchange-correlation
energy,

EH,xc [{nσ(r)}] = K [{nσ(r)}]− KH [{nσ(r)}] + Exc [{nσ(r)}]
− (Vloc [{nσ(r)}]− Vdc [{nσ(r)}]) . (30)

Consequence: an (L(S)DA) approximation should better suited for
EH,xc than for Esp,xc.

Later, we shall employ the approximation

EH,xc [{nσ(r)}] ≈ ELDA,xc [{nσ(r)}] . (31)
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Density Functional Theory for many-particle Hamiltonians

Variational approach

Idea:
approximate the many-particle functional 〈Ψ|Ĥkin + V̂loc − V̂dc|Ψ〉.
Strategies:

LDA+U: use single-particle states |Φ〉.
Gutzwiller: use many-particle variational states |ΨG〉.

Consider atomic states |Γ〉R at lattice site R that are built from the
correlated orbitals. With the local many-particle operators
m̂R;Γ,Γ′ = |Γ〉RR〈Γ′| we define the Gutzwiller states as

|ΨG〉 = P̂G|Φ〉 , P̂G =
∏

R

∑
Γ,Γ′

λΓ,Γ′(R)m̂R;Γ,Γ′ . (32)

λΓ,Γ′(R) are, in general, complex variational parameters.
19 / 38



Density Functional Theory
Density Functional Theory for many-particle Hamiltonians

Translational invariant lattice systems
Conclusions

Hubbard interaction and Hubbard density functional
Gutzwiller density functional
Limit of infinite lattice coordination number

Density Functional Theory for many-particle Hamiltonians

The energy functional requires the evaluation of expectation values
for the local interaction

Vloc/dc =
∑

R

∑
Γ,Γ′

E
loc/dc
Γ,Γ′ (R)

〈ΨG|m̂R;Γ,Γ′ |ΨG〉
〈ΨG|ΨG〉

, (33)

E
loc/dc
Γ,Γ′ (R) = R〈Γ|V̂loc/dc(R)|Γ′〉R , (34)

and for the single-particle density matrix, e.g., in the orbital
Wannier basis (Ψ̂σ(r) =

∑
R φR,b,σ(r)ĉR,b,σ),

ρG(R′,b′),(R,b);σ =
〈ΨG|ĉ†R,b,σ ĉR′,b′,σ|ΨG〉

〈ΨG|ΨG〉
. (35)
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Density Functional Theory for many-particle Hamiltonians

Gutzwiller energy functional

The Gutzwiller energy functional E ≡ E [{nσ(r)} , {|ΨG〉}] reads

E =
∑

R,b,R′,b′,σ

T(R,b),(R′,b′);σρ
G
(R′,b′),(R,b);σ + V G

loc − V G
dc

+U [{nσ(r)}] + VHar [{nσ(r)}] + EH,xc [{nσ(r)}] , (36)

T(R,b),(R′,b′);σ =

∫
drφ∗R,b,σ(r)

(
−∆r

2m

)
φR′,b′,σ(r) . (37)

The densities become

nσ(r) =
∑

R,b,R′,b′

φ∗R,b,σ(r)φR′,b′,σ(r)ρG(R′,b′),(R,b);σ . (38)
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Density Functional Theory for many-particle Hamiltonians

Problem

The evaluation of expectation values with Gutzwiller-correlated
states poses a difficult many-particle problem.

Solution

Evaluate expectation values diagrammatically in such a way that
not a single diagram must be calculated in the limit of infinite
lattice coordination number, Z →∞ (recall: Z = 12 for nickel).

Result: all quantities depend only on the single-particle density
matrix Cb′,b;σ(R) = 〈Φ|ĉ†R,b,σ ĉR,b′,σ|Φ〉 and the Gutzwiller
variational parameters λΓ,Γ′(R). For example,

V G
loc =

∑
R

∑
Γ1,...,Γ4

λ∗Γ2,Γ1
(R)E loc

Γ2,Γ3
(R)λΓ3,Γ4(R)〈m̂R;Γ1,Γ4〉Φ . (39)
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Density Functional Theory for many-particle Hamiltonians

For R 6= R′, the correlated single-particle density matrix becomes

ρG(R′,b′),(R,b);σ =
∑
a,a′

qa,σ
b,σ(R)

(
qa′,σ
b′,σ(R′)

)∗
ρ(R′,a′),(R,a);σ . (40)

The orbital-dependent factors qa,σ
b,σ(R) reduce the band width of

the correlated orbitals and their hybridizations with other orbitals.

Results

In the limit Z →∞, the Gutzwiller many-body problem is
solved without further approximations.

‘Solve the Gutzwiller–Kohn-Sham equations’ ⊕
‘Minimize with respect to the Gutzwiller parameters λΓ,Γ′(R)’
is similar in complexity to the DFT. For simple systems such
as nickel, the latter minimization is computationally
inexpensive (20% of total CPU time).
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Translational invariant lattice systems

For translational invariant lattice systems, the quasi-particle
(‘Gutzwiller–Kohn-Sham’) Hamiltonian becomes

ĤG
qp =

∑
k,b,b′,σ

hG
b,b′;σ(k)ĉ†k,b,σ ĉk,b′,σ (41)

with the matrix elements in the orbital Bloch basis

hG
b,b′;σ(k) = ηb,b′;σ +

∑
a,a′

qb,σ
a,σ

(
qb′,σ
a′,σ

)∗
h0
a,a′;σ(k) ,

h0
a,a′;σ(k) =

∫
drφ∗k,a,σ(r)

(
−∆r

2m
+ V H

σ (r)

)
φk,a′,σ(r) , (42)

V H
σ (r) = U(r) + VHar(r) + vH,xc,σ(r) .

ηb,b′;σ: Lagrange parameters (variational band-shifts).
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Translational invariant lattice systems

In cubic symmetry, the local interaction for 3d electrons reads

V̂ full
loc = V̂ dens

loc + V̂ sf
loc + V̂

(3)
loc + V̂

(4)
loc ,

V̂ dens
loc =

∑
c,σ

U(c , c)n̂c,σn̂c ′,σ̄ +
∑

c(6=)c ′

∑
σ,σ′

Ũσ,σ′(c , c ′)n̂c,σn̂c ′,σ′ ,

V̂ sf
loc =

∑
c( 6=)c ′

J(c , c ′)
(

ĉ†c,↑ĉ
†
c,↓ĉc ′,↓ĉc ′,↑ + h.c.

)
+

∑
c( 6=)c ′;σ

J(c , c ′)ĉ†c,σ ĉ†c ′,σ̄ ĉc,σ̄ ĉc ′,σ . (43)

Here, ↑̄ =↓ (↓̄ =↑) and Ũσ,σ′(c, c ′) = U(c , c)− δσ,σ′J(c , c ′).
U ≡ U(c , c) and J ≡ J(c , c ′) are local Hubbard and Hund’s-rule
exchange interactions. DMFT calculations often employ V̂ dens

loc

only (reduction of the numerical effort).
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Translational invariant lattice systems

Gutzwiller calculations include the full V̂loc with the spin-flip terms
and the three-orbital and four-orbital terms

V̂
(3)
loc =

∑
t;σ,σ′

(T (t)− δσ,σ′A(t))n̂t,σ ĉ†u,σ′ ĉv ,σ′ + h.c. , (44)

+
∑
t,σ

A(t)
(

ĉ†t,σ ĉ†t,σ̄ ĉu,σ̄ ĉv ,σ + ĉ†t,σ ĉ†u,σ̄ ĉt,σ̄ ĉv ,σ + h.c.
)

V̂
(4)
loc =

∑
t(6=)t′(6=)t′′

∑
e,σ,σ′

S(t, t ′; t ′′, e)ĉ†t,σ ĉ†t′,σ′ ĉt′′,σ′ ĉe,σ + h.c. .

Here, t = ζ, η, ξ (t2g orbitals) with symmetries ζ = xy , η = xz ,
and ξ = yz , and e = u, v (two eg orbitals) with symmetries
u = 3z2 − r 2 and v = x2 − y 2.
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Translational invariant lattice systems

Double counting corrections

There exists no systematic (let alone rigorous) derivation of the
double-counting corrections.

In the context of the LDA+U method, it was suggested to use

V LDA+U
dc =

U

2
n̄(n̄ − 1)− J

2

∑
σ

n̄σ(1− n̄σ) , (45)

where n̄σ is the sum of σ-electrons in the correlated orbitals.
In effect, the double-counting corrections generate a band shift

ηdcc,c;σ = − [U (n̄ − 1/2) + J (n̄σ − 1/2)] . (46)

It guarantees that the Hubbard interaction does not empty the
3d-levels.
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Translational invariant lattice systems

Problems

The choice of the double-counting correction is guess-work.

The double-counting corrections have no orbital resolution.

The double-counting corrections do not work, e.g., for Cerium.

There is the big risk that the physics is determined by the choice of
the double-counting corrections!

Double counting corrections for nickel

The 3d-shell is almost filled, n3d ≈ 9/10. Here, the form of the
double-counting corrections is not decisive for the ground-state
properties.
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Translational invariant lattice systems

Further simplifications for nickel

Assume identical radial parts for the t2g and eg orbitals
(‘spherical approximation’). Then, three Racah parameters
A,B,C determine all Coulomb parameters, e.g.,
U = A + 4B + 3C , J = 5B/2 + C .

Use C/B = 4, as is appropriate for neutral nickel atoms.
Then, U and J determine the atomic spectrum completely.

In cubic symmetry, some matrices become diagonal

qc ′,σ
c,σ = δc,c ′

(
δc,t2g qt,σ + δc,eg qe,σ

)
, (47)

ρG(R,b′),(R,b);σ = δb,b′ρ(R,b),(R,b);σ . (48)

Then, we recover expressions used in previous phenomenological
treatments of the Gutzwiller-DFT.
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Implementation

We use QuantumEspresso as DFT code (open source,
based on plane waves, employs ultra-soft pseudo-potentials).

‘Poor-man’ Wannier orbitals for 3d electrons (Wannier90 not
yet implemented).

Hubbard parameters

The ‘best values’ for U and J depend on

the quality of the correlated orbitals; better localized orbitals
require larger Coulomb interactions;

the accuracy of the local interaction; using density-density
interactions only requires smaller Coulomb parameters;

The choice of the double-counting corrections.
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We fix U and J for nickel from a comparison of the lattice
constant and the spin-only magnetic moment.
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Fig. 1: fcc lattice constant of

nickel as a function of U for

different values of J/U,

calculated with the full local

Hamiltonian V̂ full
loc and the

LDA+U double counting

correction; dashed line:

experimental value.

In DFT: the lattice constant is too small; the Gutzwiller approach
resolves this problem if we choose U > 10 eV.
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In order to fix both U and J, we must also consider the spin-only
magnetic moment.
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Fig. 2: magnetic moment of

nickel as a function of U for

different values of J/U,

calculated with the full local

Hamiltonian V̂ full
loc and the

LDA+U double counting

correction; dashed line:

experimental value.

If we choose Uopt = 13 eV and Jopt = 0.9 eV (J/U = 0.7), we
obtain a good agreement with the experimental values for a and m.
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For Uopt = 13 eV and Jopt = 0.9 eV (J/U = 0.7), we calculate the
bulk modulus.
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Fig. 3: Ground-state energy per

particle E0(a)/N relative to its

value at a = 6.63aB as a

function of the fcc lattice

parameter a/aB, calculated

with the full local Hamiltonian

V̂ full
loc and the LDA+U double

counting correction; full line:

2nd-order polynomial fit.

KG = 169GPa, in good agreement with experiment,
K = 182GPa, whereas KDFT = 245GPa.
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For Uopt = 13 eV and Jopt = 0.9 eV (J/U = 0.7), we derive the
quasi-particle band structure.
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Fig. 4: quasi-particle band structure of fcc nickel along high-symmetry

lines in the first Brillouin zone, calculated with the full local Hamiltonian

V̂ full
loc and the LDA+U double counting correction; left: majority spin;

right: minority spin; Fermi energy EG
F = 0.
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Symmetry Experiment V̂ full
loc V̂ dens

loc

〈Γ1〉 8.90± 0.30 8.95[0.08] 8.93[0.08]
〈X1〉 3.30± 0.20 3.37[0.27] 3.42[0.10]
X2↑ 0.21± 0.03 0.26 0.13
X2↓ 0.04± 0.03 0.14 0.21
X5↑ 0.15± 0.03 0.32 0.41

∆eg (X2) 0.17± 0.05 0.12 −0.08
∆t2g (X5) 0.33± 0.04 0.60 0.70
〈L2′〉 1.00± 0.20 0.14[0.06] 0.12[0.06]
〈Λ3;1/2〉 0.50[0.21± 0.02] 0.64[0.30] 0.60[0.16]

Quasi-particle band energies with respect to the Fermi energy in eV at

various high-symmetry points (counted positive for occupied states).

〈. . .〉 indicates the spin average, errors bars in the experiments without

spin resolution are given as ±. Theoretical data show the spin average

and the exchange splittings in square brackets.
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Improvements

Gutzwiller-DFT gets the correct 3d bandwidth
(WG−DFT = 3.3 eV, whereas WDFT = 4.5 eV).

Gutzwiller-DFT gets the correct Fermi-surface topology (one
one hole ellipsoid at the X -point).

The positions of the bands are OK, by and large.

The band at L2′ are pure 3p-like (not correlated – yet!).

The full local interaction gives somewhat better results that
the density-only interaction.

Refinements are to be expected when we improve the description
(orbital dependent double counting, spin-orbit coupling).
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Formalism:

We presented a formal derivation of the Gutzwiller Density
Functional Theory.
Explicit expressions for all required expectation values are
available in the limit of large lattice coordination number.
For simple cases such as nickel, previous ad-hoc formulations
are proven to be correct.

Results for nickel:

Experimental values for the lattice constant, the bulk modulus
and the magnetic moment are reproduced for U = 13 eV and
J = 0.9 eV.
The band width, the Fermi surface topology, and the overall
band structure reproduce the experimental data fairly well.
No fine tuning of parameters is required.
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Outlook

The Gutzwiller DFT is a generic extension of the DFT
framework; however, it is not fully ‘ab initio’ !

It is a numerically affordable method to include correlations.

Our present implementation is based on the limit of infinite
lattice coordination number.

Open problems

The spin-orbit coupling must be implemented.

The method must be applied to other materials.

Well localized correlated orbitals must be constructed & used.

The double-counting problem must be solved in a canonical
way; ad-hoc potentials are not helpful in the long run.
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