
RESEARCH Open Access

A transcriptome-based global map of
signaling pathways in the ovarian cancer
microenvironment associated with clinical
outcome
Silke Reinartz1†, Florian Finkernagel2†, Till Adhikary2, Verena Rohnalter2, Tim Schumann2, Yvonne Schober3,
W. Andreas Nockher3, Andrea Nist4, Thorsten Stiewe4, Julia M. Jansen1, Uwe Wagner1,
Sabine Müller-Brüsselbach2 and Rolf Müller2*

Abstract

Background: Soluble protein and lipid mediators play essential roles in the tumor environment, but their cellular
origins, targets, and clinical relevance are only partially known. We have addressed this question for the most
abundant cell types in human ovarian carcinoma ascites, namely tumor cells and tumor-associated macrophages.

Results: Transcriptome-derived datasets were adjusted for errors caused by contaminating cell types by an
algorithm using expression data derived from pure cell types as references. These data were utilized to construct a
network of autocrine and paracrine signaling pathways comprising 358 common and 58 patient-specific signaling
mediators and their receptors. RNA sequencing based predictions were confirmed for several proteins and lipid
mediators. Published expression microarray results for 1018 patients were used to establish clinical correlations for a
number of components with distinct cellular origins and target cells. Clear associations with early relapse were
found for STAT3-inducing cytokines, specific components of WNT and fibroblast growth factor signaling, ephrin and
semaphorin axon guidance molecules, and TGFβ/BMP-triggered pathways. An association with early relapse was
also observed for secretory macrophage-derived phospholipase PLA2G7, its product arachidonic acid (AA) and
signaling pathways controlled by the AA metabolites PGE2, PGI2, and LTB4. By contrast, the genes encoding norrin
and its receptor frizzled 4, both selectively expressed by cancer cells and previously not linked to tumor
suppression, show a striking association with a favorable clinical course.

Conclusions: We have established a signaling network operating in the ovarian cancer microenvironment with
previously unidentified pathways and have defined clinically relevant components within this network.
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Background
Ovarian carcinoma ranks fifth as the cause of death from
cancer in women with >40,000 new cases annually in the
European Union [1]. Ovarian cancer has a dire prognosis
with an overall five-year survival rate of <25 %. The
World Health Organization classification distinguishes
six major entities of ovarian tumor [1]. Of these, high
grade serous ovarian carcinoma is not only the most
common ovarian cancer, but also the deadliest of all
gynecological malignancies. Up to 95 % of these patients
with advanced stage disease present with tumor masses
in the abdomen beyond the pelvis and/or lymph node
metastases (FIGO stage III) or organs outside the peri-
toneal cavity (stage IV). These facts clearly attest to the
malicious nature of this disease and identify serous ovar-
ian cancer as a major health issue world-wide.
Several features contribute to the fatal nature of serous

ovarian carcinoma, some of which make this cancer
unique among all human tumors [2]. Tumor cells are
often shed at a very early stage of the disease. Even at a
stage when primary tumors are still confined to one or
both of the ovaries, cancer cells can be detected in peri-
toneal lavage fluid (stage IC). While blood and the
lymphatic system are major routes of dissemenation in
other cancers, the spread of ovarian tumor cells is driven
by the peritoneal fluid. Ovarian cancer cells then adhere
to and superficially invade the omentum and the serous
membranes lining other peritoneal organs, giving rise to
tumor foci growing into the open space of the peritoneal
cavity [2]. The peritoneal microenvironment, which is
formed by the ascites building up in the peritoneal cavity,
is an essential determinant of metastatic disease progres-
sion due to its tumor-promoting soluble factors [3], exo-
somes [4], highly tumorigenic cancer cells [5], and different
types of immune cells, including pro-tumorigenic tumor-
associated macrophages (TAMs) [6, 7].
TAMs are blood monocyte-derived cells polarized by

factors of the tumor microenvironment to adopt pheno-
types that clearly deviate from classically or alterna-
tively activated macrophages [8–10]. This also applies
to TAMs isolated from ovarian cancer ascites [7].
TAMs are pro-tumorigenic and promote all aspects of
cancer growth and progression, including tumor cell
proliferation, invasion, angiogenesis, formation of me-
tastasis, and immune suppression [8, 9, 11, 12]. The
critical role of TAMs has been demonstrated in numer-
ous mouse models and is strongly supported by the
correlation of clinical outcome with intratumoral
macrophage density in different types of cancer [11], in-
cluding ovarian carcinoma [13]. Consistent with these
observations, the presence of CD163high TAMs in the
malignancy-associated ascites showed a strong correl-
ation with early relapse of serous ovarian carcinoma
after first-line therapy [7].

Cytokines and growth factors released into the tumor
microenvironment are pivotal to all aspects of tumor
progression. Tumor growth, cancer dissemination, and
immune escape are promoted by a plethora of growth
factors and cytokines that are also found in ovarian cancer
ascites [7, 14–16]. These factors (1) induce cell prolifera-
tion, such as epidermal growth factor (EGF) family mem-
bers and interleukin (IL)-6, (2) trigger angiogenesis, e.g.
vascular EGF (VEGF), basic FGF, and IL-8, (3) attract im-
mune cells to the tumor, in particular chemokines of the
CCL and CXCL families [17], and (4) polarize these to pro-
tumorigenic and immune suppressive cells, for example
VEGF, IL-6, IL-10, and LIF [18]. One of the central factors
promoting tumor progression is transforming growth fac-
tor (TGF) β [19], which triggers epithelial-mesenchymal
transition (EMT), cancer cell invasion, metastasis, and im-
mune suppression. Soluble factors may also play a role in
promoting stemness properties, for example, KIT ligand
and R-spondins as ligands for CD117 [20] and LGR5 [21,
22], respectively. Several growth factors and cytokines also
inhibit apoptosis and the efficacy of chemotherapeutic
drugs, such as IL-6, IL-10, and TGFβ [23]. Finally, ascites
fluid promotes its own accumulation, mainly though the
action of VEGF as a vascular permeability factor [24].
A recent study evaluating publicly available genomic

data has identified a number of clinical associations of
signaling loops established by polypeptide ligands and
their receptors in advanced ovarian cancer, including
TGFβ, PDGF, VEGF, ephrin, CXCL12, and CCL chemo-
kines [25]. However, since all expression data were derived
from solid tumor tissue, tumor and host cell-specific con-
tributions could not be analyzed, which also suggests that
pathways involving host cells as major constituent were
missed.
Molecules generated by the cleavage of phospholipids

and present in malignant effusions represent another im-
portant class of soluble cancer-promoting mediators, in
particular lysophosphatitic acid (LPA) [26–31] and ara-
chidonic acid (AA)-derived eicosanoids [32–34]. The lat-
ter include prostanoids, hydroxyeicosatetraenoic acids
(HETEs), and leukotrienes that are produced from AA
by enzymatic cascades initiated either by cyclooxy-
genases or lipoxygenases. The importance of lipid medi-
ators for tumorigenesis is exemplified by LPA as a
mediator of cancer cell invasion and chemoresistance
[28, 31, 35] and prostaglandin E2 as an immune suppres-
sor and trigger of angiogenesis [36].
To be able to understand the biological role of the

large number of soluble mediators in the tumor micro-
environment, a global picture of their cellular origins
and targets is indispensible, but currently not available.
One possibility is to address this question by a genomic
approach. However, although transcriptomic data for a
large number of solid tumor samples from ovarian
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cancer patients have been published [37–39], these are
not suitable to determine expression levels in tumor
cells and specific tumor-associated host cells. We have
addressed this issue by determining the transcriptomes
for the major cell types of serous ovarian carcinoma, i.e.
tumor cells and TAMs, purified from the ascites of pa-
tients. Ascites-associated cancer cells occur as single
cells or multicellular spheroids and are likely to be re-
sponsible for peritoneal dissemination and to contribute
to relapse of the disease [2]. In spite of their clinical rele-
vance, genome-wide studies have not been performed
with ascites-associated cells from ovarian cancer.
In the present study, we determined the transcriptome

for tumor cells and TAMs from ovarian cancer ascites and
used these data to construct a network comprising cyto-
kines, growth factors, lipid mediators, and their receptors,
which we confirmed for several components at the level
of the respective proteins or lipids. These data defined a
multitude of specific signaling pathways between tumor
cells and TAMs as well as cell-type restricted, autocrine
mechanisms. Furthermore, by establishing correlations
with disease progression, we provide clear evidence for
the biological relevance of soluble mediators in the ovar-
ian cancer microenvironment. Thus, our data identified a
highly significant link to disease recurrence not only for
several cytokines and AA, but also a striking synergistic
association between these proteins and AA. These find-
ings underscore the biological relevance of functional in-
teractions in the ovarian cancer microenvironment.

Results
Characterization of patient samples
Tumor cells and/or TAMs were isolated from the ascites
of 28 patients with high grade serous ovarian carcinoma
and one patient with serous borderline tumor (low grade
carcinoma) (Additional file 4: Table S1). If feasible,
tumor cell spheroids from the same patients were frac-
tionated according to size (single cells: “sc”; small: <30
μm, “s”; medium: 30–40 μm, “m”; large: >40 μm, “L”).
Surprisingly, small and large spheroids from the same
patients frequently showed clear genetic and biological
differences (Additional file 4: Table S2). For instance,
small spheroids usually comprised pseudo-diploid cells,
rapidly adhered to culture dishes in the presence of au-
tologous ascites and were chemosensitive, whereas large
spheroids were largely aneuploid, persisted as floating
spheres in culture and were completely chemoresistant.
Therefore, both small and large spheroids were included
in all subsequent studies and analyzed separately.

Adjustment of RNA sequencing data for contaminating
cell types
A central goal of the present study was an RNA sequen-
cing (RNA-Seq) based comparison of the expression of

signaling components of tumor cells and TAMs. We fo-
cused our study on primary, non-cultured cells in order
to obtain a faithful picture of the signaling network op-
erating in vivo. However, the presence of variable
amounts (0–50 %) of TAMs in isolated tumor cell frac-
tions and vice versa may lead to incorrect conclusions in
particular for genes that show a differential, cell type-
specific expression. The impact of such “contaminations”
on gene expression profiles is a well-known problem
and has consequently been addressed by numerous pub-
lished algorithms [40–50]. However, none of these fulfills
all the criteria required by our specific conditions, as ex-
plained in detail in Additional file 1.
A particularly relevant aspect in this context is the

mixed-polarization phenotype of ovarian cancer ascites-
associated TAMs, which share only small subsets of
upregulated genes with M1 and M2 macrophages
(Additional file 2: Figure S1). This precludes the use of
literature data obtained with canonically activated
macrophages as, for example, in CIBERSORT [48].
Likewise, the transcriptome of tumor cells from ovarian
cancer ascites has not been determined yet. Therefore, ap-
propriate reference data for ascites-derived tumor cells
and TAMs were not available prior the present study. Fi-
nally, most published algorithms generate estimates of the
fraction of contaminating cell types, but do not adjust the
TPM values in RNA-Seq datasets.
To establish a bioinformatic tool to adjust our data-

sets, we used a simple but highly effective approach.
First, pure reference samples representing the cell type
of interest (“target”) and the contaminating cell type are
selected, the purity of which was confirmed by flow
cytometry or other methods. RNA-Seq data for these
references samples are then used to select a set of con-
tamination marker genes, suitable for estimating the
extent of contamination. Finally, the target dataset is ad-
justed by a linear model. A detailed description of our
algorithms is found in Additional file 1. For testing our
method we simulated mixtures from published RNA-Seq
datasets, which showed a clear improvement, as exem-
plified in Fig. 1a for mixtures of purified immune cells
(RNA-Seq data from GSE60424 [51]) or different tissues
(Additional file 1). Furthermore, none of the previ-
ously described algorithms matched this performance
(Additional file 1).
The algorithm was then applied to our set of RNA-Seq

samples of tumor cells (n = 21), TAMs (n = 18), and
tumor-associated T cells (TATs; n = 5). The detected
contamination of tumor cell or TAM samples ranged
from 0 % to 17 % (Fig. 1b, c) and was in agreement with
prior analyses (as in Additional file 4: Table S2). To test
the power of the algorithm, we also included RNA-Seq
data from a heavily contaminated tumor sample (OC65s:
25.7 % TAMs; striped bars in Fig. 1b) and two heavily
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contaminated TAM samples (TAM66s: 49.4 % tumor cells
and TAM70: 24.9 %; striped bars in Fig. 1c). These three
samples were excluded from all subsequent experiments.
These data were used to adjust the RNA-Seq data for

cross-contaminating tumor cells, TAMs, and TATs. Ad-
justment was successful, as exemplified in Fig. 1d and e
for tumor cells. While the macrophage marker gene
CD163 was reduced, the epithelial cell marker gene
PAX8 was not. The observed increase in PAX8 is due to
the fact that TPM values represent a relative measure,
thus resulting in a redistribution from reduced to non-
reduced genes.
These adjusted RNA-Seq data for 20 tumor cell and

16 TAM samples (Additional file 3: Dataset S1) were an-
alyzed for expression of two classes of mediators and
their receptors: (1) cytokines and polypeptide growth
factors, collectively referred to as protein mediators in
the following; and (2) phospholipid breakdown products
and eicosanoids functioning as lipid mediators, as de-
scribed in detail below.

Common expression of protein mediators and their
receptors by tumor cells and TAMs
We first established datasets of 791 genes encoding pro-
tein mediators and their receptors based on literature
and database-derived data, in total 502 cytokine and
growth factor genes (Additional file 3: Dataset S2) and
289 receptor genes (Additional file 3: Dataset S4). Genes
with TPM values ≥3 in at least 65 % of all tumor cell or
TAM samples were considered expressed and part of a
common signaling network. Using these criteria, we iden-
tified 159 cytokine and 173 receptor genes to be expressed
in tumor cells and/or TAMs (Fig. 2a, b; Additional file 3:
Dataset S4 and S5). Genes were defined as cell type-
selective if expression levels between tumor cells and
TAMs differed at least threefold (thresholds indicated by
the shaded areas in Fig. 2) and the individual TPM values
determined for one cell type were either larger or smaller
than the values for the other cell type, allowing maximum

Fig. 1 Adjustment RNA-Seq data based on RNA-Seq mixture modeling.
a Simulation results from in-silico mixture of different purified immune
cells with purified monocytes from dataset GSE60424 [51]. Deviation of
TPM values from ground truth (unmixed sample) was quantified as the
mean absolute error (MAE). Purple: uncorrected samples; green:
corrected samples. Each dot represents one simulation with a random
mixture percentage between 0 % and 50 %. Violin plots show the
distribution of MAE values. See “Results” for description of dataset used.
The algorithm was applied for estimation of contamination and
data adjustment as described in Additional file 1. b Estimated TAM
contamination of tumor samples used in the present study, based
on RNA-Seq mixture modeling. c Estimated tumor cell contamination
of TAM samples. Striped bars in (b) and (c) denote samples excluded
from further analysis. d, e Effect of adjustment by RNA-Seq mixture
modeling on marker gene expression (PAX8, CD163) in tumor cell
samples. ori, original TPM values; adj, adjusted TPM
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one outlier (Additional file 3: Datasets S4, S5: column “no
overlap”). These datasets were further split into groups
showing low (green bars in Fig. 2a, b), median (blue), or
high (red) expression levels according to the observed
TPM values.
Differences of more than 1000-fold were observed

with respect to the expression levels of different genes as
well as the cell type selectivity of individual genes. These
results were confirmed by RT-qPCR using a larger num-
ber of patient-derived samples for all instances tested,
including a statistically highly significant preferential ex-
pression of IL10, TGFB1, S100A8, S100A9, and IL10RA
by TAMs and LIFR by tumor cells (Fig. 3a). The analysis
of matched tumor cell and TAM samples from the same
patients are in agreement with these conclusions with
the exception of TGFB1 (Fig. 3b).

We next determined the levels of protein expression
for several examples by flow cytometry of non-separated
ascites samples and confirmed the preferential expres-
sion of S100A8/A9 and IL-8 in TAMs, and of LIFR and
TGFBR3 in tumor cells (Fig. 3c and Additional file 2:
Figure S2). Finally, we measured the levels of a number
of protein mediators in the ascites of up to 40 serous
ovarian cancer patients (Additional file 4: Table S3) and
found readily detectable levels for all mediators shown
in Fig. 3d, whereas IL4, IL12, IL13, and GM-CSF were
not detectable, consistent with the RNA-Seq and RT-
qPCR data (Fig. 2a and 3a). However, in a few cases, as-
cites levels were unexpectedly high in view of the low
expression of the corresponding mRNAs in tumor cells
and TAMs, e.g. IL-6 and VEGF-C (Fig. 2; Additional file
3: Datasets S3 and S5). We therefore investigated

Fig. 2 Genes coding for components of cytokine and growth factor signaling expressed in ovarian cancer cells and/or TAMs (RNA-Seq). a Genes
coding for cytokines and growth factors. Values represent the ratio of expression in tumor cells versus TAMs (median and 95 % CI). The color
code indicates the level of expression: green, low expression (TPM 3–20); blue, moderate expression (TPM 20–100); red, high expression
(TPM >100). b Genes coding for cytokine/growth factor receptors. For further details see Additional file 3: Datasets S2–S5
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whether this apparent discrepancy could be due to dif-
ferences in expression levels in unattached tumor cells
in suspension, as in spheroids, and in attached tumor
cells. To address this question, we performed RNA-Seq
analyses for four matched pairs of uncultured and cul-
tured spheroids. The latter were kept in serum-free
medium supplemented with autologous ascites for 6 days,
under which conditions the cells partly adhere to the plas-
tic surface. The results clearly show that a small number
of cytokine genes were indeed induced under these con-
ditions, including IL6 and VEGFC (Fig. 3e), while other
ones, such as IL10 and LIF were not. It is therefore pos-
sible that adherent tumor cells and solid tumor masses
rather than floating cells are the major source of some
of the ascites-associated protein mediators.

Delineation of a common signaling network of protein
mediators established by tumor cells and TAMs
Based on these data, we derived a model of a signaling
network involving ovarian cancer cells and TAMs
(Fig. 4). The predicted cellular origins and targets of

cytokines and growth factors are also summarized in
Additional file 2: Figure S3. In the following sections, we
will describe the most prominent signaling pathways
identified by our analyses.

(i) The STAT3-inducing cytokines IL-10, IL-6, and LIF
were identified as part of the signaling network
established in the present study (Fig. 4a). IL10 and
the gene encoding its receptor IL10R were expressed
mainly by TAMs, LIF and LIFR by tumor cells, IL6
and the genes for IL6 receptor subunits IL6R and
IL6ST by both cell types.

(ii)TGFB1, mainly expressed by TAMs, codes for the
major ligands of the TGFβ network, which also
comprises tumor cell-derived TGFB2 and BMP7
(encoding bone morphogenetic protein 7) as well as
BMP1 expressed by both cell types (Fig. 4b). These
ligands target both cell types, as suggested by the
expression patterns of the TGFBR and BMPR2 genes.

(iii)WNT7A is the most strongly expressed WNT gene
preferentially expressed by tumor cells (Fig. 4c).

A B

C D E

Fig. 3 Expression of cytokines, growth factors, and their receptors in ovarian cancer ascites. a Validation of RNA-Seq data by RT-qPCR of tumor cell
and TAM samples (each dot represents a different sample). b RT-qPCR analysis of matched tumor cell and TAM samples from the same patients
(each dot represents a matched pair). Data are represented as the ratio of expression in tumor cells and TAMs. The dotted line indicates a ratio of
1. c FACS analysis of cytokine (intracellular IL-8, S100A8/A9, and S100A14) and receptor (LIFR and TGFBR3) expression by tumor cells and TAMs.
Data in (a)–(c) were statistically analyzed by Student’s t-test (two-sided, unequal variance). Horizontal bars indicate the median. Gene names are
explained in Additional file 3: Datasets S4 and S5. d Concentrations of cytokines and growth factors in the ascites fluid from ovarian cancer
patients. Each dot represent a different patient, horizontal lines indicate the median. e RNA-Seq analysis of tumor cell spheroids before and after a
6-day culture in serum-free medium supplemented with 10 % autologous ascites (n = 4). The figure shows the ratio of matched pairs for all
protein mediator-encoding genes induced under these conditions at least tenfold (each dot represents a matched pair; median: horizontal bar;
95 % CI: box; min–max: whiskers)
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Other ligands of the network include WNT2B,
WNT5A, and WNT9A, differentially expressed by
tumor cells and TAMs. These ligands include
inducers of both canonical and non-canonical WNT
signaling [52]. The canonical pathway depends on
both frizzled receptors (FZD) and LRP coreceptors,
whereas non-canonical signaling does not require
LRPs. As multiple LRP genes are expressed by tumor
cells and TAMs (Fig. 4c), canonical WNT signaling
would be functional in both cell types.

(iv)Multiple S100 genes are highly expressed in tumor
cells and/or TAMs, including S100A8 and S100A9
(Fig. 4d). S100A8 and S100A9 proteins interact with

surface receptors either as monomers with advanced
glycation end products receptor RAGE (AGER) and
TLR4 or bind as heterodimers to different scavenger
receptors [53], all of which are expressed by TAMs
(MSR1, SCARA/B, CD36). Taken together with the
particular high expression of both genes in TAMs,
these findings point to a pivotal role for TAMs in
generating and processing S100A8/A9-associated
signals, which also applies to S100A12. Tumor cells
express scavenger receptor genes, but not AGER and
TLR4 at significant levels, suggesting that these cells
are primarily targeted by S100A8/A9 heterodimers.
On the other hand, tumor cells but not TAMs

A C

B E

D F

H

G

I

Fig. 4 A common cytokine signaling network of ovarian cancer cells and TAMs. Ligands are represented as “free floating” symbols, receptors as
membrane-associated symbols. Ligands derived from tumor cells are shown in red, ligands originating from TAMs in blue, ligands expressed by
both cell types at similar levels (less than tenfold difference in TPM) in purple. Each ligand or receptor is represented by one or more identical
symbols according to their expression levels (1, 2, and 3 symbols corresponding to green, blue, and red, respectively in Fig. 2). The model is based
on the data in Figs. 2, 9c and Table 1 and assumes that protein levels follow gene expression. Gene names are explained in Additional file 3: Data-
sets S4 and S5. Red asterisks denote components associated with a poor clinical outcome (based on Figs. 7–9). Ligands shown in red letters are
expressed only in a subset of patients (Table 1) and associated with a short relapse-free survival (RFS) (Fig. 9c)
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express ERB2, encoding a receptor for S100A4,
suggesting a tumor-selective effect. In contrast,
multiple S100 members of varying cellular
origins seem to target preferentially TAMs, as
suggested by the lack of RAGE expression by
tumor cells.

(v)Both tumor cells and TAMs express multiple
semaphorins and their receptors (plexins and
neuropilins), thereby establishing autocrine as well
as paracrine signaling mechanisms (Fig. 4e). While
SEMA3F, 5A, 6A, and 6D expression is clearly
higher in tumor cells, the opposite is true for SEMA
4A and 6B. The semaphorin receptor genes
PLXNA1, PLXNA3, NRP1, and NRP2 are expressed
by both cell types, whereas PLXNB1 and PLXND1
expression is selective for tumor cells and TAMs,
respectively.

(vi) Ephrins are also part of the signaling network, with
tumor cells playing a major role (Fig. 4f ). Thus,
tumor cells are the main origin of six different
ephrin family members, compared to one subtype
expressed by TAMs. Likewise, A-type receptor ex-
pression is
restricted to tumor cells and B-type receptor expression
is considerably higher in, or selective for, tumor cells,
the latter exemplified by EPHB3 and EPHB4.

(vii)TAMs play a major role both as producers and
targets of multiple chemokines of the CCL family
(Figs. 2a and 4g). Thus, TAMs preferentially express
multiple CCL genes, with CCL2, CCL3, and CCL4
being the most strongly expressed ones. Moreover,
significant expression of receptor genes for these
cytokines (CCR1, CCR2, CCR5) was detected only in
TAMs. In contrast, several CXCL type chemokine
genes are expressed by both cell types, however,
significant expression of genes coding for their
cognate receptor genes was only detectable for
CXCR4 in both cell types, consistent with its
description as an independent predictor of a poor
clinical outcome of ovarian cancer [54].

(viii)Our study also predict a number of other pathways
known to play important roles in tumor progression
(Figs. 2 and 4h, i). These include: (1) stimulation of
the MET receptor on tumor cells by TAM-produced
HGF; (2) the interaction of amphiregulin (AREG)
produced by both cell types with ERB2, 3, and 4 re-
ceptors on tumor cells; (3) the activation of NOTCH
receptors on both cell types by JAG1/2
ligands, mainly produced by tumor cells; (4) PDGF
signaling by all different family members via
PDGFR-A on both cell types; (5) IGF1/2 signaling
particularly through IGFR2; and (6) the interaction
of angiopoietin-like 4 (ANGPTL4) with integrin β1
(ITGB1).

Expression of signaling components in tumor cells from
subsets of patients
A number of genes encoding protein mediators were
uniformly expressed by tumor cells and/or TAMs (e.g.
IL8, KITLG, LEP), but median expression of the corre-
sponding receptor genes was extremely low in both cell
types (Figs. 2 and 4; Additional file 3: Datasets S2–S5).
Likewise, several receptor genes (e.g. IL4R, INFAR/INFGR,
PTCH/SMO) were consistently expressed by tumor cells
and/or TAMs, but ligand expression was not detectable.
This may be due to the expression of the “missing” ligands
and receptors by other host-derived cells or by tumor cell
subsets not present in ascites. On the other hand, some of
these genes may not be part of the common network due
to a restricted expression in smaller subsets of patients.
Such genes may be of particular interest, since their ex-
pression could be related to the aggressiveness of the dis-
ease and thus to its clinical outcome.
We therefore searched for genes not found in the

common network but potentially complementing this in
a small subfraction of patients. These genes had to fulfill
two conditions: (1) TPM >3 in n ≥2 tumor cell or TAM
samples (but below the 65 % quantile used in Fig. 2);
and (2) coding for proteins representing ligands or re-
ceptors for the pathways constructed in Fig. 4. Genes
identified by this approach in tumor cells (n = 35;
Table 1) and TAMs (n = 14; Additional file 4: Table S4)
may indeed be of high relevance, as they code for com-
ponents of chemokine, TGFβ/BMP, FGF, ephrin, sema-
phoring, and WNT pathways. We also found the gene
coding for norrin (NDP), a frizzled 4 ligand unrelated to
the WNT family [55], to be expressed in tumor cells
from a subset of patients (Table 1).

Identification of a common transcriptome-based signaling
network of lipid mediators between tumor cells and
TAMs
Lipids derived from phospholipids represent another
major group of soluble mediators in ovarian cancer asci-
tes. These comprise mainly breakdown products of
phospholipids and metabolites of polyunsaturated fatty
acids (PUFAs), in particular AA-derived [30] products of
the cyclooxygenase and lipooxygenase pathways [33].
While the first group of mediators, including lysopho-
sphatidic acid (LPA) and PUFAs, is mostly generated by
secreted phospholipases, eicosanoid metabolites of the
second group are produced exclusively intracellularly.
We therefore focused our attention on proteins gener-
ating signaling compounds of either group and their
receptors and performed an analogous study as de-
scribed above using datasets of 93 genes encoding en-
zymes, accessory proteins (Additional file 3: Dataset
S6; n = 69), or lipid receptors (Additional file 3: Dataset
S8; n = 24).
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Table 1 Patient-specific expression of cytokine and receptor genes by tumor cells complementing the signaling networks
constructed in Figs. 4 and 6
Gene Description Min. TPM Max. TPM

Cytokines

BMP8B Bone morphogenetic protein 8b 0.32 32.17

CXCL6 Chemokine (C-X-C motif) ligand 6 0.00 7.74

CXCL14 Chemokine (C-X-C motif) ligand 14 0.00 5.74

DKK1 Dickkopf WNT signaling pathway inhibitor 1 0.00 7.49

EFNA3 Ephrin-A3 0.95 16.74

EGF Epidermal growth factor 0.09 10.16

FGF2 Fibroblast growth factor 2 (basic) 0.02 29.35

FGF9 Fibroblast growth factor 9 0.08 15.31

FGF11 Fibroblast growth factor 11 0.48 6.17

FGF13 Fibroblast growth factor 13 0.08 9.04

FGFBP1 Fibroblast growth factor binding protein 1 0.00 28.97

KITLG KIT ligand 0.04 7.48

NDP Norrin (Norrie disease pseudoglioma) 0.00 5.44

NRG1 Neuregulin 1 0.02 5.23

NRG2 Neuregulin 2 0.04 4.59

NRG3 Neuregulin 3 0.00 13.39

PDGFD Platelet derived growth factor D 0.29 6.58

RSPO3 R-spondin 3 0.02 8.90

S100A7 S100 calcium binding protein A7 0.00 4.03

S100P S100 calcium binding protein P 0.00 12.00

SEMA3D Semaphorin 3D 0.00 6.07

SEMA3E Semaphorin 3E 0.13 93.32

SEMA4G Semaphorin 4G 0.16 6.74

SEMA5B Semaphorin 5B 0.03 19.94

SEMA6C Semaphorin 6C 0.68 4.76

SEMA7A Semaphorin 7A 0.26 9.55

SFRP1 Secreted frizzled-related protein 1 0.00 527.58

TGFB3 Transforming growth factor, beta 3 0.07 4.51

Cytokine receptors

AGER Advanced glycosylation end product receptor 0.30 5.01

EPHA6 EPH receptor A6 0.13 25.52

FGFR4 Fibroblast growth factor receptor 4 0.33 3.76

FZD2 Frizzled family receptor 2 0.22 6.18

FZD10 Frizzled family receptor 10 0.00 7.95

IL10RA Interleukin 10 receptor, alpha 0.00 5.91

Lipid mediators

ALOX15B Arachidonate 15-lipoxygenase, type B 0.06 8.03

Lipid receptors

LTB4R2 Leukotriene B4 receptor 2 1.11 3.78

PTGER3 Prostaglandin E receptor 3 (subtype EP3) 0.10 11.87
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The RNA-Seq data summarized in Fig. 5a and Additional
file 3: Datasets S7 and S9 identified 31 genes involved in
the enzymatic generation of lipid mediators and expressed
in ovarian cancer cells and/or TAMs. Figure 5b shows the
data for expression of the corresponding receptor genes
(n = 17). A number of key observations were confirmed by
RT-qPCR analysis of a larger number of clinical samples
(Fig. 5c, d).
We also investigated whether genes expressed at higher

levels in tumor cells or TAMs only from a small subfrac-
tion (n ≥2) of patients participate might also participate in

lipid-mediated signaling pathways. This analysis identified
three genes expressed in tumor cells, i.e. ALOX15B, the
leukotriene B4 receptor gene LTB4R2 and the PGE2 recep-
tor gene PTGER3 (Table 1).
These findings point to a network of lipid mediators

established by both tumor cells and TAMs, involving
several distinct groups of signaling molecules, as described
below.

(i) The first network is based on products of
phospholipid hydrolysis that are generated by

A

C

D E

B F

Fig. 5 Genes coding for components of lipid signaling expressed in ovarian cancer cells and/or TAMs (RNA-Seq). a, b Genes coding for enzymes
involved in the generation lipid mediators and their receptors. Values represent the ratio of expression in tumor cells versus TAMs (median and
95 % CI). Color code as in Fig. 2. Detailed results are summarized in Additional file 3: Datasets S6-S9. c Validation of RNA-Seq data by RT-qPCR of
tumor cell samples (each dot represents a different sample). d RT-qPCR analysis of matched tumor cell and TAM samples from the same patients
(each dot represents a matched pair). Data are represented as the ratio of expression in tumor cells and TAMs. The dotted line indicates a ratio of
1. Data in (c) and (d) were statistically analyzed by Student’s t-test (two-sided, unequal variance). e Concentrations of lipid mediators in the ascites
fluid from ovarian cancer patients determined by LC-MS/MS. Each dot represents a different patient, horizontal lines indicate the median. f Con-
centrations of autotaxin (ENPP2) and PLA2 isoforms in ascites quantified by ELISA
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specific phospholipases (Figs. 5 and 6a). This
conclusion is consistent with the presence of high
levels of LPA, AA, specific A2-type phospholipases
(in particular PLA2G7), and autotaxin in ascites
(Fig. 5f ). TAMs seem to play an essential role in this
context, since they express PLA2G7 and ENPP2 at
higher levels than tumor cells (Fig. 5a, c). Importantly,
the protein levels of 3 phospolipases (PLA2G2,
PLA2G7, and PLA2G12A) measured in ascites fluid
(Fig. 5f) are consistent with mRNA expression levels
in tumor cells and TAMs (Fig. 5a; Additional file 3:
Dataset S6). LPA in ascites apparently targets tumor
cells and TAMs via specific receptors, since LPAR1
and LPAR2 are expressed at similar levels by both
cell types, LPAR3 is selective for tumor cells, LPAR5
and LPAR6 for TAMs (Fig. 5b–d). AA is taken up
by tumor and host cells [56], where it can regulate

signaling pathways, either directly or after metabolic
conversion.

(ii)The second network is established by prostanoids
(Fig. 6b), in particular prostanglandin E2 (PGE2) and
PGI2 (prostacyclin), both found at substantial levels
in ascites (Fig. 5e; 6k-PGF1a is the stable degradation
product of PGI2), as previously described [56]. Most
genes encoding the enzymes required for their
synthesis (cyclooxygenases and prostaglandin
synthases) are expressed at similar levels by both
cells types (PTGS1, PTGES2/3, PTGIS; Fig. 5a, c, d),
whereas PTGS2 is selective for TAMs. A major
target of their products seem to be TAMs, which
express considerable higher levels of the PGE2 and
PGI2 receptor genes PTGER2, PTGER4, and PTGIR
(Fig. 5b, c) with the exception of PTGER3 expressed
only by a small subset of tumor cells (Table 1). In

A

B

Fig. 6 Common lipid signaling in the ovarian cancer microenvironment. a A transcriptome-derived model depicting the cellular origins and targets
(tumor cells, TAMs) of phospholipid degrading enzymes, AA and LPA. b An analogous model for AA-derived eicosanoid mediators and the sources
of enzymes involved in their synthesis. The models are based on the data in Fig. 5a and b. Genes in square brackets are expressed in tumor cells
in small subset of patients (Table 1). The source of ligands is indicated as follows: red for tumor cells, blue for TAMs, and purple for both. Colored
gene names indicate higher expression tumor cells (red) or TAMs (blue). Each receptor is represented by one or more identical symbols according
to their expression levels (as in Fig. 4). [ ]: expressed in subset of patients. Red asterisks denote components associated with a poor clinical out-
come (based on the data in Figs. 7–9). Gene names are explained in Additional file 3: Datasets S8 and S9
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addition, TAMs also show a higher expression of
PPARD (Fig. 5b–d), encoding the nuclear receptor
PPARβ/δ, a possible target for PGI2 [57]. Figure 6b
shows a schematic representation of these results.

(iii)Products of the lipoxygenase pathway, i.e. 5-HETE,
15-HETE and leukotriene A4 (LTA4) represent the
third network (Fig. 6b). These AA metabolites are
present in ascites at readily detectable concentrations
(Fig. 5e; LTB4 is a stable metabolite of the unstable
LTA4). This is consistent with the expression of the
corresponding lipoxygenase (ALOX5), 5-lipoxygenase
activating protein (ALOX5AP), and leukotriene
synthase (LTA4H) genes (Fig. 5a, c) in TAMs. In
contrast, TAMs also preferentially express the LTB4

surface receptor genes LTB4R, LTB4R2, and
CYSLRT1/2. 15-HETE has been described as a
ligand for the nuclear receptors PPARγ [58] and
PPARβ/δ [59], which are both expressed at higher
levels in TAMs (Fig. 5b–d). The gene coding for the
presumptive 5-HETE receptor OXER1 [60] is
expressed at very low levels in both cell types, if at
all (Additional file 3: Dataset S8), suggesting that
5-HETE is more likely to act as a precursor of LTA4

in these cells.

Association of mediator concentrations with clinical
outcome
We next asked whether mediators in the tumor micro-
environment are associated with the clinical outcome of
high-grade serous ovarian carcinoma. We therefore
assessed potential associations of the ascites levels of cy-
tokines and lipids prior to first-line therapy with RFS by
Kaplan–Meier analysis (see Additional file 4: Table S3
for patient-specific clinical features). The logrank p
values depicted in Fig. 7a demonstrate a clear association
of the STAT3-inducing cytokines IL-10, IL-6, and LIF
with early relapse (Fig. 7a–c), with IL-10 being the strongest
indicator of a poor outcome (p <0.0001; logrank hazard ra-
tio [HR] = 4.54; 95 % confidence interval [CI] = 4.56–40.5;
median survival 12.0 versus 26.0 months), which is in
agreement with a previous study of a smaller cohort of
patients [7]. The present study identified inverse associ-
ations with RFS for four additional mediators, i.e.
TGFβ1, PLA2G7, AA, and its metabolite LTB4 (Fig. 7a,
d–g). In contrast, PLA2G12A, autotaxin, and the PLA2/
autotaxin product LPA did not show any correlation
(Fig. 7a). Likewise, the AA metabolites PGE2, PGI2, 5-
HETE, and 15-HETE, also components of the lipid sig-
naling network identified above, were not linked to RFS.
The relevance of these cytokines and AA as indicators

of an adverse clinical outcome became particularly evi-
dent when we determined the RFS for combinations of
these mediators. Thus, patients with a high level of ei-
ther IL-10 and AA, IL-6 and AA, or TGFβ and AA

showed a clearly worse outcome compared to those with
a high concentration for only one mediator (red versus
gray curves in Fig. 8a–c; p = 0.016 for IL-10; p <0.0001
for IL-6; p = 0.0002 for TGFβ). For IL-10, a similar dif-
ference was observed between patients showing a high
concentration for either IL-10 or AA versus those with
low levels of both mediators (Fig. 8a; p = 0.0045). A simi-
lar analysis for the other two cytokines was not possible
due to an insufficient number of cases in the “both low”
group. A striking association was observed when patients
were compared with high IL-10 and high AA levels to
those with low concentrations of both mediators (Fig. 8a;
p <0.0001; logrank HR = 9.50; 95 % CI = 4.38–47.3; me-
dian survival 12.0 versus >34 months).
Pearson analysis revealed low correlation coefficients

(r) when cytokine levels were compared to lipid concentra-
tions (Fig. 8d), indicating that the observed clinical associa-
tions are not simply a consequence of their co-synthesis.
Likewise, the concentrations of AA did not correlate with
any of the AA metabolites tested. In contrast, IL-6 and LIF
levels were highly correlated (R = 0.87), pointing to com-
mon regulatory pathways.

Association of gene expression levels with clinical
outcome
Finally, we sought to establish clinical correlations with
components of the common signaling network estab-
lished above (Fig. 4). Toward this end, we made use of
published microarray results for 1018 high-grade serous
ovarian cancer patients with documented RFS [38]. The
samples used for these analyses were derived from solid
tumor masses and therefore contained variable amounts
of host-derived cells, including TAMs, as confirmed by
the large range of expression values observed for macro-
phage marker genes across this cohort. Kaplan–Meier
analysis for these genes actually showed a clear association
of RFS with the expression of these genes (Additional
file 2: Figure S4), presumably reflecting the known ad-
verse effect of TAM infiltration on the clinical outcome.
In addition, this scenario means that genes not primarily
expressed in tumor cells cannot be faithfully analyzed,
since it is not possible to separate effects of gene expres-
sion from host cell “contamination” in the sample and
the algorithm developed in the present study for RNA-
Seq cannot be applied to microarrays.
We therefore decided to focus our survival analysis on

genes expressed at a higher level in tumor cells relative
to TAMs (i.e. more than twofold in Fig. 2). We identified
multiple mediator and receptor genes that are clearly
(p <0.01) associated with a shorter RFS (red in Fig. 9a, b),
consistent with their established or suspected functions in
tumor progression. These include the cytokine genes
CCL28, IGF2, SEMA5A, and WNT11, and the receptor
genes EPHB2, ERBB2 and 3, FGFR2, ITGB1, LRP12 as
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well as NPR1 and 3 (Fig. 9a, b). We also found a surpris-
ing association of a favorable clinical outcome with
WNT receptor frizzled 4 (FZD4) gene expression
(Fig. 9a). We performed an analogous survival analysis
for genes associated with lipid signaling and expressed
at higher levels by tumor cells relative to TAMs (right-
most genes in Fig. 9a, b), based on the data in Fig. 5a
and b. A particularly strong association with an adverse
clinical outcome was observed for PTGIS (p = 0.0005),
which codes for prostaglandin I2 (prostacyclin) synthase
(Fig. 6b).

Finally, we performed Kaplan–Meier analyses (Fig. 9d–g)
of genes expressed only in small subgroups of our patients
(Table 1). A very strong adverse effect on RFS (p = 0.0001)
was seen with TGFB3 (Fig. 9c, d), in line with the cen-
tral role of the associated signaling pathways in cancer,
and with PTGER3 (Fig. 9c, e; p <0.0001), encoding a
prostaglandin E2 receptor (Fig. 6b). Strong associations
with poor RFS (p <0.001) were also seen with PDGFD
and SEMA6C. However, the most intriguing finding
was the identification of NDP as a powerful indicator of
a favorable clinical course (p <0.0001; Fig. 9c, f ). NDP

A

B C

E F

D

G

Fig. 7 Association of RFS with the levels of cytokines and lipid mediators in ovarian carcinoma ascites. a Summary of RFS analyses showing the
p values determined by Mantel-Cox log rank test. Patients were dichotomized into high and low expressing groups according to the following
quantiles (best-fit) and number or patients: IL-10, Q = 0.66 (n = 36); IL-6, Q = 0.5 (n = 39); TGFβ1, Q = 0.25 (n = 39); AA, Q = 0.25 (n = 38); LTB4,
Q = 0.25 (n = 38); PLA2G7, Q = 0.33 (n = 33). Significant instances with a HR >1 are shown in red; grey bars indicate lack of significant associations.
Significance was defined as logrank p <0.05 and p < Benjamini-Hochberg critical value for false discovery rate (FDR) = 0.10. b–g Kaplan–Meier plots
showing the RFS of patients with high or low ascites levels (best-fit) of IL-10, IL-6, TGFβ1, PLA2G7, AA, and LTB4 (see “Methods” for details)
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codes for norrin, which interacts with the receptor
frizzled 4 [55, 61] and TSPAN12, a signal-amplifying
component of the norrin–frizzled 4 complex [55]. This
presumably explains the strong association of FZD4
with RFS (p = 0.0004; Fig. 9g) described above. Further-
more, TSPAN12 was also inversely associated with RFS
(p = 0.0343; Fig. 9h). Taken together, these findings provide
strong evidence for novel tumor suppressor function of
norrin–frizzled 4–TSPAN12 signaling in ovarian cancer.

Discussion
We have defined a tumor cell and macrophage-driven
signaling network operating within the environment of
ovarian cancer-associated carcinomatosis involving inter-
leukins, chemokines, members of the TGFβ, WNT,
S100, semaphorin and ephrin families, the phospholipid
breakdown products LPA, and AA as well as AA metab-
olites. This network is composed of mostly common,
but also patient-specific mediators and receptors and in-
cludes pathways previously not identified in the context
of ovarian cancer or intercellular signaling in the tumor
microenvironment (Figs. 4 and 6). We will discuss these
pathways in the following sections, in particular with re-
spect to their association with disease progression after
first-line therapy.

STAT3-inducing cytokines
In agreement with the established function of deregu-
lated STAT3 in ovarian cancer [62], IL-10, IL-6, and LIF
were confirmed as components of the signaling network
established by tumor cells and TAMs (Figs. 3–5). Their
cellular origins and target cells clearly support a pivotal
role for TAMs within this network, since these cells are
the main producers of IL-10, a major source of IL-6 and
the predominant target of IL-10, which presumably plays
an important role in their protumorigenic conversion.
Expression of LIF and its receptor are higher in tumor
cells, pointing to a function for this cytokine beyond
its proposed function in TAM polarization [18]. The
pathways triggered by these cytokines are also directly
relevant to progression of the disease as shown by the in-
verse association of their ascites levels (Fig. 7) with RFS,
consistent with previous studies [7, 63, 64]. Taken to-
gether, these data clearly confirm a critical role for
cytokine-mediated STAT3 deregulation in ovarian cancer
by exerting pro-tumorigenic effects on both tumor cells
and macrophages and its potential as a drug target [65].

TGFβ family
Multiple TGFβ family members have previously been as-
sociated with ovarian cancer [19, 25, 66]. In agreement

A

B

C

D

Fig. 8 Synergistic association of RFS with the levels of AA and cytokines in ovarian carcinoma ascites. a–c Patients were trichotomized for RFS
analysis, using the best fit thresholds determined in Fig. 7: group 1, cytokine and AA high; group 2, one high/one low; group 3, both low. See
“Methods” for details. d Pearson correlation matrix for soluble mediators in ovarian cancer ascites shown to be of particular relevance in the
present study. The heatmap depicts different levels of positive correlation (red: high, yellow: low, corresponding to a range of R = 0.5–1.0)
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with this established knowledge, we identified several
components of this signaling system as important con-
stituents of the ovarian cancer microenvironment, with
both tumor cells and TAMs as essential contributors
(Fig. 4b). This conclusion is strongly supported by the
observed clinical correlations. Thus, the ascites concen-
tration of TGFβ1, mainly produced by TAMs, was asso-
ciated with early relapse (Fig. 7). A similar adverse link
was observed between RFS and the expression of TGFB2
and TGFB3 genes by tumor cells, with the latter repre-
senting one of the strongest indicators of a poor clinical
outcome (Fig. 9c, d). These observations are fully com-
patible with the known functions of TGFβ ligands in
tumor progression [67] and immune suppression [68], as
well as the adverse effect of TGFBR2 and phosphory-
lated SMAD2/3 on survival [66]. Previous studies have
also associated BMP2 and BMP4 with ovarian cancer,
both of which are expressed at extremely low levels in
tumor cells and TAMs (Additional file 3: Dataset S2),
which may be explained by the previous identification of

ovarian cancer-associated mesenchymal stem cells as a
major source of these cytokines [69].

Frizzled-mediated signaling
WNT signaling is another major signaling mechanism
identified in the present study (Fig. 4c). Seven genes en-
coding inducers of canonical and/or non-canonical
WNT signaling [52], most of which were found to be
preferentially expressed by tumor cells. Non-canonical
WNT signaling is induced by WNT interaction with
FZD without involvement of LRP coreceptors and trig-
gers a calcineurin-NFAT pathway. The expression of at
least seven FZD genes strongly suggests that the non-
canonical pathway is operational. The canonical pathway
depends on both FZD and LRP proteins and stimulates
β-catenin signaling. Nine LRP genes are expressed by
tumor cells and/or TAMs (Fig. 4c), suggesting that the
canonical pathway is functional in both cell types and
utilizes cell type-specific receptors. Importantly, we
found a strong inverse association of WNT11 expression

A
D
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Fig. 9 Association of RFS with the expression of genes coding cytokines, growth factors, and lipid mediators or their receptors. Panels (a)–(c)
represent summaries of RFS analyses for 1018 serous ovarian carcinoma patients depicting the results of logrank P tests and the directions of the
respective hazard ratio (HR), using the KM plotter database [38]. a, b Survival analysis for genes in Fig. 2 with an expression ratio (tumor cell/TAM) >0.3.
Genes missing from the microarray datasets used by KM Plotter were not included in panels (a)–(c). Significant instances (for “JetSet best
probe”) are shown in red (HR >1) or green (HR <1); gray bars indicate lack of significant associations (p ≥0.5) or p > Benjamini-Hochberg critical
value for FDR = 0.10. Significance was determines as in Fig. 8. c Survival analysis as before, but for genes expressed only in small subgroups of
patients (see Table 1 and Additional file 3: Dataset S1 ). d–h Kaplan–Meier plots analyzing the RFS of patients with high or low levels of TGFB3,
PTGER3, NDP, or TSPAN12A expression. See “Methods” for details
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with RFS (Fig. 9a), and also confirmed the previously de-
scribed [70] correlation of WNT7A expression with a
poor clinical outcome (Fig. 9a).
R-spondins (RSPO) and their receptor LGR5 are re-

quired for optimal canonical WNT signaling [22], but
expression was insignificant in all samples (LGR5; Add-
itional file 3: Dataset S3) or was found in tumor cells
from a subset of patients only (RSPO genes; Table 1).
Since LGR5 has been identified as a stem-cell specific
gene in ovarian epithelial cells in mice [21], this pathway
may be restricted to tumor cells with stem-like proper-
ties, although the role of LGR5 in human ovarian epithe-
lial cells is unclear.
We also found tumor cell selective expression of the

NDP, FZD4, and TSPAN12 genes (Fig. 4c, f, g), encoding
norrin, its receptor frizzled 4, and a norrin signal-
amplifying component of the receptor complex, respect-
ively [55], which were linked to colon cancer angiogen-
esis in a recent study [61]. Intriguingly, we identified
NDP, FZD4, and TSPAN12 to be associated with a de-
layed tumor progression, thus pointing to a novel tumor
suppressor function of this signaling pathway in ovarian
cancer. This finding is puzzling, since norrin shares with
canonical WNT ligands the ability to induce β-catenin,
generally considered a pro-tumorigenic pathway. In view
of the currently very limited knowledge on norrin-
mediated signaling, the mechanism underlying a putative
function in tumor suppression remains elusive and may
involve hitherto unidentified signal transduction events.

S100 family
S100 proteins play essential roles in tumor growth and
progression, chemoresistance, and immune modulation
[53]. Several S100 members are secreted or otherwise re-
leased in the extracellular space and interact with sur-
face receptors, including the advanced glycation end
products receptor RAGE (AGER), scavenger receptors
(MSR1, SCARA/B gene products, CD36), EGF family re-
ceptors and toll-like receptor 4 (TLR4), and stimulate
multiple signaling transduction pathways, including
NFκB and MAP kinases [53]. Our data show that several
S100 genes, i.e. S100A4, S100A6, S100A10, S100A8, and
S100A9, are expressed at very high levels in both tumor
cells and TAMs (Fig. 4d). Furthermore, multiple recep-
tors interacting with different S100 proteins or S100A8/
A9 heterodimers are expressed by both tumor cells and
TAMs (SCARA/B, CD36), preferentially by TAMs
(AGER, MSR1, TLR4) or by tumor cells (ERBB2), point-
ing to extensive functional interactions between both
cell types. Surprisingly, none of the S100 genes showed
an association with early relapse (Fig. 9b), which is in
line with the lack of literature data supporting a role for
S100 proteins in the clinical progression of ovarian
cancer.

Semaphorins and ephrins
Semaphorins and ephrins, originally identified as axon
guidance molecules, also have essential physiological
functions during organ development, angiogenesis, and
immune regulation [71–73]. More recently, their in-
volvement in cancer cell migration, invasion, and metas-
tasis has been uncovered, but is currently only partially
understood. Activation of plexins by semaphorins results
in the transactivation of oncogenic receptor tyrosine ki-
nases, including MET, ERBB2, and KDR [73, 74]. Indi-
vidual family members can be associated with either
stimulatory or inhibitory effects on tumorigenesis and
angiogenesis. For instance, a potential role in suppres-
sion of malignant melanoma has been described for
PLXNB1 [75], while cooperation with ERBB2 and a pro-
metastatic role was reported for breast cancer cells [76].
We have identified multiple genes encoding components
of both semaphorin and ephrin signaling in both tumor
cells and TAMs, i.e. 13 semaphorins and at least six cog-
nate receptors, as well as six ephrin members and seven
receptors. These findings point to a complex signaling
network established by tumor cells and TAMs (Fig. 4e),
involving both autocrine and paracrine signaling mecha-
nisms, as well as cell type-selective expression of ligands
and receptors. Five of these genes, SEMA3C, 3 F, 5A, 6A
and in particular 6C, are associated with early relapse
(Fig. 9a and c). Likewise, four ephrin receptor genes
(EPHA1, EPHA4, EPHB2, EPHB4) showed an adverse
clinical association (Fig. 9b). Our findings therefore
strongly support a tumor-promoting role for axon guid-
ance ligands and their receptor in ovarian cancer. As
these are expressed by tumor cells as well as TAMs, it is
likely that both cell types play a role in this context.

Chemokines
Chemokines are produced by and target tumor and
tumor-associated host cells through a large number of
ligand-selective surface receptors, thereby establishing a
large intercellular signaling network. These include TAMs
[77], but their precise integration into the microenviron-
ment of a human cancer has not been established. Our
data support an essential role of TAMs within the chemo-
kine network, since they express 11 CCLmembers (Fig. 2a)
and three CCR receptors (Fig. 2b), of which two (CCL2
and CCL5) are also expressed by tumor cells. TAMs also
play an important role as producers of ten different che-
mokines of the CXCL family (Fig. 2a), but express only
two CXCR receptor genes. One of these is CXCR4, thus
confirming the prosed role of the CXCL12–CXCR4 axis
in the progression of many tumor types [78], including
ovarian cancer [54]. Since chemokines mainly address
other cell types, in particular T-cells, the lack of expres-
sion of other CXCR genes in tumor cells and TAMs is
conceivable.
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Phospholipid breakdown products
Tumor cell and TAMs express multiple genes for se-
creted phospholipases, with PLA2G7, preferentially
expressed by TAMs, as the major subtype (Fig. 5a). Intri-
guingly, PLA2G7 ascites levels are associated with a
short RFS (Fig. 7a, e), indicating a clinical relevance for
the phospholipid breakdown products. These include
LPA, generated from lysophospholipids by autotaxin,
and PUFAs. Our survival analyses did not show any sig-
nificant correlation of LPA or autotaxin levels in ascites
with the clinical outcome (Fig. 7a). However, the former
result must be considered with some caution, since LPA
represents a mixture of several compounds with differ-
ent fatty acids in the sn1 position. It has been shown
that different LPA species can exert different biological
effects, which may be obscured when these are collectively
quantified. Furthermore, according to the manufacturer,
the antibody used for this analysis (ELISA) recognizes the
minor forms (e.g. linolenic 18:3 LPA) with a higher affinity
compared to the more common LPA species (e.g. oleic
18:1 LPA). The relevance of LPA as a potential indicator
of early ovarian cancer relapse has therefore to be re-
evaluated in future studies using methods that are able to
discriminate different LPA species.
On the other hand, a clear inverse association with

RFS was observed for AA (Figs. 4, 7a, f ). The clinical
relevance of AA is strongly supported by our finding
that the adverse effect of cytokines, like IL-6, IL-10, and
TGFβ were enhanced by the simultaneous presence of
high AA levels, pointing to a hitherto unknown cooper-
ation in causing therapy failure and disease progression.
Importantly, AA concentrations did not show any sig-
nificant correlation with IL-6, IL-10, or TGFβ (Fig. 8d),
excluding the possibility that the observed clinical corre-
lations are due to a common mechanism regulating the
synthesis of these mediators.

Arachidonic acid metabolites
AA is metabolized to a number of highly bioactive eicos-
anoid derivatives, in particular cyclooxygenase-derived
prostanoids and lipoxygenase-derived HETEs and leuko-
trienes. In ovarian cancer, several components of these
pathways are present in ascites, and the required en-
zymes are expressed by both tumor cells and TAMs
(Fig. 6b). These mediators seem to act primarily on
TAMs, including PGE2, PGI2, and 15-HETE, as judged
by the expression of their cognate receptors. An excep-
tion was LTB4 with receptors on both cell types. A clin-
ical relevance of these mediators is suggested by the
observed inverse associations of RFS with the ascites
levels of LTB4 (Figs. 4, 7a, g) and the expression of the
PTGIS and PTGER3 genes (Figs. 4, 9b, e), encoding PGI2
synthase and a PGE2 receptor, respectively (Fig. 6b).
These findings could, at least in part, explain the adverse

effect of AA on survival, i.e. by serving as a precursor of
pro-tumorigenic metabolites.
It can, however, not be excluded that non-metabolized

AA contributes to this effect. We have recently shown
that PPARβ/δ, which is expressed preferentially in TAMs
(Fig. 2b), is deregulated by PUFA ligands in ovarian can-
cer ascites [56]. It is, however, very unlikely that PPARβ/
δ mediates the adverse effect of AA on RFS, because the
major ascites-associated PUFA with strong agonistic ef-
fect on PPARβ/δ is linoleic acid [56], which, in turn, is
not linked to survival at all (Fig. 7a). Even though other
targets for non-metabolized AA have been identified
[79–82], AA-triggered signaling is poorly understood,
making it difficult to speculate on the molecular mech-
anism underlying the clinical effect discovered in the
present study.

Conclusions
In spite of the clearly documented pivotal role of the
tumor microenvironment in tumor growth, progression,
and immune escape, the reciprocal interactions of tumor
and host cells through soluble mediators are only par-
tially understood. In the present study we have estab-
lished a global RNA-Seq based strategy to address this
problem using tumor cells and TAMs from ovarian car-
cinoma ascites. As a first step, we developed an algo-
rithm to adjust sequencing data for the presence of
contaminating cells in the samples analyzed, i.e. macro-
phages in tumor cell fractions or vice versa. After
optimization on training datasets the algorithm was suc-
cessfully applied to the ovarian cancer samples used in
the present study, indicating that the method should be
generally applicable to tackle the problem of contamin-
ating cells in RNA-Seq samples.
Taken together, our observations suggest that the strat-

egy used in the present work is a generally applicable ap-
proach to address complex interactions in the tumor
microenvironment. These include several important
questions not addressed by the current study. First, it is
possible that we missed clinically relevant genes, because
of the necessity to exclude genes expressed at high levels
in TAMs from our survival analysis. Thus, survival-
associated receptor genes expressed primarily in TAMs
would not have been found. Future sufficiently large
RNA-Seq studies of pure cell types or single cells in con-
junction with survival analyses will have to answer this
question. Second, host cells other than TAMs are clearly
important constituents of the tumor microenvironment,
but their role within a signaling network are even less
understood. In ascites these are primarily other immune
cells and mesothelial cells, while fibroblasts and endo-
thelial cells are rare or absent. Thus, the integration of T
cells into the signaling network operating among the
ascites-associated cells will be an important next step.
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Third, it is unknown how ascites-associated tumor and
host cells differ from their counterparts in solid tumor
masses. Purification of cells from metastases of the same
patients could be used to address this question, and also
to analyze the contribution of host-derived cell types re-
stricted to solid tumor tissue.

Methods
Patient samples
Ascites was collected from patients with high grade ser-
ous ovarian carcinoma undergoing primary surgery at
the University Hospital in Marburg. Written informed
consent for the use of ascites for research purposes and
publication of the results obtained from this research
was obtained from all patients prior to surgery according
to the protocols approved by the ethics committee of
Marburg University (Az 205/10). Patient characteristics
are presented in Additional file 4: Tables S1 and S3.
Clinical courses were evaluated by RECIST criteria [83]
in patients with measurable disease or profiles of serum
CA125 levels [84], according to the recommendations by
the Gynecologic Cancer InterGroup (GCIG). Only patients
with observations periods ≥12 months after first-line sur-
gery were included in the survival analysis. All experimental
methods comply with the Helsinki Declaration.

Isolation of TAMs from ovarian cancer ascites
Mononuclear cells were isolated from ascites by Lympho-
cyte Separation Medium 1077 (PromoCell) density gradi-
ent centrifugation and further purified by magnetic cell
sorting (MACS) using CD14 microbeads (Miltenyi Bio-
tech). TAMs were directly analyzed by FACS as described
below or lysed in PeqGold (Peqlab) for RNA preparation.

Tumor cell/spheroid isolation from ascites
Mononuclear cells were isolated from ascites by Lympho-
cyte Separation Medium 1077 (PromoCell) density gradient
centrifugation. Tumor spheroids were separated by filtra-
tion using 30 μm and 40 μm cell strainer (Miltenyi Bio-
tech) resulting in either spheroids of medium size (30–40
μm= “m”) or large size (>40 μm= “L”). Small tumor
spheroids (<30 μm= “s”) and tumor single cells (sc) were
further purified by depletion of peritoneal leucocytes using
CD45 microbeads and magnetic cell sorting (MACS) (Mil-
tenyi Biotech). Purified tumor cells were lysed in PeqGold
(Peqlab) for RNA preparation, analyzed by flow cytometry,
or cultured for testing of chemoresistance. The purity of
tumor spheroids/cells was >90 % EpCAM+ cells, except
for sample OC84s (>85 %, Additional file 4: Table S2).

Characterization of tumor cells/spheroids by flow
cytometry
Prior to FACS staining, tumor spheroids were dissoci-
ated into single cells by trypsination for 10 min at 37 °C,

followed by vortexing for 10 s. To analyze cell cycle dis-
tribution, tumor single cells were fixed in 70 % ice-cold
ethanol, washed with PBS + 2 % FCS, and treated with
100 μL RNAse (1 mg/mL) at 37 °C for 20 min. Cells
were stained with 10 μL propidium iodide (1 mg/mL)
for 30 min. FACS analysis was performed on a FACS
Canto II instrument using Diva Software (BD Biosci-
ences). Proliferation was analyzed by FACS after staining
tumor single cells with anti-Ki67 PEVio770, anti-CD45
FITC, and anti-EpCAM PE antibodies (all Miltenyi
Biotech).

Flow cytometry analysis of ascites-associated cells
Gene expression profiles generated from RNA-Seq data-
sets were verified in TAMs and tumor cells by FACS
analysis. Mononuclear cells from patients’ ascites were
simultaneously stained with Vioblue-labeled anti-human
EpCAM (Miltenyi Biotech) as tumor marker and FITC-
labeled anti-CD14 (Miltenyi Biotech), PE-labeled anti-
CD163 (eBioscience), or APC-labeled anti-CD206 (Biozol)
as TAM marker. In addition, FITC-labeled anti-TGFbeta
RIII and PE-labeled anti-LIF-R (all R&D Systems) were
used for surface staining. Intracellular staining of perme-
abilized cells was performed with APC-labeled anti-IL-8
(eBioscience), FITC-labeled anti-S100A8/A9 (Life Tech-
nologies) and FITC-labeled anti-S100A14 (antibodies-
online) as described previously [7]. Isotype control
antibodies were purchased from BD Biosciences, Mil-
tenyi Biotech, and eBioscience. Cells were analyzed by
flow cytometry and results were calculated as percent-
age of positive cells and mean fluorescence intensities
(MFI).

In vitro testing of chemoresistance
Tumor spheroids or single cells from patients were
cultured in M199 media (Life Technologies) plus 10 %
autologous, cell-free ascites with or without 10 μM car-
boplatin (Sigma Aldrich) and 10 nM paclitaxel (Adipo-
Gen) at 37 °C, 5 % CO2 (approximately 2.5–5 × 105

cells/mL). After 6 days, the 3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyl tetrazoliumbromid (MTT) assay was per-
formed to assess cell viability as described previously
[85]. The percentage of chemoresistant tumor cells in
the carboplatin/paclitaxel treated culture was calculated
relative to cells treated with solvent control (DMSO).

Analysis of soluble mediators in cell-free ascites
Soluble mediators in ascites of ovarian cancer patients
were quantified using commercial ELISA Kits according
to the instructions of the manufacturers. Human IL-6,
IL-10, LIF, VEGF-A, CCL-2, and TGFβ1 levels in ascites
were analyzed by ELISA kits purchased from
eBioscience. ANGPTL4 levels were determined using
ELISA kit from Aviscera Bioscience, leptin by ELISA Kit
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from RayBiotech and LPA by ELISA kit from Echelon.
The phospholipase A2, Group XIIA (PLA2G12A) ELISA
Kit was from antibodies-online, the PLA2G2A ELISA kit
from Biozol, and the ENPP-2/Autotaxin, CSF-1, S100A8,
and PLA2G7 ELISAs from R&D Systems.

Quantification of lipids by liquid chromatography -
tandem mass spectrometry (LC-MS/MS)
Ascites samples (1 mL) were spiked with 100 μL deuter-
ated internal standard and extracted using solid reverse
phase extraction columns (Strata-X 33, Phenomenex).
Fatty acids derivatives were eluted into 1.0 mL of metha-
nol, lyophilized, and resuspended in 100 mL of water/
acetonitrile/formic acid (70:30:0.02, v/v/v; solvent A) and
analyzed by LC-MS/MS on an Agilent 1290 separation
system. Samples were separated on a Synergi reverse-
phase C18 column (2.1 × 250 mm; Phenomenex) using a
gradient as follows: flow rate = 0.3 μL/min, 1 min (aceto-
nitrile/isopropyl alcohol, 50:50, v/v; solvent B), 3 min (25
% solvent B), 11 min (45 % solvent B), 13 min (60 %
solvent B), 18 min (75 % solvent B), 18.5 min (90 % solv-
ent B), 20 min (90 % solvent B), 21 min (0 % solvent).
The separation system was coupled to an electrospray
interface of a QTrap 5500 mass spectrometer (AB
Sciex). Compounds were detected in scheduled multiple
reaction monitoring mode. For quantification a 12-point
calibration curve for each analyte was used. Data analysis
was performed using Analyst (v1.6.1) and MultiQuant
(v2.1.1) (AB Sciex).

RT-qPCR and RNA-Seq
cDNA isolation and qPCR analyses were performed as
described [86], using L27 for normalization and evalu-
ated by the Cy0 method [87]. Primer sequences are
listed in Additional file 4: Table S5. RNA-Seq was carried
out on an Illumina HiSeq 1500 as described [85]. Sum-
marized read counts are shown in Additional file 3:
Dataset S1. Genome assembly and gene model data were
retrieved from Ensembl revision 74.

Sequencing data availability
Sequencing data were deposited at EBI ArrayExpress
(accession numbers E-MTAB-3167 and E-MTAB-4162).

Bioinformatic analysis of RNA-Seq data
RNA-Seq data were aligned to Ensembl v74 using STAR
(version STAR_2.4.1a) [88]. Gene read counts were
established as read count within merged exons of pro-
tein coding transcripts (for genes with a protein gene
product) or within merged exons of all transcripts (for
non-coding genes). TPM (transcripts per million) were
calculated based on the total gene read counts and
length of merged exons. Genes were considered
expressed if they had a minimum TPM of 3. All genomic

sequence and gene annotation data were retrieved from
Ensembl release 74, genome assembly hg19. Our full
analysis scripts and computational pipeline are available
upon request.

Adjustment of RNA-Seq data for contaminating cells
The development and testing of our algorithm, including
benchmarking against other published algorithms, are
described in detail in Additional files 1 and 5.
Simulations for Fig. 1a were performed 12,000 times

on data retrieved from GSE60424 [51]. The dataset con-
sists of highly purified immune cells from patients with
various autoimmune diseases. Samples annotated “whole
blood” and sample lib264 were excluded, as the latter
showed monocyte contamination. Mixtures were calcu-
lated by resampling the larger sample to the size of the
smaller one and mixing at a chosen percentage. Refer-
ence expressions were calculated from all non-mixed
samples of the respective tissues. Contamination estima-
tion and correction was performed as described in detail
in Additional file 1.
OC66s, TAM72, and TAT31 were used as reference

samples for pure tumor cell, TAM, and TAT popula-
tions, respectively (see Fig. 1b, c). The automated pro-
cedure selected the following marker genes for adjusting
tumor cell datasets:

TAM marker genes: AIF1, C1QB, C1QC, CCR1, CD36,
CMKLR1, CR1, FCGR2A, FCGR3B, FPR3, ITGAM,
MARCO, MPEG1, MRC1L1, STAB1, TLR4, VCAN.
TAT marker genes: ATP2A3, C16orf54, CCR4, CCR7,
CD2, CD247, CD3E, CD96, GZMK, IL2RB, IL2RG,
KCNA3, LEF1, NKG7, PRF1, RHOH, ZNF831.

For adjusting TAM datasets the following marker
genes were selected:

Tumor cell marker genes: ASS1, CDH1, CLDN4,
CT45A1, CT45A3, CT45A4, CT45A5, DSP, EPCAM,
ESRP1, IGFBP3, KRT7, LRP6, MEIS1, PRAME, SLPI,
VTCN1.
TAT marker genes: ATP2A3, CAMK4, CCR4, CD8A,
CD8B, CST7, KCNA3, KLF12, LCK, LIME1, MT1X,
NKG7, PRF1, RHOH, RLTPR, TCF7, TGFBR3.

The source code for implementing our algorithm and
the simulations described in the present study are in-
cluded as Additional file 6 and deposited at GitHib
(https://github.com/IMTMarburg/rnaseqmixture) and
Zonodo (doi:10.5281/zenodo.48872).

Statistical analysis of experimental data
Comparative data were statistically analyzed by Student’s
t-test (two-sided, unequal variance) using GraphPad
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Prism 6.0. Results were expressed as follows: *p <0.05;
**p <0.01; ***p <0.001; ****p <0.0001. CIs were calculated
using the bootstrap method.

Survival-associated gene expression analysis
Associations between gene expression and relapse-free
survival of ovarian cancer patients were analyzed using
the web based tool “KM Plotter” [38] (http://kmplot.com)
with the following settings: “auto select best cutoff,” probe
set option: “JetSet best probe,” histology: serous, datasets:
all; other settings: default). The 2015 version of KM
Plotter used contains the following 13 datasets: GSE14764
(n = 80), GSE15622 (n = 36), GSE18520 (n = 63), GSE19829
(n = 28), GSE23554 (n = 28), GSE26193 (n = 107), GSE26712
(n = 195), GSE27651 (n = 49), GSE30161 (n = 58), GSE3149
(n = 116), GSE51373 (n = 28), GSE9891 (n = 285), TCGA
(n = 565). The GraphPad Prism software was used to
analyze associations of soluble mediator concentrations
in ascites fluid with RFS (Kaplan-Meier plots, logrank p
values, logrank HR, and median survival times). Multiple
hypothesis testing was accounted for out by controlling
the FDR using the Benjamini-Hochberg method.

Additional files

Additional file 1: Description and optimization of the algorithm and
benchmarking against published methods. (PDF 5117 kb)

Additional file 2: Supplementary Figures S1–S4. (PDF 946 kb)

Additional file 3: Datasets S1–S7. (XLS 26437 kb)

Additional file 4: Supplementary Table S1–S5. (XLS 48 kb)

Additional file 5: Source code. (TXT 9 kb)

Additional file 6: Assembly of gene sets. (PDF 200 kb)
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